整流滤波电路的设计
- 格式:ppt
- 大小:972.50 KB
- 文档页数:38
大学物理实验报告整流滤波电路
一、实验目的
本次实验的目的是研究一个简单的由正反滤波电路构成的直流整流滤波电路的工作原理。
二、实验原理
整流滤波电路把一个不稳定的交流电转换为一个稳定的直流电,其原理如下:
正反滤波电路主要由正滤波器和反滤波器连接组成。
正滤波器是使交流电经元滤除电
压波动,将波动幅度缩小,让电压值有所下降,以此达到较低交流电压;反滤波器则通过
消耗抖动部分能量以稳定原来的电压。
三、实验仪器
① DSO-7102D万用表
② 数字万用表
③ 数字示波器
④ 数字电源
四、实验参数
本次实验利用正反滤波电路,使用R1=1KΩ,R2=470Ω和C1=1μF的电路参数,输入
的是50HZ的交流信号,直流电压的范围是0V到12V。
五、实验程序
1. 取一个正反滤波电路,按照实验要求,将R1、R2和C1接好。
2. 将DSO-7102D万用表、数字万用表、数字示波器和数字电源连接好电路,并调整
好电源的直流电压。
3. 将数字示波器的触发输入接入正反滤波电路的输入,打开数字示波器,启动记录。
4.用数字万用表量测输入端和输出端的电压,获得静态波形数据。
六、实验结果
实验结果如下图所示:
可以看到,通过正反滤波电路,原来交流电的周期抖动明显减少,实现了交流信号转
换为稳定的直流电压。
单相整流滤波电路课程设计一、课程目标知识目标:1. 学生能理解并掌握单相整流滤波电路的基本原理和工作过程。
2. 学生能够描述电路中各元件的作用,并解释其在电路中的功能。
3. 学生能够运用相关公式计算单相整流滤波电路的主要参数。
技能目标:1. 学生能够正确绘制单相整流滤波电路的原理图,并识别电路中的关键元件。
2. 学生能够运用仿真软件搭建并测试单相整流滤波电路,观察并分析实验结果。
3. 学生能够解决实际电路中可能出现的问题,并进行故障排查。
情感态度价值观目标:1. 培养学生对电子技术的兴趣和热情,激发学生主动探索科学原理的精神。
2. 培养学生的团队合作意识,提高学生在团队项目中的沟通与协作能力。
3. 增强学生的环保意识,让学生认识到电子技术在节能环保方面的重要性。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程为电子技术基础课程,具有理论性与实践性相结合的特点。
2. 学生特点:学生具备一定的电子元件知识,但对于复杂电路的原理和搭建尚处于初级阶段。
3. 教学要求:结合课程特点和学生实际,注重理论与实践相结合,提高学生的动手能力和解决问题的能力。
二、教学内容1. 理论知识:- 电路基础知识回顾:电流、电压、电阻等基本概念。
- 单相整流电路原理:半波整流、全波整流、桥式整流的工作原理及其特点。
- 滤波电路原理:电容滤波、电感滤波的原理及其在整流电路中的应用。
2. 实践操作:- 绘制单相整流滤波电路原理图,分析电路中元件的选择和连接方式。
- 使用仿真软件(如Multisim)搭建单相整流滤波电路,进行仿真实验。
- 实际操作:搭建实体电路,观察并记录实验数据,分析实验结果。
3. 教学大纲安排:- 第一课时:回顾电路基础知识,介绍单相整流电路原理。
- 第二课时:讲解滤波电路原理,分析其在整流电路中的应用。
- 第三课时:绘制电路原理图,进行仿真实验操作。
- 第四课时:实体电路搭建与实验,总结实验现象及问题解决方法。
一、实验名称
整流滤波电路
二、实验目的
1、熟悉单相半波、桥式整流电路。
2、观察了解电容滤波作用。
三、实验原理
1、利用二极管的单向导电作用,可将交流电变为直流电。
常用的二极管整流电路有单相半波整流电路和桥式整流电路等。
2、在桥式整流电路输出端与负载电阻R L并联一个较大电容C,构成电容滤波电路。
整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。
四、仪器设备
实验箱(整流滤波与并联稳压电路)、示波器、数字万用表
五、实验步骤
1、半波整流、桥式整流电路
实验电路分别如图所示,分别接两种电路,用示波器观察U2及UL的波形,并测量U2、UL。
图一
图二
2、电容滤波电路
实验电路如图三。
图三
(1)分别用不同电容接入电路,RL先不接,用示波器观察波形,用电压表测UL并记录。
(2)接上RL,先用RL=1KΩ,重复上述实验并记录。
(3)将RL改为150Ω,重复上述实验。
六、数据记录
电路形式U2/V UL/V 半波整流电路
桥式整流电路
2、半波整流、桥式整流电路输入U2、输出UL的波形图
3、滤波电路数据记录
(1)RL开路(RL=∞)
C/μF UL/V
0.33
470
(2)C=470μF
RL UL/V
∞
1KΩ
150Ω
4、滤波电路输出UL的波形图
C=0.33μF RL=∞C=470μF RL=∞
C=470μF RL=1KΩC=470μF RL=150Ω。
整流与滤波电路实验报告整流与滤波电路实验报告一、引言整流与滤波电路是电子电路中常用的两种基本电路。
整流电路用于将交流电信号转换为直流电信号,滤波电路则用于去除电路中的噪声和波动,使电路输出更加稳定。
本实验旨在通过实际操作,深入理解整流与滤波电路的原理和应用。
二、实验目的1. 学习整流电路和滤波电路的基本原理;2. 掌握整流电路和滤波电路的实验操作方法;3. 分析整流电路和滤波电路的性能指标。
三、实验器材和仪器1. 电源:直流电源、交流电源;2. 电阻:可变电阻、固定电阻;3. 电容:可变电容、固定电容;4. 示波器;5. 连接线等。
四、实验原理1. 整流电路原理:整流电路用于将交流电信号转换为直流电信号。
常见的整流电路有半波整流电路和全波整流电路。
半波整流电路仅利用正半周或负半周的信号,而全波整流电路则同时利用正负半周的信号。
2. 滤波电路原理:滤波电路用于去除电路中的噪声和波动,使电路输出更加稳定。
常见的滤波电路有低通滤波电路和高通滤波电路。
低通滤波电路能够通过低频信号,而阻断高频信号;高通滤波电路则相反。
五、实验步骤1. 搭建半波整流电路:将交流电源连接到二极管的正端,将负端接地。
连接一个负载电阻,并通过示波器观察输出波形。
2. 搭建全波整流电路:将交流电源连接到两个二极管的正端,将负端接地。
连接一个负载电阻,并通过示波器观察输出波形。
3. 搭建低通滤波电路:将交流电源连接到一个电容的正极,将负极接地。
连接一个负载电阻,并通过示波器观察输出波形。
4. 搭建高通滤波电路:将交流电源连接到一个电容的负极,将正极接地。
连接一个负载电阻,并通过示波器观察输出波形。
六、实验结果与分析1. 半波整流电路:观察示波器上的波形,可以发现输出信号仅包含正半周的波形。
这是因为二极管在正向导通时,电流可以流过,而在反向截止时,电流无法通过。
2. 全波整流电路:观察示波器上的波形,可以发现输出信号包含正负半周的波形。
整流滤波电路实验报告整流滤波电路实验报告一、引言整流滤波电路是电子工程中常用的一种电路,用于将交流电信号转换为直流电信号,并通过滤波电路去除交流信号中的纹波。
本实验旨在通过搭建整流滤波电路,了解其原理和特性,并通过实验数据进行分析和验证。
二、实验装置和原理本实验所用的实验装置包括电源、变压器、二极管、电容器、电阻器和示波器。
实验中,交流电源通过变压器降压,并接入整流电路。
整流电路由二极管和电容器组成,二极管起到整流作用,将交流信号转换为半波或全波直流信号,而电容器则用于滤波,去除纹波。
三、实验步骤和数据记录1. 按照实验电路图搭建整流滤波电路,注意连接的正确性。
2. 打开电源,调节电源输出电压为适当值,例如10V。
3. 使用示波器测量电路输入和输出的电压波形,并记录数据。
4. 调节电源输出电压,分别记录不同电压下的输入和输出波形数据。
四、实验数据分析通过实验记录的数据,我们可以进行以下分析:1. 输入电压和输出电压的关系:根据实验数据,我们可以得到输入电压和输出电压的关系曲线。
一般情况下,输出电压随着输入电压的增加而增加,但在一定范围内,输出电压会趋于稳定。
这是因为当输入电压过大时,电容器已经无法完全充电,无法继续提高输出电压。
2. 纹波电压的大小:纹波电压是指在整流滤波电路输出的直流电压中所包含的交流成分。
通过示波器测量输出电压波形,我们可以计算得到纹波电压的大小。
纹波电压的大小与电容器的滤波能力有关,一般情况下,电容器越大,滤波效果越好,纹波电压越小。
3. 输出电压的稳定性:通过观察输出电压波形,我们可以判断整流滤波电路的稳定性。
如果输出电压的波形较为平稳,没有明显的波动和纹波,则说明整流滤波电路的稳定性较好。
五、实验结论通过本次实验,我们对整流滤波电路的原理和特性有了更深入的了解。
实验数据分析表明,输入电压和输出电压呈正相关关系,但在一定范围内输出电压趋于稳定。
此外,电容器的大小对纹波电压的大小有影响,电容器越大,滤波效果越好。
整流滤波实验报告整流滤波的电路设计实验一、实验目的:1、研究半波整流电路,全波整流电路。
2、电容滤波电路,观察滤波器在半波和全波整流中的滤波效果。
3、整流滤波电路输出脉动电压的峰值4、进一步掌握示波器显示与测量的技能。
二、实验仪器:示波器,6v交流电源,面包板,电容(470uF、10uF)电阻(200Ω,100Ω,50Ω,25Ω),导线若干。
三、实验原理:1、实验思路利用二极管正向导通反向截至的特性,与RC电路的特性,通过二极管、电阻与电容的串并联设计出各种整流电路和滤波电路进行研究。
2、半波整流电路变压器的次级绕组与负载相接,中间串联一个整流二极管,就是半波整流。
利用二极管的单向导电性,只有半个周期内有电流流过负载,另半个周期被二极管所阻,没有电流。
2.1单相半波整流只在交流电压的半个周期内才有电流流过负载的电路称为单相半波整流电路。
原理:如图4.1,利用二极管的单向导电性,在输入电压Ui 为正的半个周期内,二极管正向偏置,处于导通状态,负载RL上得到半个周期的直流脉动电压和电流;而在Ui为负的半个周期内,二极管反向偏置,处于关断状态,电流基本上等于零。
由于二极管的单向导电作用,将输入的交流电压变换成为负载RL两端的单向脉动电压,达到整流目的,其波形如图4.2。
3、全波桥式整流前述半波整流只利用了交流电半个周期的正弦信号。
为了提高整流效率,使交流电的正负半周信号都被利用,则应采用全波整流,现以全波桥式整流为例,其电路和相应的波形如图6.2.1-3所示。
若输入交流电仍为tUt u Piωsin )(=(8)则经桥式整流后的输出电压u 0(t)为(一个周期) tU u tU u P P ωωsin sin 00-==πωππω20≤≤≤≤t t(9)其相应直流平均值为⎰≈==TPPU U dt t u T u 0637.02)(1π(10)由此可见,桥式整流后的直流电压脉动大大减少,平均电压比半波整流提高了一倍(忽略整流内阻时)。
单相整流滤波电路实验报告单相整流滤波电路实验报告引言:单相整流滤波电路是一种常见的电力电子电路,用于将交流电转换为直流电。
本实验旨在通过搭建和测试单相整流滤波电路,深入理解其工作原理和性能。
一、实验目的本实验的主要目的是:1. 掌握单相半波和全波整流电路的基本原理;2. 了解滤波电路对整流电路输出波形的影响;3. 测试并分析单相整流滤波电路的性能。
二、实验原理1. 单相半波整流电路单相半波整流电路由一个二极管和一个负载组成。
当输入交流电的正半周时,二极管导通,电流通过负载;而在负半周时,二极管截止,电流不通过负载。
因此,输出波形为输入波形的正半周。
2. 单相全波整流电路单相全波整流电路由两个二极管和一个负载组成。
当输入交流电的正半周时,D1二极管导通,电流通过负载;而在负半周时,D2二极管导通,电流同样通过负载。
因此,输出波形为输入波形的绝对值。
3. 滤波电路滤波电路用于平滑整流电路的输出波形,减小波动和纹波。
常见的滤波电路有电容滤波和电感滤波。
电容滤波电路通过电容器储存电荷来平滑输出波形;而电感滤波电路通过电感器储存磁场能量来平滑输出波形。
三、实验器材和仪器1. 功率变压器2. 整流电路实验箱3. 示波器4. 电阻、电容、电感等元件四、实验步骤1. 搭建单相半波整流电路根据实验箱提供的元件和示意图,搭建单相半波整流电路。
2. 连接示波器将示波器的探头分别连接到负载电阻两端,以观察输出波形。
3. 测试单相半波整流电路接通交流电源,调节示波器的时间和电压刻度,观察和记录输出波形。
4. 搭建单相全波整流电路根据实验箱提供的元件和示意图,搭建单相全波整流电路。
5. 连接示波器将示波器的探头分别连接到负载电阻两端,以观察输出波形。
6. 测试单相全波整流电路接通交流电源,调节示波器的时间和电压刻度,观察和记录输出波形。
7. 搭建单相整流滤波电路在单相全波整流电路的基础上,添加适当的电容滤波电路。
8. 连接示波器将示波器的探头连接到滤波电路的输出端,以观察输出波形。
完整版整流滤波电路实验报告
完整版整流滤波电路实验报告
一、实验目的
1. 了解整流滤波电路的工作原理。
2. 掌握整流滤波电路的组成,以及它们各自的功能。
3. 熟悉整流滤波电路的应用场景,并利用实验对其进行验证。
二、实验原理
整流滤波电路是一种把交流电转换为直流电的电路,通常由整流器、电容、电阻和发光二极管等元件构成。
整流滤波电路的工作原理是:交流电通过整流器转换为直流电,然后通过滤波电容,将高频的抖动分量抑制,最终得到一个稳定的直流电压。
三、实验电路
图1 整流滤波电路实验电路
四、实验结果
1. 电路按照实验原理组装完成,测量电压即时正常。
2. 将电压调节端子拨动至0V,此时,输出电压仍保持不变,说明整流滤波电路有效,可以有效抑制输入电压的抖动分量,得到一个稳定的输出电压。
3. 改变电源电压,观察输出电压随之变化的情况,发现输出电压随着输入电压的变化而变化,但一般变化幅度较小,说明整流滤波电路还是有效的。
五、结论
通过本次实验,我们了解了整流滤波电路的工作原理,以及它的组成、应用场景,并通过实验对其进行了验证。
完整版整流滤波电路实验报告
本次实验是为了验证整流滤波电路的正确性,所实验的电路如图1所示。
图1 整流滤波电路
实验准备:平衡负载电阻、电源电压表、普通万用表以及示波器等实验仪器。
实验步骤:
1. 使用普通万用表测量BJT的正向击穿电压以及导通路的电阻,测量值为 VCE=0.45V 和RCE=3.75kΩ 。
2. 加入占空比可调电压源,改变占空比,观察变振宽的变化情况,记录下来。
3. 加入有平衡电阻的负载,观察有平衡电路的纹波和无平衡电路纹波的比较,记录下来。
实验结果:
1. 占空比对变振宽影响:
当占空比从 0.1 到 0.9 时,变振宽从 0.4ms 增加到 2.48ms,变化趋势呈明显下降趋势。
2. 平衡电路对纹波影响:
当占空比为 0.5 时,有平衡电路的纹波电压峰值仅维持在 0.08V,而在无平衡电路时,反复上升,有多次大幅度变化,峰值最高达 8V。
实验结论:从本次实验的结果可以看出,调整占空比可以改变变振宽,而加入有平
衡电阻的负载可以减少纹波幅值,从而证明整流滤波电路的有效性。
整流滤波电路设计实验前言:交流电(英语:Alternating CurrentAlternating CurrentAlternating CurrentAlternating Current,简写ACACACAC)是指大小和方向都发生周期性变化的电流,因为周期电流在一个周期内的运行平均值为零(不含直流成分),称为交变电流或简称交流电。
不同于方向不随时间发生改变的直流电。
通常波形为正弦曲线。
但实际上还有应用其他的波形,例如三角形波、正方形波。
生活中使用的市电就是具有正弦波形的交流电。
交流电升降压容易的特点正好适合实现高压输电,从而使电线上的电力损失极少,被广泛运用于电力的传输。
传输的电流在导线上的耗散功率可用P = I2R(功率=电流的平方×电阻)求得,显然要降低能量损耗需要降低传输的电流或电线的电阻。
由于成本和技术所限,很难降低目前使用的输电线路(如铜线)的电阻,所以降低传输的电流是唯一而且有效的方法。
根据P=IV(功率=电流×电压,实际上有效功率P = IVcosφ),提高电网的电压即可降低导线中的电流,以达到节约能源的目的。
近年来直流变压及输电技术取得了长足的发展,而高压直流输电的浪费会比较小;因此未来有望取代交流电以解决交流电的安全性和交直流转换问题。
在城市内一般使用降压变压器将电压降至几万至几千伏以保证安全,在进户之前再次降低至市电电压(中国、香港220V)或者适用的电压供用电器使用。
一般使用的交流电为三相交流电,其电缆有三条火线和一条公共地线,三条火线上的正弦波各有120°之相位差。
对于一般用户只使用其中的一或两条相线(一条时需要零线)。
实际在我们日常生活中,交流电入户之后进入电器,电器里面都会有电源模块将交流电转化为直流电供电器使用。
在有些工业上如电解和电镀等,也可利用整流设备,将交流电转化为直流电。
摘要:随着科技的进步,生活中的电器是我们的生活变的更加的方便快捷,但是很多电器的使用要求是直流电,而我们的家用电是220V交流电,这就要求电器内部拥有能将交流电转换为直流电的装置,在这里我们就讨论一种能够实现需求的电路——整流滤波电路,学习了解其工作原理对于以后的更加深度的学习有着重要的意义。
整流滤波电路实验报告实验报告:整流滤波电路一、实验目的:1.了解整流电路的基本工作原理;2.学会使用二极管进行整流;3.掌握使用电容进行滤波的方法;4.通过实验验证整流滤波电路的稳压性能。
二、实验器材:1.示波器;2.变压器;3.整流二极管;4.定压二极管;5.电阻;6.电容;7.电源;8.连接线。
三、实验原理:四、实验步骤:1.将变压器的输入端接入交流电源,输出端接入整流滤波电路。
2.将输入端连接示波器的通道1,来观察输入信号的波形。
3.将输出端连接示波器的通道2,来观察输出信号的波形。
4.通过观察示波器的波形,调整变压器输出电压,使输入信号的幅值适中,便于实验观察。
5.测量输出电压的峰值和平均值,并记录数据。
6.改变电容的容值,重新测量输出电压的峰值和平均值,并记录数据。
7.分析结果,并与理论值进行比较。
五、实验结果:1.经过整流二极管的作用,输入信号的负半周被截取,只留下正半周的波形图。
2.经过电容滤波后,输出信号的波形图变得更加平滑。
3.随着电容容值的增加,输出信号的峰值减小,但平均值增加。
六、实验分析:1.通过整流二极管,实现了将交流信号转化为直流信号的功能。
2.通过电容滤波,进一步去除输出信号中的波动部分,使其更趋于稳定。
3.电容的容值决定了对输出信号的滤波效果,较大的电容可以过滤更多的高频波动。
4.输出信号的峰值与电容的容值呈反比关系,平均值则与电容的容值成正比关系。
七、实验总结:整流滤波电路是一种常见的电路,能够将交流信号转化为直流信号,并通过电容滤波使其更加平稳。
本次实验通过实际搭建整流滤波电路并观察波形,验证了其基本工作原理。
同时,通过测量输出信号的数据,分析了电容容值对输出信号的影响。
实验过程中,需要严格控制实验条件,确保实验结果的准确性。
通过本次实验,我对整流滤波电路的原理和使用方法有了更深入的理解,为今后的学习和实践奠定了基础。
整流滤波电路实验报告一、实验目的。
本实验旨在通过搭建整流滤波电路,了解其工作原理,掌握整流电路和滤波电路的基本知识,以及学习使用示波器测量电路波形。
二、实验仪器与设备。
1. 电压源。
2. 二极管。
3. 电容。
4. 示波器。
5. 万用表。
6. 电阻。
7. 电路连接线。
8. 面包板。
三、实验原理。
整流电路的作用是将交流信号转换为直流信号。
在实际电路中,整流电路通常与滤波电路结合使用,滤波电路的作用是去除整流后产生的脉动,使输出电压更加稳定。
本实验中,我们将搭建一个半波整流滤波电路,通过二极管将输入的交流信号转换为直流信号,然后使用电容进行滤波处理,最终得到稳定的直流输出信号。
四、实验步骤。
1. 将电路连接线、二极管、电容、电阻等元器件按照电路图连接在面包板上。
2. 将电压源的正负极分别连接到整流滤波电路的输入端。
3. 使用示波器测量输入和输出信号的波形,并记录数据。
4. 调节电压源的输出电压,观察输出信号的变化。
5. 分析实验数据,总结整流滤波电路的特点和工作原理。
五、实验数据与分析。
通过实验测量和观察,我们得到了输入和输出信号的波形数据。
在输入交流信号经过整流电路后,我们观察到输出信号的直流成分增大,脉动成分减小。
经过滤波电路处理后,输出信号的脉动进一步减小,最终得到了稳定的直流输出信号。
这验证了整流滤波电路的工作原理,也说明了滤波电路对于去除脉动的有效性。
六、实验总结。
通过本次实验,我们深入了解了整流滤波电路的工作原理和特点,掌握了使用示波器测量电路波形的方法。
同时,我们也发现了实际电路中存在的一些问题,例如电容和电阻的选取对于滤波效果的影响,以及电路连接的稳定性等,这些都需要我们在实际应用中加以注意和改进。
七、实验感想。
通过本次实验,我们不仅学到了理论知识,还锻炼了动手能力和实验技能,加深了对电路原理的理解。
在今后的学习和工作中,我们将继续努力,不断提升自己的实验能力和创新意识,为将来的科研和工程实践打下坚实的基础。