【数学周练】高一数学周练一及答案
- 格式:doc
- 大小:1.01 MB
- 文档页数:11
数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。
高一上学期数学周练13一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.已知函数()f x 的定义域为[]-2,2,则函数()()3g x f x = ( D )A .2,13⎡⎤⎢⎥⎣⎦B .[]1,1-C .123,⎡⎤-⎢⎥⎣⎦D .22,33⎡⎤-⎢⎥⎣⎦2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有的α的值为 ( A )A.1,3B.-1,1C.-1,3D.-1,1,3 3.若幂函数()()22433m f x m m x -=--在()0,+∞上为减函数,则实数m =( B )A.41m m ==-或B.1m =-C. 21m m ==-或D. 4m =4.已知ba cb a ==⎪⎭⎫ ⎝⎛=,2.0log ,31312.0,则c b a 、、的大小关系为( B )A 、c b a <<B 、b a c <<C 、b c a <<D 、a c b <<5.已知函数()()log 4(0a f x ax a =->且1a ≠)在[]0,2上单调递减,则a 的取值范围是 ( B ) A .()0,1 B .()1,2 C .()0,2 D .[)2,+∞6.已知函数()()()()21,11log ,013aa x x f x x x ⎧->⎪=⎨-<≤⎪⎩,当1>0x ,20x >,且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ( C )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦ 7.函数()ln 1f x x =-的图象大致是 ( B )A .B .C .D .8.已知函数()3122xxf x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围为 ( D )春雨教育A. (]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭B. 1,12⎡⎤-⎢⎥⎣⎦ C. [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ D.11,2⎡⎤-⎢⎥⎣⎦二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.(多选)下列各式比较大小,正确的是 ( BC )A .1.72.5>1.73 B .24331()22-> C .1.70.3>0.93.1D .233423()()34>10.(多选)若,,()()(y)x y R f x y f x f ∀∈+=+有,则函数()f x 满足 ( ACD )A. (0)0f = B.为偶函数()f x C.()f x 为奇函数 D.(2020)2020(1)f f = 11.(多选)下列说法正确的是 ( ABD )A .函数()24f x x x =-在区间()2,+?上单调递增B .函数()24xxf x e -=在区间()2,+?上单调递增C .函数()()2ln 4f x x x =-在区间()2,+?上单调递增D .若函数()()1f x x ax =-在区间()0,+?上单调递增,则0a ≤12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数“为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=.已知函数1()12=-+x xe f x e ,则关于函数()[()]g x f x =的叙述中正确的是 ( BC )A.()g x 是偶函数 B.()f x 是奇函数C.()f x 在R 上是增函数D.()g x 的值域是{}1,0,1-【解析】选BC ()()()111[012e g f e ==-=+,1111(1)[(1)][[]112121e g f e e-=-=-=-=-++,()()11g g ∴≠-,则()g x 不是偶函数,故A 错误; 1()12=-+x x e f x e 的定义域为R , 111()()11121211xxx x x x x x e e e e f x f x e e e e---+=-+-=+-++++11011x x xe e e=+-=++,()f x ∴为奇函数,故B 正确; 111111()121221x x x xxe ef x e e e +-=-=-=-+++, 又x e 在R 上单调递增,11()21xf x e ∴=-+在R 上是增函数,故C 正确;春雨教育0x e > ,11x e ∴+>,则1011x e <<+,可得11112212x e -<-<+,即11()22f x -<<. ()[()]{1g x f x ∴=∈-,0},故D 错误.故选BC.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =____332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩_____14.若关于x 的函数12(log )x y a =是R 上的减函数,则实数a 的取值范围是1(,1)2. 15.设函数2()log )f x x =,若对任意的(1,)x ∈-+∞,不等式(ln )(24)0f x a f x -++<恒成立,则a 的取值范围是___(0,]e ____.16.设函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩. ①若1a =,则()f x 的最小值为____1-___;②若()f x 恰有2个零点,则实数a 的取值范围是___[)1,12,2⎡⎫+∞⎪⎢⎣⎭____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17. 设函数()()⎪⎭⎫ ⎝⎛⋅=4log 8log 22x x x f ,144x ≤≤,(1)求⎪⎭⎫⎝⎛41f 的值(2)若2log t x =,求t 取值范围;(3)求()f x 的最值,并给出最值时对应的x 的值。
高一数学练习册答案高一数学练习册答案篇一:数学配套练习册答案配套练习册的作业最好当天完成。
下面要为大家分享的就是数学配套练习册答案,希望你会喜欢!数学配套练习册答案(一)有理数的乘法基础知识1~2:D;B;B4、-12;-105、1/86、07、(1)35(2)-360(3)-4.32(4)21.6(5)1/6(6)2/3(7)60(8)-2能力提升8、43℃9、4探索和研究10、1/100数学配套练习册答案(二) 科学记数法基础知识12345CBCBB6、(1)3.59×10;-9.909×107、68、6×109、3.75×1010、6.37×1011、4270012、1.29×10m13、(1)2×10(2)-6.9×1014、(1)-30000000(2)87400(3)-98000能力提升15、(1)1.08×10 (2)6.1×10(3)1.6×1016、(1)70×60×24×365=3.6792×10(次)(2)若人正常寿命60~80岁,则3.679×10×60 1亿,所以一个正常人一生的心跳次数能达到1亿次17、-2.7×1018、9.87×10 1.02×1019、3.1586×10s探索研究20、4.32×10个,4.32×10个数学配套练习册答案(三)相反数基础知识1~4:B;A;C;A5、14/9;16;36、1.1;27、3.68、-2.59、110、图略;-5 -3 -2 -1/3 0 1/3 2 3 5 11、(1)54(2)-3.6(3)-5/3(4)2/512、(1)-0.5(2)1/5(3)-2mn(4)a能力提升13、214、∵a-2=7,∴a=915、0探究研究16、3;互为相反数高一数学练习册答案篇二:高一数学小测题目及答案高一数学小测题目及答案1.下列各组对象不能构成集合的是( )A.所有直角三角形B.抛物线y=x2上的所有点C.某中学高一年级开设的所有课程D.充分接近3的所有实数解析 A、B、C中的对象具备“三性”,而D中的对象不具备确定性.答案 D2.给出下列关系:①12∈R;②2R;③|-3|∈N;④|-3|∈Q.其中正确的个数为( )A.1B.2C.3D.4解析①③正确.答案 B3.已知集合A只含一个元素a,则下列各式正确的是( )A.0∈AB.a=AC.aAD.a∈A答案 D4.已知集合A中只含1,a2两个元素,则实数a不能取( )A.1B.-1C.-1和1D.1或-1解析由集合元素的互异性知,a2≠1,即a≠±1.答案 C5.设不等式3-2x 0的解集为M,下列正确的是( )A.0∈M,2∈MB.0M,2∈MC.0∈M,2MD.0M,2M解析从四个选项来看,本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x 0的解即可.当x=0时,3-2x=3 0,所以0不属于M,即0M;当x=2时,3-2x=-1 0,所以2属于M,即2∈M.答案 B6.已知集合A中含1和a2+a+1两个元素,且3∈A,则a3的值为( )A.0B.1C.-8D.1或-8解析3∈A,∴a2+a+1=3,即a2+a-2=0,即(a+2)(a-1)=0,解得a=-2,或a=1.当a=1时,a3=1.当a=-2时,a3=-8.∴a3=1,或a3=-8.答案 D高一数学练习册答案篇三:高中数学三角函数练习题及答案一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是() 图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2023济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ. 【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________.【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】 k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】 k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】 (1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。
高一数学三角函数周练试题(2012.12.10)班级_____________ 姓名____________ 座号_________ 一、选择题(本大题共8小题,每小题5分,共40分)1、下列各式不正确的是 ( )A .sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C .sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、o600cos 的值为( )A .21B .21-C .23D .23-3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B .21-C .23D .23-4、一钟表的分针长10 cm ,经过15分钟,分针的端点所转过的长为( ) A .30 cm B .5cm C .5πcm D .25π3cm 5、已知α是第二象限角,那么2α是( ) A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角6、已知sin(4π+α)=23,则sin(43π-α)值为( )A.21 B. —21 C. 23 D. —23 7、若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .23 8、在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( ) A .等腰三角形 B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(本大题共8小题,每小题5分,共40分)9、已知角α的终边经过点P(-5,12),则sin α+2cos α的值为___________.10、已知角α的终边经过点P (-x,-6),且cos α=135-,则x= _______ . 11、函数f (x )=x sinx 是______ _函数(填奇或偶).12、一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是_________. 13、若3sin()(,)22x x πππ-=∈-,则x = 。
精品文档集合与函数基础测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求).函数 y== x2-x+10在区间(,)上是()1624A.递减函数B.递增函数C.先递减再递增D.选递增再递减.x y22.方程组{x y 0 A.{( 1,1)}的解构成的集合是()B.{1,1}C.(1,1)D.{1}3.已知集合 A a,b,c},下列可以作为集合 A 的子集的是()={A. aB. {a,c}C. {a, e}D.{a, b,c,d}4.下列图形中,表示M N 的是()M NN M M N MNAB C D5.下列表述正确的是()A.{ 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A={x|x 参加自由泳的运动员 } ,B={x|x 参加蛙泳的运动员 } ,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为()A.A∩BB.A BC.A∪BD.A B7. 集合 A={x x2k, k Z } ,B={x x2k1, k Z } ,C={ x x 4k1, k Z } 又a A,b B, 则有()A. ( a+b) AB. (a+b)BC.(a+b) CD. (a+b)A、B、C任一个)8.函数 f (x)=- x2+( a-) x+2在(-∞,)上是增函数,则 a 的范围是(214A. a≥5B.a≥3C.a≤3D.a≤- 59. 满足条件 {1,2,3}M{1,2,3,4,5,6}的集合 M的个数是()A. 8B. 7C. 6D.510.全集 U={1,2 ,3,4 ,5 ,6 ,7,8},A={3 ,4,5} ,B={1 ,3 ,6} ,那么集合 { 2,7 ,8}是()A.ABB. A BC.C U A C U BD.C U A C U B11. 下列函数中为偶函数的是()A.y x B. y x C. y x2D. y x31 12. 如果集合 A={ x | ax 2+ 2x + 1=0}中只有一个元素,则 a 的值是()A.0B.0 或1C.1D.不能确定二、填空题 ( 共 4 小题,每题 4分,把答案填在题中横线上 ).函数 f (x)=× -| x|的单调减区间是.13223___________.函数 y= 1 的单调区间为___________.14x+115. 含有三个实数的集合既可表示成{ a,b,1},又可表示成{ a2, a b,0},则a2 0 0 3 b2 0 0 4a .。
高一数学周练试题(2012、12、3)班级_____________ 姓名____________ 座号_________ 一.选择题(本大题共10小题,每小题5分,共50分)1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 2、-1120°角所在象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360° D .315°-5×360° 4、终边在第二象限的角的集合可以表示为 ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }5、角α的终边落在区间(-3π,-52 π)内,则角α所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 6、若α是第四象限的角,则α-180是( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角7、角的集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x A ,2|ππ与 ⎭⎬⎫⎩⎨⎧∈±==Z k k x x B ,22|ππ之间 的关系为( )A. B A ⊂B. B A ⊃C. A=BD. 不确定8、钟表分针长cm 5,经过20分钟,分针端点转过的弧长是( ) A. cm π35 B. cm 10 C.cm 310 D. cm π3109.已知扇形的半径为R ,面积为2R ,那么这个扇形中心角的弧度数是()A .1 B.2 D .410.已知扇形的周长为6cm ,面积为22cm ,则扇形的中心角的弧度是( )A .1B .4C .1或4D .2或4二.填空题(本大题共5小题,每小题6分,共30分)11、将下列弧度转化为角度,角度转化为弧度(1)12π= °;(2)-87π= °;(3)37°30′= rad ; 12、若α是锐角,则180k α⋅︒+是第 象限角。
我这棵小树是从沙石风雨中长出来的,你们可以去山上试试,由沙石长出来的小树,要拔去是多么的费力啊!但从石缝里长出来的小树,则更富有生命力.高一数学周练试题(直线的方程)一、选择题(每题5分)题号12345678910答案1.若直线ax+by+c=0在第一、二、四象限则有A.ac>0bc>0 B.ac>0bc<0 C.ac<0bc>0 D.ac<0bc<02.直线的倾斜角中A.300 B.600 C.1200 D.15003.下列四命题中的真命题是A.经过定点的直线都可以写成;B.经过任意两个不同的点的直线都可以用表示;C.不经过原点的直线都可以用表示;D.经过定点的直线都可以用表示4.如果直线ax+2y+2=0与直线3x-y-2=0平行则a的值为A.-3 B.-6 C. D.5.若直线x+ay+2=0和2x+3y+1=0互相垂直则a的值为A. B.C. D.6.已知函数f (x)的图象如上右图所示则f (x) 等于A. B.C. D.7.直线当k变动时所有直线都过定点A.(00) B.(01) C.(31) D.(21)8.已知△ABC的三个顶点是A(03)B(33)C(20)直线: x = a 将△ABC分割成面积相等的两部分则a的值是A. B.C. D.9. 直线直线的图像为10.过点(13)作直线l若l经过点(a0)和(0b)且则可作出的l的条数为A.1 B.2 C. 3 D.多于3 二、填空题(每题5分)11.光线从点A(-53)发出到点B(-20)后经轴反射又经轴反射则第二次反射光线所在直线的倾斜角为12.已知倾斜角为的直线过点和点在第一象限.则点的坐标为13.若经过点A()和点B()的直线的倾斜角为钝角则实数的取值范围是14.已知点P(2)、Q(32)直线与线段PQ相交则的取值范围是______________15. 如果三点(35)(m7)(-12)在一条直线上则m =16.已知点A(13)、B(52)P为x轴上的一动点则|PA|+|PB|的最小值为三、解答题(每题10分)17.已知直线l与两坐标轴围成的三角形的面积为3 分别求满足下列条件的直线l的方程:(1)过定点A(-34);(2)斜率为1/6.18.已知函数及.(1) 求两图象的交点坐标;(2)若两图象能围成三角形求k的取值范围;(3)若能围成三角形求三角形的面积.。
2018至2109学年上学期高一年级(数学)周测试卷第7次学号: 班级: 姓名: 得分: (满分100分)一、选择题:(每小题 5 分,共60 分)1.设集合{}{}123234A B ==,,, ,,, 则=A B ( )A. {}123,4,,B. {}123,, C. {}234,, D. {}134,, 【答案】A1.【解析】由题意{1,2,3,4}A B =,故选A.2.=⋅⋅9log 4log 25log 522( )A.5B.6C.9D.82.答案:D3.函数y =x ln(1-x )的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:根据题意得⎩⎪⎨⎪⎧1-x >0x ≥0,解得0≤x <1,即所求定义域为[0,1). 答案:B4.下列函数中既是偶函数又在区间(0,1)上单调递增的是( )A .y =1xB .y =lg|x |C .y =2xD .y =-x 2 4.解析:y =1x,y =2x 不是偶函数,排除A 、C ;y =-x 2是偶函数,但在(0,1)上单调递减,y =lg|x |是偶函数,根据图象,可判断在区间(0,1)上单调递增,故选B.5.函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)5解析:因为函数 f (x )的图象是连续不断的一条曲线,又f (-1)=2-1-3<0,f (0)=1>0,所以f (-1)·f (0)<0,故函数零点所在一个区间是(-1,0)故选B.5.答案:B6.下列函数中,值域是(0,+∞)的是( )A .y = x 2-2x +1B .y =x +2x +1(x ∈(0,+∞)) C .y =1x 2+2x +1(x ∈N ) D .y =1|x +1|6.解析:A 项值域为y ≥0,B 项值域为y >1,C 项中x ∈N ,故y 值不连续,只有D 项y >0正确.6.答案:D7.设f (3x )=9x +52,则f (1)=________.解析:令3x =1,则x =13.∴f (1)=9×13+52=4=2.7.答案:2 8.已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( ) A .-3B .-1C .1D .3 8.解析:因为f (1)=2,所以由f (a )+f (1)=0,得f (a )=-2,所以a 肯定小于0,则f (a )=a +1=-2,解得a =-3,故选A.8.答案:A9.若a =3(3-π)3,b =4(2-π)4,则a +b =( )A .1B.5 C .-1D .2π-5 9.解析:∵a =3(3-π)3=3-π,b =4(2-π)4=π-2,∴a +b =3-π+π-2=1.9.答案:A10.有以下四个结论:①lg(lg 10)=0,②ln(ln e)=0,③若lg x =10,则x =100,④若ln x =e ,则x =e 2.其中正确的是( )A .①③B.②④ C .①② D .③④ 10.解析:①lg(lg 10)=0,正确.②ln(ln e)=0,正确.若lg x =10,则x =1010,③不正确.若ln x =e ,则x =e e ,故④不正确.所以选C.10.答案:C11.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,0]C .(-∞,0)D .(0,+∞)11.解析:a <-x 2+2x 恒成立,即a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值, 而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,∴a <0.12.答案:C12.f (x )=|x -1|+|x +1|是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解析:函数定义域为x ∈R ,关于原点对称.∵f (-x )=|-x -1|+|-x +1|=|x +1|+|x -1|=f (x )∴f (x )=|x -1|+|x +1|是偶函数12.答案:B二、填空题:(每小题5分,共 20 分)13.已 知集合 ;13.答案:}8,5,3,1{ 14.lg 5+lg 20的值是________.14.解析:原式=12lg 5+12(lg 4+lg 5) =12lg 5+lg 2+12lg 5=lg 2+lg 5=1. 14.答案:115.若=+=-x x x 44,14log 3则 ;15.答案:310 16.函数y =x )51(-3x 在区间[-1,1]上的最大值等于________. 16.解析:由y =⎝⎛⎭⎫15x 是减函数,y =3x 是增函数,可知y =⎝⎛⎭⎫15x -3x 是减函数,故当x =-1时函数有最大值143. 15.答案:143三、解答题:(共20分)17.已知函数f (x )=2x -12x +1. =⋂==B A B A 则},13,8,5,3,1{},8,5,3,2,1{(1)求f[f(0)+4]的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0<f(x-2)<15 17.解析:(1)∵f(0)=20-120+1=0,∴f[f(0)+4]=f(0+4)=f(4)=24-124+1=1517.(2)设x1,x2∈R且x1<x2,则2x2>2x1>0,2x2-2x1>0,∴f(x2)-f(x1)=2x2-12x2+1-2x1-12x1+1=2(2x2-2x1)(2x2+1)(2x1+1)>0,即f(x1)<f(x2),所以f(x)在R上是增函数.(3)由0<f(x-2)<1517得f(0)<f(x-2)<f(4),又f(x)在R上是增函数,∴0<x-2<4,即2<x<6,所以不等式的解集是{x|2<x<6}。
江西省樟树市2016-2017学年高一数学下学期周练试题(1)(7-10,17-20班)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一 项是符合题目要求的). 1.直线10x y +-=的倾斜角α=A .30°B .45°C .60°D .135°2. 在y 轴上的截距为2,且与直线34y x =--垂直的直线的斜截式方程为( ) A .123y x =+ B .123y x =-- C.1233y x =-+ D. 1233y x =+ 3.函数()f x 是定义在(2,2)-上的奇函数,当(0,2)x ∈时,()21xf x =-,则21(log )3f 的值为A .23-B .2-C .2D .234.(普通班做)点P 为x 轴上的一点,点P 到直线3460x y -+=的距离为6,则点P 的坐标为 A .(8,0) B .(12,0)-C .(8,0)或(12,0)-D .(0,0)(重点班、素质班做)圆222410x y x y +-++=的半径为A .1B .2C .4D .25.已知直线1l 经过两点(1,2)(1,4)---、,直线2l 经过两点(2,1)(,6)x 、,且12//l l ,则x = A .2 B.﹣2 C .4 D .1 6.一个几何体的三视图如右图所示,则此几何体的体积是 A .112 B .80 C .72 D .64 7. 过坐标原点且与点(3,1)的距离都等于1的两条直线的夹角为A .60°B .45°C .90° D.120°8. 已知212()log (2)f x x x =-的单调递增区间是 A .(1,)+∞ B .(2,)+∞ C .(,0)-∞ D .(,1)-∞9.如果0AC >,且0BC <,那么直线0Ax By C ++=不通过 (第6题图) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.直线12:310,:2(1)10l ax y l x a y ++=+++=,若12//l l ,则实数a 的值为 A .﹣3 B .2C .﹣3或2D .3或﹣211.(普通班做)对于任意a R ∈,直线(1)10a x y a --++=恒过定点P ,则P 点坐标为A .(1,2)- B.(1,0) C.(1,2)-- D.(0,1)a +(重点班、素质班做)已知点(1,3),(2,1)A B --,若直线:21l y kx k =-+与线段AB 没有交点, 则k 的取值范围是 A .12k ≥或2k ≤- B .2k ≤- C .12k >或2k <- D .122k -≤≤ 12.(普通班做)已知函数2()log ,(4,8)f x x x =∈,则函数28()()()f x f x f x =+的值域为 A .[8,10) B .26(,10)3 C .26(8,)3 D .25(,10)3(重点班、素质班做)定义在(1,)+∞上的函数()f x 满足下列两个条件:(1)对任意的(1,)x ∈+∞恒有(2)2()f x f x =成立; (2)当(1,2]x ∈时,()2f x x =-;记函数()()(1)g x f x k x =--,若函数()g x 恰有两个零点,则实数k 的取值范围是A .[1,2)B .4[,2)3C.4[,2]3D .4(,2)3二、填空题(本大题4小题,每小题5分,共20分).13.设集合{}||1|3P x x =+≤,1|(),(2,1)3xQ y y x ⎧⎫==∈-⎨⎬⎩⎭,则PQ = .14.(普通班做)若直线3440x y ++=与3420x y +-=平行,则这两条平行线间的距离为 . (重点班、素质班做)已知两条平行直线12:320,:680l x ay l x y m ++=++=之间的距离为2,m = . 15. 已知()f x 是(,0)(0,)-∞+∞上偶函数,当(0,)x ∈+∞时,()f x 是单调增函数,且(1)0f =,则(1)0f x +<的解集为 .16.(普通班做)将一张坐标纸折叠一次,使点(2,6)点(4,6)重合,则与点(4,1)-重合的点的坐标____.(重点班、素质班做)已知点(,)P x y 在直线40x y +-=上,点(,)Q x y 在圆22:220O x y x y +++=上则PQ 的最小值为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)求经过两条直线1:40l x y +-=和2:20l x y -+=的交点,且分别与直线210x y --=(1)平行的直线方程; (2)垂直的直线方程.18. (本小题满分12分) 已知△ABC 的顶点坐标分别是(5,1),(1,1),(1,3)A B C (1)求AB 中垂线的方程; (2)求△ABC 的面积.19. (本小题满分12分)在坐标系中有两点(2,3),(3,4)P Q .求(1)在y 轴上求出一点M ,使得MP+MQ 的值最小;(2)在x 轴上求出一点N ,使得NQ ﹣NP 的值最大.20.(本小题满分12分)已知直线:120()l kx y k x R -++=∈. (1)若直线l 不经过第四象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点,B O 为坐标原点,设ABC ∆的面积为S ,求S 的最小值及此时直线l 的方程.21.(本小题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M 是BD 的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)若N 是BC 的中点,证明:AN∥平面CME ; (2)证明:平面BDE⊥平面BCD . (3)求三棱锥D ﹣BCE 的体积.22.(本小题满分12分)(普通班做)已知二次函数2(),()21f x ax bx g x x =+=-.(1)当1a =时,若函数()f x 的图象恒在函数()g x 的图象上方,试求实数b 的取值范围; (2)若()y f x =对任意的x R ∈均有(2)()f x f x -=-成立,且()f x 的图象经过点2(1,)3A .①求函数()y f x =的解析式;②若对任意3x <-,都有()2()f x kg x x<成立,试求实数k 的最小值. (重点班、素质班做)已知函数()121x af x =-+(a 为常数)为R 上的奇函数.(1)求实数a 的值;(2)对(0,1]x ∈,不等式()21xs f x ⋅≥-恒成立,求实数s 的取值范围;(3)令2()1()g x f x =-,若关于x 的方程(2)()0g x mg x -=有唯一实数解,求实数m 的取值范围.江西省樟树中学2019届高一下学期第1次周练文科数学答案一、选择题(本大题共12小题,每小题5分,共60分。
瑞金一中2009----2010高一数学第十次周练一、选择题(每小题5分,10小题,共50分,每小题只有一个选项符合要求)1. 若α是第二象限的角,则2α是 ( )(A )第一、三象限角 (B )第二、四象限角 (C )第一、四象限角(D )第二、三象限角2. 设函数的取值范围为 ( )A .(-1,1)B .(-1,+∞)C .D . 3.使0cos sin <⋅αα成立的角α是( )(A )第三、四象限角 (B )第一、三象限角 (C )第二、四象限角(D )第一、四象限角4. 函数的定义城是( ) A . B .C .D .5. 若βα,的终边关于y 轴对称,则必有( )(A ))(,)12(z k k ∈+=+πβα (B )2πβα=+(C ))(,2z k k ∈=+πβα (D ))(,22z k k ∈+=+ππβα6. 设方程和的根分别为,函数,则 ( )A 、B 、C 、D 、7. 已知θ的终边过点P (4a ,-3a ),且53sin =θ,则cos θ= ( ) (A )35- (B )45 (C )43 (D )348. 若α的终边上有一点P (3a -9,a+2),满足0cos ≤α且0sin >α,则a ∈ ( )(A )]3,2(-(B )[2,3]-(C )(2,3](D )(2,5]-9. 若,则等于( )200,0(),()1,lg(1),0x x f x f x x x x ≤=>+>⎧⎨⎩若则(,9)-∞(,1)(9,)-∞-+∞ 22()lg(sin cos )f x x x =-322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭3,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭022=++x x 02log 2=++x x q p ,2))(()(+++=q x p x x f )3()0()2(f f f <=)3()2()0(f f f <<)2()0()3(f f f =<)2()3()0(f f f <<⎪⎭⎫ ⎝⎛∈3,0πααsin log 33A .B .C .D . 10. 已知求的值. ( )A .0B . 2C . 1D . -2二、填空题(每小题5分,2小题,共10分,请将答案填在答题卡相应位置的横线上)11. 设f (x )是定义在R 上的奇函数,且()x f y =的图象关于直线21=x 对称,则f (1)+ f (2)+f (3)+ f (4)+ f (5)=_ ______________.12. 若集合,, 则=_________________ ______________________三.解答题(每小题20分,2小题,共40分,解答应写出文字说明,证明过程或演算步骤)13. 已知,求(1);(2)的值.14. 设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭区间[0,7]上,只有(1)(3)0f f ==.(Ⅰ)试判断函数()y f x =的奇偶性;(Ⅱ)试求方程()f x =0在闭区间[-2005,2005]上的根的个数,并证明你的结论. .αsin αsin 1αsin -αcos 1-⎩⎨⎧>--<=,1,1)1(1,cos )(x x f x x x f π)34()31(f f +|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭{}|22B x x =-≤≤B A )1,2(,cos sin ≠≤=+m m m x x 且x x 33cos sin +x x 44cos sin +答案1---5 A D C D A 6---10 O B A B A11._____________ 0_______ 12._____________________13. 解:由得即(1)(2) 14. 解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数)(x f y =的对称轴为72==x x 和, 从而知函数)(x f y =不是奇函数,由)14()4()14()()4()()7()7()2()2(x f x f x f x f x f x f x f x f x f x f -=-⇒⎩⎨⎧-=-=⇒⎩⎨⎧+=-+=-)10()(+=⇒x f x f ,从而知函数)(x f y =的周期为10=T又0)7(,0)0()3(≠==f f f 而,故函数)(x f y =是非奇非偶函数;(II)由)14()4()14()()4()()7()7()2()2(x f x f x f x f x f x f x f x f x f x f -=-⇒⎩⎨⎧-=-=⇒⎩⎨⎧+=-+=-)10()(+=⇒x f x f(II) 又0)9()7()13()11(,0)0()3(=-=-====f f f f f f故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数)(x f y =在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数)(x f y =在[-2005,2005]上有802个解.[2,0][,2]3π- sin cos ,x x m +=212sin cos ,x x m +=21sin cos ,2m x x -=233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-=24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=。
高一数学周练试题(2012、10、22)班级_____________ 姓名____________ 座号_________ 一、选择题(本大题共6小题,每小题5分,共30分)1、已知(10)x f x =,则()100f = ( )A 、100 C 、10010 D 、22 ( ) A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 3、已知13x x -+=,则3322x x -+值为() A.B. C. D. - 4、函数f (x)=11-+xxa a (a >0且a ≠1)是( ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数5、设0,1,,0x xx a b a b ><<>且,则a 、b 的大小关系是 ( )A.b <a <1B. a <b <1C. 1<b <aD. 1<a <b6、已知函数f (x)=2x, 则f (1-x)的图像可能为 ( )AB C D 二、填空题(本大题共9小题,每小题5分,共45分) 7、函数的定义域为 ___ . 8、函数122)(-+=x x x f 的定义域是__ ____ __.9、函数1218x y -=的定义域是_______________,值域是______________.10、函数11+=-x ay )10(≠>a a 且的图象必经过定点______________.11、函数(2)xy a =-在定义域内是减函数,则a 的取值范围是 .12、已知幂函数)(x f y =的图象过点)2,2(,则)9(f = . 13、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是_________________.14、已知)(x f y =是R 上的奇函数,0≥x 时,x x x f 2)(2-=;则0<x 时,)(x f =_______________. 15、已知函数f (x)满足:f(p+q)=f(p)f(q), 且f (1)=2, 则)2011()2012()7()8()5()6()3()4()1()2(f f f f f f f f f f +++++ =__________.三、解答题(本大题共2小题,10+15=25分)16、计算:4160.250321648200549-+----()()17、设函数2()21x f x a =-+,(1)确定a 的值,使()f x 为奇函数;(2)求证: 不论a 为何实数()f x 总为增函数;。
高一数学周练——《数列》班级 姓名一、选择题(每小题6分,共36分.)1.数列1,-3,5,-7,9,的一个通项公式为( )A .12-=n a nB .)12()1(--=n a n nC .)21()1(n a n n --=D .)12()1(+-=n a n n2.等比数列2,4,8,16,…的前n 项和为( )A .121-+nB .22-nC .n 2D .221-+n3.若数列{}n a 中,n a =43-3n ,则n S 最大值n= ( )A .13B .14C .15D .14或154.数列{}n a 中,372,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a =( ) (A )0 (B )12 (C )23(D )-1 5.已知数列{}n a 的首项13a =,又满足13,n n n a a +=则该数列的通项n a 等于( )(A )(1)23n n -(B )2223n n -+(C )213n n +- (D )213n n -+6. 数列{a n }的通项公式是a n =1(1)n n +(n ∈N*),若前n 项的和为1011,则项数n 为( ) A .12B .11C .10D .9 二、填空题(每小题6分,共24分.)7.{}a n 为等差数列,14739a a a ++=,25833a a a ++=,=++a a a 963 _______8.已知数列}{n a 满足11=a ,131+=+n n n a a a ,则n a =__ _____9.已知数列{}n a 的通项公式112,n a n =-12,n n S a a a =+++则10S =_________10.在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =_____三.解答题(共40分)11.(12分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.12.(14分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(1)求数列{}n a 的通项n a ;(2)求数列{}n na 的前n 项和n T .13.(14分)已知数列{}n a 的前n 项和2n n S a =+(1)当1a =时,求{}n a 的通项公式;(2)若数列{}n a 是等比数列,求a 的值;(3)在(2)的条件下,求2222123........na a a a ++++的和.。
高一数学周练(函数及其表示)一.选择题(将正确答案的序号填入下列表格中)题号1 2 3 4 5 6 7 8 答案1.判断下列各组中的两个函数是同一函数的为( )A .3)5)(3(1+-+=x x x y ,52-=x y B .111-+=x x y ,)1)(1(2-+=x x y C .x x f =)(,2)(x x g = D .343()f x x x =-,3()1F x x x =-2.函数(1)y x x x =-+的定义域为( )A .}0|{≥x xB .}1|{≥x xC .}0{}1|{ ≥x xD .}10|{≤≤x x3.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素 31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A .2,3B .3,4C .3,5D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或3± D .35.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B .[]-14, C .[]-55, D .[]-37,6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .137.函数224y x x =--+的值域是( )A .[2,2]-B .[1,2]C .[0,2]D .[2,2]-8.若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则m 的取值范围是()A .(]4,0B .3[]2,4 C .3[3]2, D .3[2+∞,)二.填空题1.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则=-)))1(((f f f .2.设函数a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=)().0(1),0(121)(若,则实数a 的取值范围是 . 3.已知)0(1)]([,21)(22≠-=-=x xx x g f x x g ,那么)21(f 等于 . 4.已知2211()11x x f x x--=++,则()f x 的解析式为 . 三.解答题1.求函数11122--+-=x x x y 的定义域.2.作出下列函数的图像 (1)xx x x f ||)(2-= (2)12)(2--=x x x f3.设12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域和值域.。
高一数学练习及答案一、单选题1.已知全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} ,则∁U A = ( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D .{2,5,7} 【答案】C【解析】直接利用补集的定义求解即可. 【详解】全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} , 所以∁U A ={2,4,7}. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.函数f (x )=√2x+1x的定义域为( )A .(−12,+∞) B .[−12,+∞) C .(−12,0)∪(0,+∞) D .[−12,0)∪(0,+∞) 【答案】D【解析】直接由根式内部的代数式大于等于0,分式的分母不等于0,联立不等式组求解即可. 【详解】解:由{2x +1⩾0x ≠0,解得x ⩾−12且x ≠0.∴函数f(x)=√2x+1x 的定义域为[−12,0)∪(0,+∞).故选:D . 【点睛】本题考查函数的定义域及其求法,考查不等式的解法,是基础题.3.已知函数f (x )={3−x,x >0x 2+4x+3,x≤0则f (f (5))=( ) A .0 B .−2 C .−1 D .1 【答案】C【解析】分段函数求函数值时,看清楚自变量所处阶段,分别代入不同的解析式求值即可得结果. 【详解】解:因为5>0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0得f (5)=3−5=−2,所以f(f (5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0 得f(−2)=(−2)2+4×(−2)+3=−1.故选:C . 【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,属于基础题. 4.若角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边经过点(1,-2),则tanα的值为( ) A .√55 B .−2 C .−2√55 D .−12【答案】B【解析】根据任意角的三角函数的定义即可求出. 【详解】解:由题意可得x =1,y =−2,tanα=yx =−2, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .y =log 3x B .y =1x C .y =x 3D .y =x 12【答案】C【解析】对选项一一判断函数的奇偶性和单调性,即可得到结论.【详解】解:A,y=log3x(x>0)在x>0递增,不具奇偶性,不满足条件;B,函数y=1x是奇函数,在(−∞,0),(0,+∞)上是减函数,在定义域内不具备单调性,不满足条件;C,y=x3,y′=3x2⩾0,函数为增函数;(−x)3=−x3,函数是奇函数,满足条件;D,y=x 12=√x,其定义域为[0,+∞),不是奇函数,不符合题意.故选:C.【点睛】本题考查函数的奇偶性和单调性的判断,掌握常见函数的单调性和奇偶性是解题的关键,属于基础题.6.函数f(x)=lnx+3x-4的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(2,4)【答案】B【解析】根据函数零点的判定定理可得函数f(x)的零点所在的区间.【详解】解:∵函数f(x)=lnx+3x−4在其定义域上单调递增,∴f(2)=ln2+2×3−4=ln2+2>0,f(1)=3−4=−1<0,∴f(2)f(1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(1,2),故选:B.【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题.7.若a=50.3,b=0.35,c=log0.35,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【答案】A【解析】利用指数函数、对数函数的单调性直接求解.【详解】解:∵a=50.3>50=1,0<b=0.35<0.30=1,c=log0.35<log0.31=0,∴a,b,c的大小关系为a>b>c.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,是基础题.8.已知函数y=x2+2(a-1)+2在(-∞,4)上是减函数,则实数a的取值范围是()A.[3,+∞)B.(−∞.−3]C.[−3,+∞)D.(−∞,3]【答案】B【解析】求出函数y=x2+2(a−1)+2的对称轴,结合二次函数的性质可得1−a⩾4,可得a的取值范围.【详解】解:根据题意,函数y=x2+2(a−1)+2开口向上,且其对称轴为x=1−a,若该函数在(−∞,4)上是减函数,必有1−a⩾4,解可得:a⩽−3,即a的取值范围为(−∞,−3];故选:B.【点睛】本题考查二次函数的性质,分析该二次函数的对称轴与区间端点是解题关键,属于基础题.9.为了得到函数y=sin(2x+π3)的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】利用左加右减的原则,直接推出平移后的函数解析式即可.【详解】解:将函数y=sinx的图象向左平移π3个单位后所得到的函数图象对应的解析式为:y=sin(x+π3),再把所得各点的横坐标缩短到原来的12倍,所得到的函数图象对应的解析式为y=sin(2x+π3).故选:A.【点睛】本题考查三角函数的图象变换,平移变换中x的系数为1是解题关键,属于基础题.10.已知sinα,cosα是方程3x2-2x+a=0的两根,则实数a的值为()A.65B.−56C.43D.−34【答案】B【解析】根据韦达定理表示出sinα+cosα及sinαcosα,利用同角三角函数间的基本关系得出关系式,把表示出的sinα+cosα及sinαcosα代入得到关于a 的方程,求出方程的解可得a 的值. 【详解】解:由题意,根据韦达定理得:sinα+cosα=23,sinαcosα=a3,∵sin 2α+cos 2α=1 ∴sin 2α+cos 2α=(sinα+cosα)2−2sinαcosα=49−2a 3=1,解得:a =−56,把a =−56,代入原方程得:3x 2−2x −56=0,∵△>0, ∴a =−56符合题意. 故选:B . 【点睛】本题考查三角函数的化简求值,同角三角函数基本关系及韦达定理的应用,属于基础题.11.已知函数f (x )={log a x,x ≥1(3a−1)x+4a,x<1的值域为R ,则实数a 的取值范围为()A .(0,1)B .[17,1) C .(0,17]∪(1,+∞) D .[17,13)∪(1,+∞) 【答案】C【解析】运用一次函数和对数函数的单调性可解决此问题. 【详解】 解:根据题意得,(1)若f(x)两段在各自区间上单调递减,则: {3a −1<00<a <1(3a −1)·1+4a ≤log a 1 ; 解得0<a ≤17;(2)若f(x)两段在各自区间上单调递增,则: {3a −1>0a >1(3a −1)·1+4a ≥log a 1 ;解得a >1;∴综上得,a 的取值范围是(0,17]∪(1,+∞) 故选:C . 【点睛】本题考查一次函数、对数函数以及分段函数单调性的判断,值域的求法,属于基础题.12.设函数f (x )={3x +4,x <0x 2−2x+2,x≥0,若互不相等的实数x1,x2,x3满足f (x1)=f (x2)=f (x3),则x1+x2+x3的取值范围是( ) A .[43,+∞) B .[1,43) C .(1,43] D .(1,+∞) 【答案】C【解析】作出函数f(x)的图象,根据对称求得x 1+x 2+x 3的取值范围即可. 【详解】解:函数f(x)={x 2−2x +2,x ⩾03x +4,x <0,函数的图象如下图所示:不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =1对称,故x 2+x 3=2,∵1<3x +4≤2,∴ −1<x 1⩽−23,则x 1+x 2+x 3的取值范围是:1<x 1+x 2+x 3⩽43; 即x 1+x 2+x 3∈(1,43] 故选:C .【点睛】本题考查分段函数图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力与数形结合思想,化归与转化思想,属于基础题.二、填空题13.在半径为10的圆中,30°的圆心角所对的弧长为______. 【答案】5π3【解析】根据弧长公式l =nπr 180进行计算即可.【详解】解:在半径为10的圆中,30°的圆心角所对的弧长是:30×π×10180=5π3.故答案为:5π3. 【点睛】此题主要考查了弧长公式的应用,熟记弧长公式是解题关键,属于基础题. 14.若cosα=−35,且α∈(π,3π2),则tanα= ;【答案】 【解析】略15.已知函数f (x )=ax3+bx+2,且f (π)=1,则f (-π)=______. 【答案】3【解析】根据题意,设g(x)=f(x)−2=ax 3+bx ,分析可得g(x)为奇函数,进而可得g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,计算可得f(π)的值,即可得答案. 【详解】解:根据题意,设g(x)=f(x)−2=ax 3+bx ,则g(−x)=a(−x)3+b(−x)=−(ax 3+bx)=−g(x),则g(x)为奇函数,则g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,因为f (π)=1,则有f(−π)=3; 故答案为:3 【点睛】本题考查函数的奇偶性的性质,注意构造g(x)=f(x)−2,分析g(x)的奇偶性是解题关键,属于基础题.16.如果定义在R 上的函数f (x )满足对任意x1≠x2都有x1f (x1)+x2f (x2)>x1f (x2)+x2f (x1),则称函数f (x )为“H 函数”,给出下列函数:①f (x )=2x-5;②f (x )=x2;③f (x )={x +2,x ≥−1−1x ,x,−1 ;④f (x )=(12)x .其中是“H 函数”的有______.(填序号) 【答案】①③【解析】根据题意,将x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0,分析可得函数f(x)为增函数;依次分析4个函数在R 上的单调性,综合即可得答案. 【详解】解:根据题意,若x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1), 变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0, 则函数f(x)为增函数;对于①,f(x)=2x −5,在R 上是增函数,是“H 函数”,对于②,f(x)=x 2,是二次函数,在R 上不是增函数,不是“H 函数”, 对于③,f(x)={x +2,x ⩾−1−1x,x <−1;是分段函数,在R 上是增函数,是“H 函数”, 对于④,f(x)=(12)x ,是指数函数,在R 上是减函数,不是“H 函数”, 故其中为“H 函数”的有①③; 故答案为:①③. 【点睛】本题考查函数的单调性的性质以及判定,关键是对x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1)的变形分析,属于基础题.三、解答题17.已知全集为R ,集合A={x|2≤x <4},B={x|2x-7≥8-3x},C={x|x <a}. (1)求A∩B ,A ∪(∁RB ); (2)若A∩C=A ,求a 的取值范围.【答案】(1)A ∩B ={x|4>x ≥3},A ∪(C R B )={x|x <4};(2)[4,+∞). 【解析】(1)根据集合的基本运算即可求A ∩B ,(∁R B)∪A ;(2)根据A ∩C =A ,可得A ⊆C ,建立条件关系即可求实数a 的取值范围. 【详解】解:(1)集合A ={x |2≤x <4},B ={x |2x -7≥8-3x }={x |x ≥3}, ∴A ∩B ={x |2≤x <4}∩{x |x ≥3}={x |4>x ≥3}; ∵∁R B ={x |x <3}, ∴A ∪(∁R B )={x |x <4};(2)集合A ={x |2≤x <4},C ={x |x <a }. ∵A ∩C =A ,可得A ⊆C , ∴a ≥4.故a 的取值范围是[4,+∞). 【点睛】本题主要考查集合的基本运算,属于基础题. 18.已知f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α).(1)化简f (α);(2)若f (α)=12,求sinα−3cosαsinα+cosα的值. 【答案】(1)−tanα;(2)−7.【解析】(1)利用诱导公式化简即可得到结果; (2)由(1)知tanα值,再弦化切,即可得出结论.【详解】解:(1)f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α)=sinα⋅(−sinα)⋅(−cosα)−cosα⋅sinα⋅cosα=-tanα;(2)由f (α)=12,得tan α=−12, ∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−12−3−12+1=−7.【点睛】此题考查了诱导公式的化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键,属于基础题.19.已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上的一个最低点为M (2π3,−2 ). (1)求f (x )的解析式及单调递增区间; (2)当x ∈[0,π3]时,求f (x )的值域.【答案】(1)[kπ−π3,kπ+π6],k∈Z;; (2)[1,2].【解析】(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;(2)求出0≤x≤π3时f(x)的最大、最小值,即可得出函数的值域. 【详解】(1)由f(x)=Asin(ωx+φ),且T=2πω=π,可得ω=2; 又f(x)的最低点为M(2π3,−2 )∴A=2,且sin(4π3+φ)=-1; ∵0<φ<π2,∴4π3<4π3+φ<11π6∴4π3+φ=3π2∴φ=π6∴f (x )=2sin (2x+π6); 令2kπ-π2≤2x+π6≤2kπ+π2,k ∈Z , 解得kπ-π3≤x≤kπ+π6,k ∈Z ,∴f(x)的单调增区间为[kπ-π3,kπ+π6],k ∈Z ; (2)0≤x≤π3,π6≤2x+π6≤5π6 ∴当2x+π6=π6或5π6,即x=0或π3时,f min (x )=2×12=1,当2x+π6=π2,即x=π6时,f max (x )=2×1=2; ∴函数f(x)在x∈[0,π3]上的值域是[1,2]. 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题. 20.已知f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817. (1)求f (x )的解析式;(2)用单调性的定义证明:f (x )在[-1,1]上是减函数. 【答案】(1)f (x )=−2xx 2+1;(2)详见解析.【解析】(1)由奇函数的性质f(0)=0,即得n 值,又由f(−14),解可得m 的值,将m 、n 的值代入f(x)的解析式,计算可得答案; (2)根据题意,由作差法证明即可得结论. 【详解】解:(1)根据题意,f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817,则f (0)=n 1=0,即n =0,则f (x )=mxx 2+1, 又由f (-14)=817,则f (-14)=−m 4116+1=817,解可得m =-2,则f (x )=−2xx 2+1;(2)函数f (x )在[-1,1]上为减函数, 证明:设-1≤x 1<x 2≤1,f (x 1)-f (x 2)=−2x 1x 12+1-−2x 2x 22+1=2x 2x 22+1-2x1x 12+1=2×(x 1−x 2)(x 1x 2−1)(x 12+1)(x 22+1),又由-1≤x 1<x 2≤1,则(x 1-x 2)<0,x 1-x 2-1<0,(x 12+1)>0,(x 22+1)>0, 则f (x 1)-f (x 2)>0,则函数f (x )在[-1,1]上是减函数. 【点睛】本题考查函数的奇偶性单调性的性质以及应用,关键是求出函数的解析式,属于基础题.21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=,1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【答案】(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =.试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-=故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 210011.5log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得:13211log 2x x =,于是129x x =.故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 【考点】1.函数代入求值;2.解方程;3.对数运算. 22.已知函数f (x )=-sin2x+mcosx-1,x ∈[−π3,2π3].(1)若f (x )的最小值为-4,求m 的值; (2)当m=2时,若对任意x1,x2∈[-π3,2π3]都有|f (x1)-f (x2)|≤2a −1恒成立,求实数a 的取值范围.【答案】(1)m =4.5或m =−3;(2)[2,+∞).【解析】(1)利用函数的公式化简后换元,转化为二次函数问题求解最小值,可得m 的值;(2)根据|f(x 1)−f(x 2)|⩽2a −14恒成立,转化为函数f(x)=|f(x 1)−f(x 2)|的最值问题求解; 【详解】解:(1)函数f (x )=-sin 2x +m cos x -1=cos 2x +m cos x -2=(cos x +m2)2-2-m 24.当cos x =−m2时,则2+m 24=4,解得:m =±2√2那么cos x =±√2显然不成立. x ∈[−π3,2π3].∴−12≤cos x ≤1. 令cos x =t . ∴−12≤t ≤1.①当−12>−m 2时,即m >1,f (x )转化为g (t )min =(−12+m2)2-2-m 24=-4解得:m =4.5,满足题意;②当1<−m2时,即m <-2,f (x )转化为g (t )min =(1+m2)2-2-m 24=-4解得:m =-3,满足题意;故得f (x )的最小值为-4,m 的值4.5或-3; (2)当m =2时,f (x )=(cos x +1)2-3, 令cos x =t . ∴−12≤t ≤1.∴f (x )转化为h (t )=(t +1)2-3,其对称轴t =-1,∴t ∈[−12,1]上是递增函数. h (t )∈[−114,1]. 对任意x 1,x 2∈[-π3,2π3]都有|f (x 1)-f (x 2)|≤2a −14恒成立, |f (x 1)-f (x 2)|max =1−(−114)≤2a −14 可得:a ≥2.故得实数a 的取值范围是[2,+∞). 【点睛】本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力,属于中档题.。
高一数学周练一、单选题(共40分)1.若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭2.函数 y = ) A .3,2⎛⎫-∞- ⎪⎝⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--][)0,+∞.3.“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】根据三角函数的性质的即可判断求解.【详解】若角α,β的终边关于y x =轴对称,则sin α=cos β,则2222sin sin cos sin =1αβββ+=+;若22sin sin 1αβ+=,则22sin =cos αβ,则sin α=±cos β,则角α,β的终边关于y x =或y =-x 轴对称;综上,“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的充分不必要条件. 故选:A.4.已知方程ln 112x x =-的实数解为0x ,且()0,1x k k ∈+,*k ∈N ,则k =( ) A .1 B .2 C .3 D .4【答案】D【解析】先转化为两个简单函数判断交点所在区间的大致范围,再由零点判定定理确定即可.【详解】解:112lnx x =-,令()g x lnx =,()112h x x =-在同一坐标系画出图象可得 由图可知01x >,令()211f x lnx x =+-,()()129(27)0f f ln =-->,()()23(27)(35)0f f ln ln =-->, ()()34(35)(43)0f f ln ln =-->, ()()45(43)(51)0f f ln ln =--<,()04,5x ∴∈4k ∴=,故选:D .【点睛】本题主要考查函数零点所在区间的求法,图象法和零点判定定理.将函数的零点问题转化为两个函数交点的问题是常用的手段,属于基础题.5.如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+6.将函数()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .127.记函数()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52 D .38.已知函数()131,0ln ,0x x f x x x +⎧-⎪=⎨>⎪⎩若函数()()g x f x a =-有3个零点,则a 的取值范围是( ) A .()0,1 B .(]0,2C .()2,+∞D .()1,+∞【答案】A【分析】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点,结合函数的性质及图象即可得出.【详解】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点, 当1x ≤-时,113x f x在(],1-∞-上单调递减,()0,1f x ; 当10-<≤x 时,()131x f x +=-在(]1,0-上单调递增,()0,2f x ;当0x >时,()ln f x x =在()0,∞+上单调递增,()f x ∈R ; 由()f x 与y a =的图象有三个交点,结合函数图象可得()0,1a ∈, 故选:A.二、多选题(共20分)9.已知函数f (x )=2sin (2x ﹣6π),则如下结论:其中正确的是( ) A .函数f (x )的最小正周期为π; B .函数f (x )在[6π,512π]上的值域为[1; C .函数f (x )在7(,)312ππ上是减函数;D .函数y =f (x )的图象向左平移6π个单位得到函数y =2sin2x 的图象,10.下列结论正确的是( )A .若α,β的终边相同,则αβ-的终边在x 的非负半轴上B .函数()log 1a f x x =+(0a >且1a ≠)恒过定点(),2aC .函数()22x f x x =-只有两个零点D .己知一扇形的圆心角60α=︒,且其所在圆的半径3R =,则扇形的弧长为π11.如图,摩天轮的半径为40m ,其中心O 点距离地面的高度为50m ,摩天轮按逆时针方向匀速转动,且20min 转一圈,若摩天轮上点P 的起始位置在最高点处,则摩天轮转动过程中( )A .转动10min 后点P 距离地面10mB .若摩天轮转速减半,则转动一圈所需的时间变为原来的12C .第17min 和第43min 点P 距离地面的高度相同D .摩天轮转动一圈,点P 距离地面的高度不低于70m 的时间为5min 【详解】解:摩天轮2010t t ππ=,(02)ϕπ是以轴正半轴为始边,轴正半轴为始边,为终边的角为P 的纵坐标为又由题知,P 点起始位置在最高点处,2π5070,1102t,020t , 0210t ππ,103t ππ或52310tπππ,解得1003t 或50203t , 20min 3,故D 错误. 故选:AC .12.给出下面四个结论,其中正确的是( ) A .函数()()ln sin f x x =的定义域是()0,π. B .()sin sin 122x xf x =+的值域为52,2⎡⎤⎢⎥⎣⎦.C .函数()sin 2f x x x =-+在区间()2,4上有唯一一个零点.D .角πα6=是1cos 22α=-的必要不充分条件.三、填空题(共20分)13.已知sin π3a ⎛⎫- ⎪⎝⎭=13,则cos 5π()6a -=________.【详解】sin 14.定义在R 上的偶函数()f x ,当],(0x ∈-∞时,()f x 单调递减,则()()231f x f x +<-的解集为______.15.已知α为第二象限角,cos 2sin()24απα⎛⎫--+= ⎪⎝⎭,则cos α=___________.16.函数sin(2)4y x π=+的图像与直线y =a 在(0,98π)上有三个交点,其横坐标分别为1x ,2x ,3x ,则123x x x ++的取值范围为_______.8442⎝⎭πππ利用对称性求出答案四、解答题(共70分)17.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<. (1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围. )UA ={x ∴x {|3U A x x ∴=-或5}x ,若1a =,则集合{|(2B x x =-(2)因为A B A ⋃=,所以当B =∅时,221a a =-,解当B ≠∅时,即1a ≠时,)可知集合{|A x =-22135a a --,解得15a,且综上所求,实数a 的取值范围为:15a-.【点睛】本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题.18.已知函数()()()sin 20f x x ϕϕ=+<<π的图象关于点,012⎛⎫- ⎪⎝⎭对称.(1)求ϕ的值;(2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象.当0,4x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.19.已知函数2()2sin 1f x x x θ=+-,1[]2x ∈. (1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x 在1[]2x ∈上是单调函数,且[0,2)θπ∈,求θ的取值范围.443366【详解】试题分析:(1)当时,在上单调递减,在上单调递增当时,函数有最小值当时,函数有最小值(2)要使在31[,]22x ∈-上是单调函数,则或即或,又解得:20.已知函数()sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数f (x )的最小正周期T 及ω、φ的值;(2)求函数f (x )在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值.,44ππ⎡⎤-⎢⎥⎣⎦当23x π+=21.已知二次函数2()21(0)g x mx mx n m =-++>在区间[0,3]上有最大值4,最小值0. (1)求函数()g x 的解析式; (2)设()2()g x x f x x-=.若()220x xf k -⋅在[3,3]x ∈-时恒成立,求k 的取值范围.22.已知函数()21log 1x f x x -=+. (1)若()1f a =,求a 的值;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)若()f x m ≥对于[)3,x ∈+∞恒成立,求实数m 的范围. 【答案】(1)3- (2)奇函数,证明见解析f a=,)()1-3为奇函数,证明如下:,解得:x。
高一数学周练一
一、选择题
1.设全集{}0,1,2,3,4U =,集合{}0,2A =,{}3,4B =,求()U A C B ⋂=( ) A.{}1,3 B.{}0,1 C.{}0,2 D.{}2,4
2.下列两个函数为同一函数的是( )
A.2()f x = ()g x x =
B. 0()(1)f x x =- ()1g x =
C. 29()3
x f x x -=- ()3g x x =+ D. ()f x =
()|3|g x x =+
3.已知2,0
()3,0x x f x x x -≤⎧=⎨
+>⎩
,则()2f f -⎡⎤⎣⎦的值是 ( ) A. 5 B. 6 C. 7 D. 8 4.若0.62a =,-1.22b =,0.6log 1.2c =,则,,a b c 的大小关系是( ) A. a b c << B.c a b << C.c b a << D.b c a << 5.函数()f x 的定义域是()0+∞,,对于任意的正实数,x y 都有
()()()f xy f x f y =+,且1f =,则(3)f 的值是 ( )
B.12
C.1
D.2 6.1001101(2)与下列哪个值相等( )
A .115(8)
B .113(8)
C .114(8)
D .116(8)
7.若幂函数y x α
=过点2,4(),则它的单调递增区间是 ( )
A. -0∞(,)
B.0+∞(,)
C.-∞+∞(,)
D.-0]∞(,
8.函数3()28log f x x x =-+的零点一定位于区间 ( )
A.4,5()
B.3,4()
C.()2,3
D.()1,2
9. 已知0,0a b >>,且1ab =(1a ≠),则函数()x f x a =与函数()log b g x x
=-
的图象可能是()
10.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x-A和x-B,样本标准差分别为s A和s B,则( )
图4
A.x-A>x-B,s A>s B B.x-A<x-B,s A>s B
C.x-A>x-B,s A<s B D.x-A<x-B,s A<s B
11.执行如图所示的程序框图,若要使输出的y的值等于3,则输入的x的值可以是( )
A .1
B .2
C .8
D .9 12.已知函数)(0
,ln 0
,2)(R k x x x kx x f ∈⎩⎨
⎧>≤+=,若k x f y +=)(有三个零点,则实
数k 的取值范围是( )
A. 2k ≤
B.10k -<<
C.2-1k -≤<
D.2k ≤-
二、填空题:本大题共4小题,每小题5分,共计20分。
13.
计算1lg 4lg52
+=________
14.防疫站对学生进行身体健康调查,采用分层抽样法抽取.某中学共有学生1600名,抽取一个容量为200的样本,已知女生比男生少抽了10人,则该校的女生人数应为________人. 15.840和1764的最大公约数是________. 16.函数2
23x x y -=的单调递增区间是________
三、解答题:本大题共6小题,共计70分,请写出必要的文字说明,证明过程或演算步骤。
17.
(本小题满分10分)
设全集为R ,集合{}|34A x x =-<<,{}|29B x x =≤≤
(1)求A B ⋃,()R A C B ⋂;
(2)已知集合{}C |11x a x a =-≤≤+,若C A C ⋂=,求实数a 的取值范围.
18 设()log (1)a f x x =-,()log (1)a g x x =+,其中0,1a a >≠, (1)求()()0f x g x -=时方程的根;
(2)设函数()()()h x f x g x =+,判断()h x 的奇偶性,并证明.
19.某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
(1)画出散点图;(2)求回归直线方程;(3)据此估计广告费用为9万元时,销售收入y 的值.
注:①参考公式:线性回归方程系数公式n
i i
i=1
n 2
2i i=1
x y
nxy
ˆˆˆb
=a
=y bx x nx
---∑∑,;
②参考数据:5
2i
i=1x
=145
∑,5
2i
i=1
y
=13500
∑,5
i
i
i=1
x y
=1380
∑.
20.(本小题满分12分)
对于函数()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个不动点,已知函数2()f x x bx a =++的不动点为-12和.(1)求函数()f x 的解析式;
(2)设()()g x f x kx =+k R ∈(),若()g x 在[]1,2-上单调,求k 的取值范围.
21.(本小题满分12分)
淮北最近天气变化较大,为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y 与t 的函数关系式为
1
()9
t a y -= (a 为常数)如图所示.
根据图中提供的信息,回答下列问题: (1)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到13
毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教室.
22.(本小题满分12分)
奇函数3()3x
x
m f x n -=+,m n R ∈()的定义域是R . (1)求函数()y f x =的解析式;
(2)判断函数()y f x =的单调性,并用定义证明;
(3)若对于任意的[1,5]t ∈,不等式22(2)(225)0f t t k f t t +++-+->恒成
立,求实数k的取值范围.
高一数学周练一答案
一、选择题:
1 2 3 4 5 6 7 8 9 10 11 12
C D C C D A B B B B D D
二、填空题:
13. 1
14.
15. 1
16. 2
三、解答题:
17、(1)
..........4分
(2)∵,∴∴,
∴的取值范围是..........10分
18、由题意得,∴定义域为..........2分(1)∵,∴∴..........6分
(2)∵定义域为
∴定义域关于原点对称。
∵
∴为偶函数..........12分
19. (1)作出散点图如下图所示:
20、
(2)1
x=(2+4+5+6+8)=5
5
⨯,
1
y=(30+40+60+50+70)=50
5
⨯,
已知
5
2
i
i=1
x=145
∑
,
5
i i
i=1
x y=1380
∑.
由公式
n
i i
i=1
n2
2
i
i=1
x y nxy
ˆˆ
ˆ
b=a=y bx
x nx
-
-
-
∑
∑
,,可求得ˆb=6.5,
ˆa=17.5,
因此回归直线方程为ˆy=6.5x+17.5;
(3)x=9时,预报y的值为ˆy=9 6.5+17.5=76
⨯(万元).
20(1)由题意得:即的两个根分别为-1和2.根据韦达定理有,∴,
..........6分
(2),对称轴为。
由题意得:
或,即时在上单调。
(12)
分
21、(1)设y=kt (k≠0),由图象知y=kt过点(0.1,1),则1=k ×0.1,k=10,∴y=10t (0≤t≤0.1);..........3分
由y=过点(0.1,1)得1=,a=0.1,
∴y= (t>0.1)...........6分
(2)由≤,得t≥0.6,
故至少需经过0.6小时...........12分
答案 (1) y=(2)0.6
22、(1)∵为奇函数且定义域为R,∴可得;
可得∴...........4分
(2)为减函数
在R上任取使
∴在R上单调递减。
...........8分
(3)∵在R上单调递减,且为奇函数,又∵
恒成立
∴,
∴,恒成立
∴,恒成立
∵当时,
∴...........12分。