管线钢抗HIC性能不合格原因分析
- 格式:pdf
- 大小:394.90 KB
- 文档页数:4
HIC实验容大检测,权威HIC+SSC实验服务机构,高效专业,出具有资质检测报告,请联系1. 总则本程序按NACE TM0284-2003的要求制定,规定了HIC试验的要求,规定了试样的截取和准备、试验操作以及各项参数的测定程序。
2. 缩写HIC 氢致开裂ISO 国际标准化组织NACE 美国腐蚀工程师协会3. 参考标准NACE TM0284-2003 管线和压力容器用钢抗氢致开裂评价方法4. 试验溶液4.1. 溶液A的试剂为除氧的氮气、硫化氢气体、氯化钠、冰乙酸和蒸馏水或去离子水。
溶液B的试剂为除氧的氮气、硫化氢气体和人工海水。
注:硫化氢气体毒性强烈,必须谨慎处理。
4.2. 氯化钠和冰乙酸应该用试剂级的化学药品。
4.3. 气体应该是试剂级或化学纯气体,水应该用蒸馏水或去离子水。
5. 试验设备试验应有足够大的可容纳试样的空间,在经过净化和导入H2S的密闭容器内进行。
任何试验材料都不应污染试验环境或者与试验环境发生反应。
图1为典型试验装置简图。
图1: 典型的试验装置简图6. 试样6.1. 试样尺寸6.1.1. 试样尺寸应为100±1mm长,20±1mm 宽。
6.1.2. 试样壁厚应为管的整个壁厚,最大30mm。
最多允许从内、外表面各去除1mm,试样坯料不应被矫平。
6.1.3. 对小直径、薄壁电阻焊管和无缝管线钢管,试样厚度最少应为管壁厚度的80%。
在这种情况下,应从钢管上取的弧形试样进行试验,试样坯料不应被矫平。
6.2. 试样数量、位置和方向6.2.1. 每根试验管取三个试样。
试样应从焊缝、焊缝90°以及180°位置各取一个试样。
6.2.2. 从钢管上取下的试样应:a) 无缝管和纵向焊管的母材金属,应平行于管的纵轴(见图2);b) 螺旋焊管的母材金属,应平行于焊缝(见图3);c) 焊管的焊接区,应垂直于焊缝(见图4-图5);d) 小直径电阻焊管的焊接区,应平行于焊缝。
抗氢致开裂(ANTI-HIC)HIC是氢诱导裂纹的意思Hydrogen Induced Cracking1,化学成分,P,S含量要求控制在0.020%和0.015%以下;2,屈服强度,要小于345MPa;3,材料必须是硅镇静钢.4,应符合NACE MR0175和NACE MR0103的规定。
(这个还可以看看?)5,碳当量CE应小于0.42%。
6,材料表面不能有大于0.5mm的尖锐缺隐存在.7,材料必须热处理交付.其中NACE:美国腐蚀工程师学会16MnR(R-HIC)钢板适用于什么工况?典型的适用于湿HS环境的材料,材料的S、P含量要求相当低,S≤0.002%、P2≤0.008%。
产品适用于低温环境下使用的抗硫化氢腐蚀设备,冲击韧性比普通的16MnR高,16MnR(HIC)耐腐蚀钢(抗氢钢、抗硫化氢腐蚀用钢)16MnR(HIC)产品执行GB6654,GB6654是强制性标准,但需抗HIC(氢致裂纹)16MnR钢板属于压力容器范畴,走的压力容器材料标准,归6654管理。
HIC为抗氢致开裂钢,16MnR(HIC)比16MnR有更严格的制造、检验要求。
一、材料:1、标准σs≤355MPa。
2、实测σb≤630MPa。
3、使用状态为正火、正火+回火、退火或[wiki]调质[/wiki]。
4、碳当量≤0.45。
5、焊接接头HB≤200。
6、S、P≤0.006%,更严格时控制S、P≤0.002%。
二、制造要求:1、冷变形量≤5%时,进行消除应力热处理,大于5%时,进行正火处理。
2、焊后进行消除应力热处理。
氢诱裂纹(HIC)性能采用NACE TM0284-2003标准进行HIC性能评价,试验溶液由供需双方协商确定,其HIC试验的平均值满足:裂纹敏感率(CSR)≤2%裂纹长度率(CLR)≤15%裂纹厚度率(CTR)≤5%注:只有钢板和板卷钢管才考虑在湿硫化氢环境下的抗HIC问题,轧制钢管不考虑HIC,20#ANTI-HIC钢管是错误的,没有标准,没有制造厂家。
Q345R(R・HIC)中HIC 试验1、氢致开裂(HIC)试验简介氢致开裂(HIC)英文全称是:Hydrogen induced crackingo硫化氢是石油和天然气中最具腐蚀作用的有害介质之一,在天然气输送过程中,硫化氢对输送管线的应力腐蚀占很大比重。
在湿硫化氢环境中使用时,能导致碳钢内部出现氢鼓泡(HB)、氢致开裂(HIC)和应力导向的氢致开裂(SOHIC)。
管材在含硫化氢等酸性环境中,因腐蚀产生的氢侵入钢内而产生的裂纹称为氢致开裂(HIC)国标GB/T8650-2006《管线钢和压力容器钢抗氢致开裂评定方法》,规定了管线钢和压力容器钢板在含有硫化物水溶液的腐蚀环境中,由于腐蚀吸氢引起的HIC的评定方法。
美标NACE TM 0284管道、压力容器抗氢致开裂钢性能评价的试验方法,规定了HIC氢致开裂的评定方法。
2、氢致开裂分类(氢脆和氢腐蚀)1)氢脆:各种情况下产生的氢原子直接渗透到钢内部后,使钢晶粒间原子结合力降低,造成钢材的延伸性、端面收缩率降低,强度也发生变化。
在裂纹尖端有与阳极反应相应的阴极反应发生。
所生成的氢或加工氢进入钢中引起氢致开裂。
2)氢腐蚀:氢与钢中的碳化物发生反应产生甲烷,甲烷气体不能从钢中扩散出去,聚集在晶粒间形成局部高压,造成应力集中,进而使钢材产生微裂纹或鼓泡。
3、破坏类型在石油天然气行业和石化行业中,如果在湿H2S环境下选用碳钢或低合金钢,那么钢板会发生很严重的脆化。
这种脆化的机理是:H2s与钢材表面发生腐蚀反应产生氢,而后氢又被钢材吸收导致氢脆。
对于低合金钢来说,这种破坏可分为以下几种类型:1)氢诱导开裂(HIC)。
HIC不需要应力就可以在钢材内部产生并传播。
2)硫化物应力开裂(SSC) ° SSC主要出现在硬度高的区域,如焊缝区。
3)应力方向氢诱导开裂(SOHIC)o事实上,SOHIC可被看作是HIC和SSC共同作用的结果。
4)氢致延迟裂纹:容器在焊接过程中,焊接材料中水分或油污在电弧高温作用下分解产生氢,这些氢一部分进入熔融的焊缝金属中,当焊缝冷却时来不急扩散出去形成局部高压而导致焊缝出现微裂纹的现象。
宽厚板WIDE AND HEAVY PLATE第25卷第4期2019年8月Vol. 25,No.4August 2019' 37 •Q345R( HIC)钢板抗HIC 性能不合格的原因分析及对策刘海宽吴小林(江阴兴澄特种钢铁有限公司特板研究所)摘 要 通过低倍检验、金相显微镜、扫描电镜和断口分析等手段,对Q345R(HIC)钢板抗HIC 性能不合格的原因进行研究分析,探讨了压力容器钢板抗HIC 性能的关键影响因素,从改善钢板偏析、夹杂物变性和提 高钢板止裂性能4个方面采取工艺措施,最终提高了 Q345R(HIC )钢板的抗HIC 性能。
关键词Q345R (HIC )影响因素工艺措施Cause Analysis & Countermeasures on Disqualified HICResistance of Q345R(HIC) SteeS PlateLiu Haikuan and Wu Xiaolin(Special Plate Research Institute of Jiangyin Xindchend Specini Steei Works Co. , Ltd.)AbstrrcC By usins macroscopic test,metanooraphic microscope,scannins electron microscope and fracture analy-sis ,researches arc performed cm tie causes of disqualified HIC resistance foe Q345R(HIC) steel plate,the key influes- cins factors of HIC resistance for pressure vessel plate arc discussed , techd(nopicel measures arc takee from three as pects of improvinf plate senrenation,iscUsion moPification and crach arrest,the HIC resistance of Q345R(HIC) steei plate is fisally improven.Keywords Q345R(HIC) ,1110^0昭 factors,TechsoUpical meascreso 前言Q345R( HIC )钢板是在湿硫化氢环境中使用 的主要金属材料,在国内石化行业的油气开采、炼化和储运领域都得到广泛应用。
夹杂物和带状组织对管线钢腐蚀性能的影响发表时间:2019-12-06T17:10:14.637Z 来源:《科技新时代》2019年10期作者:康海伟[导读] 复合型氧化物中的元素组织形成的带状组织容易导致氢致裂纹的产生,并扩散后形成阶梯状裂纹。
南京钢铁股份有限公司 210035摘要:利用氢致开裂和电化学极化腐蚀充氢法、金相分析试验,对不同化学成分的管线钢氢致开裂性能受带状组织和夹杂物的影响进行研究,并对影响因素进行分析,经过试验发现,导致氢致裂纹发生重要原因为非金属夹杂物。
本文就此进行夹杂物和带状组织所造成的影响进行分析和探讨。
关键词:夹杂物;带头组织;腐蚀性能引言:输送油气中越来越高的H2S,容易对管部造成应力腐蚀和局部、全部腐蚀等,使管线失效,导致严重的经济损失,另外随着输油量需求的不断增加,新管线建设加大了管径,提高了输出量,同时也使输出压力增大,造成腐蚀开裂的情况更加严重,所以对钢管线抗腐蚀性、焊接性、管线强度等都提出了更高的要求。
本文通过对夹杂物和带状组织对三种管线用钢所造成的腐蚀性能影响的相关试验,为管线强度研究提供参考。
一、试验方法和材料采用三种超低碳合金和低碳合金管线用钢作为试验材料,I为耐腐蚀管线钢X52,II为对比钢种,III为耐腐蚀管线钢X65,化学成分对比如表一所示。
表一试验钢材料的化学成分对比(质量分数%)二、试验方法按照相关标准,对三种材料的非金属夹杂物和组织利用金相显微镜进行观察和分析。
针对三种材料,利用静态化学阴极充氢试验法,加入催化剂的充氢试验液对材料进行极化腐蚀,在极化时间12小时后,对材料进行清洗,再通过打磨、切割、抛光等处理,通过能谱仪和扫描电镜对氢致裂纹的腐蚀情况进行研究和分析[1]。
截取腐蚀试验钢进行抗HIC试验,通过对腐蚀试验后的试验钢进行清洗等处理,通过对指定观测面的显微镜观察和利用原位统计分析仪等设备对裂纹情况进行观察,并分析其附近元素分布情况。
三、试验结果分析(一)显微组织夹杂物级别通过对三种试验钢金相显微组织的观察发现,I、II试验钢呈现为珠光体和铁素体相结合的组织;III试验钢为粒状贝氏体和铁素体相结合的组织,通过其能谱和夹杂物形貌进行分析,并对其进行评定发现,I和III 的试验钢中的夹杂物含量远低于II号试验钢中的含量,同时其级别也较低。
影响管线钢管抗氢致开裂性能的因素邓叙燕;王学敏;李玲霞【摘要】采用NACE TM 0284-2003氢致开裂标准中的试验方法以及金相显微镜和扫描电镜,研究了显微组织、合金元素、硫含量、非金属夹杂物、轧制延伸率对管线钢管抗氢致开裂性能的影响.结果表明,非金属夹杂物是导致钢管氢致开裂的主要因素;具有铁素体+回火贝氏体组织的管线钢管抗氢致开裂性能优于具有铁素体+珠光体组织的钢管;增大轧制延伸率有利于提高钢管的抗氢致开裂性能;管线钢中的Ca/S比值为1.5~2.0时,钢管的抗氢致开裂性能较好;管线钢中添加铜和镍对调质态钢管的抗氢致开裂性能影响较小.%The effect of microstructures,alloy elements,sulfur content,nonmetallic inclusion,and rolling elongation on resistance to hydrogen-induced cracking(HIC) of pipeline steel pipe was investigated by a test method in NACE TM 0284-2003 standard,OM and SEM.The results showed that the nonmetallic inclusion was a main factor responsible for the HIC of the pipeline steel pipe,the pipeline steel pipe having ferrite and tempered bainite was superior to one having ferrite and pearlite in the resistance to HIC,and the increase in rolling elongation of the pipe was beneficial to an improvement in the resistance toHIC.Furthermore,the pipeline steel in which the ratio of calcium to sulfur was 1.5 to 2.0 exhibited better resistance to HIC,and the addition of copper and nickel to the pipeline steel exerted a little influence on the resistance to HIC of the quenched and tempered pipe.【期刊名称】《上海金属》【年(卷),期】2017(039)006【总页数】5页(P4-8)【关键词】管线钢管;氢致开裂;氢鼓泡;显微组织;夹杂物【作者】邓叙燕;王学敏;李玲霞【作者单位】达力普石油专用管有限公司,河北沧州061000;河北省石油专用管工程技术研究中心,河北沧州061000;达力普石油专用管有限公司,河北沧州061000;河北省石油专用管工程技术研究中心,河北沧州061000;达力普石油专用管有限公司,河北沧州061000;河北省石油专用管工程技术研究中心,河北沧州061000【正文语种】中文据统计,世界上已探明的油气田中大约有1/3含有硫化氢气体,如我国的四川、长庆、中原、华北、塔里木等油气田都含有硫化氢气体。
目录1.引言 (1)1.1 X80管线钢发展背景 (1)1.2 X80管线钢的研究现状 (2)1.2.1 X80管线钢的发展历史 (2)1.2.2 X80管线钢的成分、组织性能 (4)1.2.3 X80管线钢的焊接技术 (5)1.2.4 X80管线钢焊接热影响区组织 (6)2. X80管线钢的应力腐蚀断裂 (7)2.1 管线钢应力腐蚀破裂的特点 (7)2.2 管线钢应力腐蚀破裂的机理 (9)2.2.1 硫化氢应力腐蚀开裂机理 (9)2.2.2 IGSCC 破裂机理 (12)2.2.3 TGSCC 破裂机理 (13)3. X80 管线钢焊接接头的低温断裂 (14)3.1 管线钢的低温脆断韧性 (14)3.2 低温脆断韧性研究 (14)4.西气东输二线X80管线钢焊接失效性分析 (15)4.1 X80管线钢在西气东输二线中的应用 (15)4.2 X80管线钢焊接失效的原因分析 (15)4.2.1 宏观观察 (15)4.2.2 微观组织观察 (16)4.2.3 能谱分析 (16)4.2.4 扫描电镜分析 (17)4.2.5 金相显微组织观察 (18)4.2.6 综合分析 (19)5.总结 (19)1.引言1.1 X80管线钢发展背景随着全球能源结构的优化调整,石油天然气的需求增加,极大地促进了管线工程的发展,同时也推动了X80 管线钢的开发步伐,2002 年8 月,国家经贸委、中国石油天然气集团公司、中国钢铁协会等单位组织召开了“十五”国家重大技术装备研制和国产化会议,与会专家一致通过“大口径输气管线用X80 板材国产化及评价”课题的可行性论证,并报国家经贸委批准,正式列入“十五”国家重大技术装备研制和国产化项目。
2005 年 3 月26 日,宝钢应用高强度高韧性X80管线钢制成的管径为1016mm,壁厚为15.3mm 的螺旋缝埋弧焊钢管,在河北景县成功对接,首条X80 输气管线应用工程正式开工建设,标志着我国长输管线向高强度、高压力、大口径方向发展。
抗HIC钢在焊接施工中的注意事项分析对炼油装置日益使用增多的20 HIC钢施工中的注意要点进行分析,指出施工中应特别注意之处。
标签:20 HIC钢;焊接工艺;无损检测;焊接缺陷1 背景介绍近年来,含硫油气田的开发以及高硫原油进口的增加,使得湿H2S的危害已经遍及整个炼油系统,对安全生产构成威胁,同时也带来了较大的经济损失,管道的损坏占据较大部分。
一些设计院对于温度不高,压力较低的管线选材采用20HIC钢,例如某套200万吨/年的柴油加氢装置采用20HIC钢将近3000米。
抗HIC钢的焊接质量是十分重要的,但是有的施工单位不能深刻理解20HIC钢的使用要求,简单理解为就是一种碳钢,给今后的使用过程带来极大的隐患。
下面就分析一下20HIC钢焊接过程的注意事项。
2 硫化氢腐蚀的机理硫化氢腐蚀是指钢材在含水硫化氢中发生的电化学腐蚀。
主要的腐蚀形式为:全面腐蚀和硫化物应力腐蚀开裂。
一般有以下4 种形式:(1)氢鼓泡(HB)钢材表面的水分子中产生大量的氢原子,氢原子向钢材内部渗入,在缺陷部位(如夹杂、位错、蚀坑等)聚集,结合成氢分子。
由于分子所占的空间是原子的20倍,巨大的体积膨胀使钢材内部产生很大的内应力,当应力达到一定的程度时就引起了界面开裂,形成氢鼓泡。
其分布平行于钢板表面。
(2)氢致开裂(HIC)当氢原子在钢材的内部缺陷处聚集形成小的鼓泡裂纹后,随着内部氢分子的压力增高,小裂纹趋向于相互连接形成有阶梯状特征的氢致开裂。
氢致开裂裂纹分布平行于轧制方向。
(3)硫化物应力腐蚀开裂(SSCC)氢原子渗入钢材内部溶解于晶格中产生脆性,在外加应力的作用下形成开裂。
(4)应力导向氢致开裂(SOHIC)在应力引导下,在夹杂物与缺陷处聚集的氢分子形成的小裂纹,沿着垂直于应力的方向发展。
一般而言,热轧态的管线钢是制管的母材,需要进行HB、HIC和SSCC 3项检验。
(7)母材焊缝及热影响区的硬度不超过200HB,且焊缝及热影响区的硬度不超过母材的120%;(8)母材和焊缝表面不得有深度大于0.5mm的尖锐缺陷存在。