第三章 生物反应器总论
- 格式:ppt
- 大小:1.00 MB
- 文档页数:77
生物反应器生物反应器是一种生物技术设备,主要用于生物发酵、生物转化和生物固定化等过程的实现,是生物技术学领域中的核心设备之一。
生物反应器按规模大小可分为实验室规模、小型工业规模、大型工业规模及超大型规模,广泛应用于生物制药、食品工业、环保工程、化工领域及实验室研究等不同领域。
本文主要介绍生物反应器的基本概念、分类、结构、功能与应用等方面的内容。
一、生物反应器的基本概念生物反应器是一种专门用于维持和促进生物体生长繁殖,并对物质能量进行转化的设备。
是利用微生物生长代谢的能力,进行化学制品或生物制品的生产。
反应器内部常温度、氧气含量、pH值、营养物浓度等参数进行监测与控制,以维持接近理想的生长环境,从而提高微生物总体产量和单独化合物的产量。
二、生物反应器的分类按微生物名称分为真菌反应器和细胞反应器两种;按操作条件分为常压和高压反应器两种;按反应器内混合方式分为不同类型,如机械混合反应器、气液混合反应器、液相连续搅拌反应器、固相悬浮式反应器等;按生产工艺分则有批量式反应器、半连续式反应器和连续式反应器等。
三、生物反应器的结构生物反应器结构包括传质层、反应层和生物活性层三个部分。
传质层由反应器外壳和传质器件(气体传输系统与吸收液传输系统)组成,热量传递和质量传递的效率决定于传质器件的选择和设计。
反应层由反应器罐体、搅拌器、传热器、控制仪等组成,其内部环境的压力、温度、营养物浓度、气相浓度、氧含量、pH值等参数决定了反应的产物和效率。
生物活性层是一个重要的环节,是水生生物或微生物参与反应的主要部分。
其中,微生物是生物活性层的核心,它们根据营养状态发生生长、代谢和能量转换等复杂的反应,完成指定的反应目的。
四、生物反应器的功能生物反应器的主要功能是实现微生物生长代谢和化学过程,从而获得所需的生物制品或化学成品。
其次,需要满足反应器内环境的生物学和物理学参数要求,如空气、水、营养物、pH、pO2、温度、压力、流量等参数,确保最大的反应效率和最佳的反应条件。
生物反应器的原理生物反应器是一种用于进行生物化学反应的设备,它可以提供理想的环境条件,以支持生物体的生长、代谢和产物合成。
生物反应器的原理涉及多种方面,包括传质、反应、能量转换等。
一、传质生物反应器中的传质是指底物和产物在反应器内部的传输过程。
传质过程包括传质阻力和传质速率两个方面。
传质阻力是指底物和产物在反应过程中的扩散阻力、溶解性以及质量转移的阻力。
传质阻力对于反应速率、底物利用率以及产物浓度均有重要影响,因此在设计和控制生物反应器时需要考虑传质过程。
传质速率是指底物和产物在反应器内部的传输速率,它受到反应器内部气体和液体流动的影响。
传质速率受到多种因素的影响,包括搅拌速度、反应器内部结构、底物浓度、温度等。
二、反应生物反应器的反应过程是指生物体在特定环境条件下进行代谢活动和产物合成的过程。
反应过程可以分为两个步骤,即生物体的生长和代谢。
生物体的生长是指在适宜的环境条件下,生物体通过吸收底物和营养物质进行新陈代谢并增加体积和数量的过程。
生物体的生长过程涉及到细胞生长、分裂、增殖等多种生物学过程。
生物体的代谢是指生物体通过酶、酶类和代谢途径进行的化学转化过程。
代谢过程中产生的底物和产物可以进一步作为反应物或产物参与反应。
三、能量转换生物反应器中的能量转换是指生物体在反应过程中能量的转化和利用。
能量转换包括吸热反应和放热反应两个方面。
吸热反应是指生物体在代谢过程中吸收能量的过程。
生物体通过吸收外界的热能来提供代谢活动所需的能量,进而促进生物体的生长和代谢。
放热反应是指生物体在代谢过程中释放能量的过程。
生物体在进行代谢活动时会放出热能,这些热能可以被利用来提供反应过程中的热能需求,例如保持反应器内部的恒温。
四、控制策略生物反应器的控制策略主要包括控制温度、pH值、溶氧量等。
这些参数对于反应速率、底物利用率和产物合成等都具有重要的影响。
温度的控制可以影响生物体的生长速率和产物合成速率。
不同的生物体对于温度的要求不同,因此在设计反应器时需要根据具体的生物体选取适当的温度范围,并通过控制加热或制冷来实现对温度的控制。