聚合物的流变行为
- 格式:ppt
- 大小:602.50 KB
- 文档页数:21
第9章聚合物的流变性流变学是研究材料流动和变形规律的一门科学。
聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。
9.1牛顿流体与非牛顿流体9.1.1非牛顿流体描述液体层流行为最简单的定律是牛顿流动定律。
凡流动行为符合牛顿流动定律的流体,称为牛顿流体。
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。
式中:——剪切应力,单位:牛顿/米2(N/㎡);——剪切速率,单位:s-1;——剪切粘度,单位:牛顿•秒/米2(N•s/㎡),即帕斯卡•秒(Pa•s)。
非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。
包括:1、假塑性流体(切力变稀体)η随的↗而↙例:大多数聚合物熔体2、膨胀性流体(切力变稠体)η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。
3、宾汉流体。
τ<τy,不流动;τ>τy,发生流动。
按η与时间的关系,非牛顿流体还可分为:(1)触变体:维持恒定应变速率所需的应力随时间延长而减小。
(2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。
牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述:式中:K为稠度系数n:流动指数或非牛顿指数n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。
定义表观粘度9.2聚合物的粘性流动9.2.1聚合物流动曲线聚合物的流动曲线可分为三个主要区域:图9-1 聚合物流动曲线1、第一牛顿区低切变速率,曲线的斜率n=1,符合牛顿流动定律。
该区的粘度通常称为零切粘度,即的粘度。
2、假塑性区(非牛顿区)流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。
通常聚合物流体加工成型时所经受的切变速率正在这一范围内。
3、第二牛顿区在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。
Rheological Behavior of Polymers 聚合物的流变行为在现代物理和化学研究中,聚合物是一个重要的研究对象。
随着人们对聚合物研究的深入,我们开始逐步了解聚合物的流变行为。
聚合物的流变行为影响着聚合物的力学性能和加工性能,因此深入研究聚合物的流变行为对于提高聚合物的性能具有重要作用。
一、聚合物的流变学聚合物的流变学主要研究塑料、橡胶等高分子物质在受力和流动时所表现出的物理性质。
由于聚合物分子量大,具有较高的柔韧性和可变性,因此其在受力和流动时表现出的特殊性质特别值得研究。
根据牛顿流体和非牛顿流体的不同,聚合物可分为牛顿性聚合物和非牛顿性聚合物。
牛顿性聚合物是指其流变特性符合牛顿流体的流动方式,即在外力作用下,聚合物会立即产生运动,并且所流出的液体质量与时间成正比。
而非牛顿性聚合物则会表现出各种不同的流变特性,如剪切稀释、屈服现象等不同的流动方式。
二、聚合物的流变特性聚合物的流变特性主要分为剪切性能和扭转性能。
剪切性能是指聚合物在剪切力下的应力-应变关系,而扭转性能则是指聚合物在扭转力下的应力-应变关系。
这两种性能对于聚合物的力学性能和加工性能都有着重要作用。
聚合物的剪切性能主要由剪切模量、剪切应力和剪切应变等参数来衡量。
剪切模量是指聚合物在受到外力作用下产生剪切变形的能力,剪切应力是指在剪切变形中聚合物受力的强度大小,剪切应变则是指聚合物在剪切变形中所产生的形变程度。
聚合物的扭转性能则是通过扭转模量、扭转应力和扭转应变等参数来衡量。
扭转模量是指聚合物在受到扭转力作用下所产生的变形能力,扭转应力是指在扭转变形中聚合物受力的强度大小,扭转应变则是指聚合物在扭转变形中所产生的形变程度。
三、聚合物流变行为的影响因素聚合物的流变行为在很大程度上受到诸多因素的影响。
这些因素主要包括聚合物分子量、聚合物分子结构、聚合物溶液中其他物质的浓度等。
其中,分子量是影响聚合物流变行为的最重要因素之一。
第9章聚合物的流变性流变学是研究材料流动和变形规律的一门科学。
聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。
牛顿流体与非牛顿流体9.1.1非牛顿流体描述液体层流行为最简单的定律是牛顿流动定律。
凡流动行为符合牛顿流动定律的流体,称为牛顿流体。
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。
式中:——剪切应力,单位:牛顿/米2(N/㎡);——剪切速率,单位:s-1;——剪切粘度,单位:牛顿•秒/米2(N•s/㎡),即帕斯卡•秒(Pa•s)。
非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。
包括:1、假塑性流体(切力变稀体)η随的↗而↙例:大多数聚合物熔体2、膨胀性流体(切力变稠体)η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。
3、宾汉流体。
τ<τy,不流动;τ>τy,发生流动。
按η与时间的关系,非牛顿流体还可分为:(1)触变体:维持恒定应变速率所需的应力随时间延长而减小。
(2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。
牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述:式中:K为稠度系数n:流动指数或非牛顿指数n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。
定义表观粘度聚合物的粘性流动9.2.1聚合物流动曲线聚合物的流动曲线可分为三个主要区域:图9-1 聚合物流动曲线1、第一牛顿区低切变速率,曲线的斜率n=1,符合牛顿流动定律。
该区的粘度通常称为零切粘度,即的粘度。
2、假塑性区(非牛顿区)流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。
通常聚合物流体加工成型时所经受的切变速率正在这一范围内。
3、第二牛顿区在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。
聚合物溶液中的流变行为研究哎呀,说起聚合物溶液中的流变行为,这可真是个有趣又复杂的话题。
就像我之前有一次去实验室观察实验的经历,那真是让我印象深刻。
那天,我走进实验室,看到实验台上摆放着各种仪器和试剂,心里充满了好奇和期待。
实验的目的是研究一种新型聚合物溶液在不同条件下的流变行为。
咱们先来说说啥是流变行为吧。
简单来讲,就是聚合物溶液在受到外力作用时,比如搅拌、挤压,它的流动和变形的特性。
这就好比我们揉面团,面团在我们手里的变化,就是一种流变行为。
聚合物溶液的流变行为那可是受到好多因素的影响。
比如说浓度,浓度低的时候,溶液可能就跟水一样稀溜溜的,容易流动;浓度一高,就变得黏糊糊的,流动起来可费劲了。
还有温度,温度高的时候,分子运动活跃,溶液就变得“活泼”起来,容易流动;温度低了,分子都懒得动,溶液就变得“懒洋洋”的,流动起来慢吞吞。
再说说分子量吧。
分子量小的聚合物溶液,就像小个子跑步,轻松灵活;分子量越大,就好像是个大块头,移动起来可没那么容易。
在那次实验中,我们一点点地改变条件,仔细观察溶液的变化。
当我们逐渐增加搅拌速度时,原本还算平静的溶液开始变得“躁动”起来,形成了一个个小小的漩涡。
随着搅拌速度继续加快,溶液好像被激怒了,开始飞溅出来,弄得实验台到处都是。
而且啊,不同的聚合物结构也会让流变行为大不一样。
有的结构比较规整,流动起来就比较顺畅;有的结构乱七八糟,就像路上的障碍物,阻碍着溶液的流动。
研究聚合物溶液的流变行为可不是为了好玩,它在实际生活中有好多重要的应用呢。
比如说在化妆品行业,要让乳液、面霜有合适的质地和使用感,就得搞清楚聚合物溶液的流变行为。
在石油工业中,原油的输送也和它有关,了解流变行为才能更好地设计管道和输送方案。
回到我们的实验,经过一整天的忙碌,虽然有点累,但收获满满。
看着那些实验数据,就好像是看到了聚合物溶液在跟我们“诉说”它们的秘密。
总之,聚合物溶液中的流变行为就像是一个神秘的世界,等待着我们去探索和发现。
聚合物流体的流变性引言聚合物流体是由聚合物分子组成的流体,其独特的流变性质使其在许多工业和科学领域中得到广泛应用。
本文将介绍聚合物流体的流变学性质,包括流变学基本概念、聚合物流体流变学模型、流变学测试方法和聚合物流体的应用领域。
流变学基本概念流变学是研究流体在外力作用下的变形和流动规律的科学。
聚合物流体的流变学行为与传统液体有所不同,其主要特点是非牛顿性。
非牛顿流体指的是流体的粘度随应力变化而变化的流体。
聚合物流体的非牛顿性主要由聚合物链的长而柔软的特性所决定。
根据应力与应变速率之间的关系,可以将聚合物流体分为剪切稀化和剪切增稠流体。
聚合物流体流变学模型为了描述聚合物流体的流变学行为,研究人员发展了许多流变学模型。
其中最经典的模型之一是Maxwell模型,它将聚合物流体看作是由弹簧和阻尼器组成的串联结构。
除此之外,还有Oldroyd-B模型、Giesekus模型和白金布卢米斯模型等。
这些模型可以有效地描述聚合物流体的应力-应变关系,并能预测流体的流变学行为。
流变学测试方法为了研究聚合物流体的流变学特性,需要进行一系列的流变学测试。
常见的流变学测试包括剪切应力-剪切应变测试、动态剪切测试、扩展流动测试和振动测试等。
这些测试方法可以提供流体的粘度、弹性模量、流动极限等参数,从而深入了解聚合物流体的流变学性质。
聚合物流体的应用领域聚合物流体的流变学性质使其在许多应用领域中得到广泛应用。
在食品工业中,聚合物流体用作稳定剂、增稠剂和乳化剂等。
在化妆品工业中,聚合物流体则用于调整产品的黏度和流动性。
此外,聚合物流体还在油田开发、药物传输和生物医学工程中起着重要作用。
结论聚合物流体的流变学性质对其在各种应用领域中的表现起着至关重要的作用。
在了解聚合物流体的流变学行为之后,我们能够更好地设计和控制这些流体,以满足不同领域的需求。
未来,随着对聚合物流体流变学性质研究的不断深入,我们可以预见聚合物流体在更多领域中发挥更重要的作用。