高中数学推理与证明测试题及答案

  • 格式:doc
  • 大小:37.50 KB
  • 文档页数:12

下载文档原格式

  / 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学推理与证明测试题及答案

高二数学推理与证明苏教版

【本讲教育信息】

一. 教学内容:

推理与证明

二. 本周教学目标:

1. 结合已经学过的数学实例和生活实例,了解合情推理,能利用归纳和类比等方法进行简单的推理,体会并认识合情推理在数学中的作用。

2. 结合已经学过的数学实例和生活实例,了解演绎推理的重要性,掌握演绎推理的模式,并能运用它们进行一些简单的推理。

3. 了解直接证明的两种基本方法分析法与综合法;了解间接证明的一种基本方法反证法。

三. 本周知识要点:

(一)合情推理与演绎推理

1. 归纳推理与类比推理

(1)已知数列的通项公式,记,试通过计算的值,推测出的值。

(2)若数列为等差数列,且,则。现已知数列为等比数列,且,类比以上结论,可得到什么结论?你能说明结论的正确性吗?

【学生讨论:】(学生讨论结果预测如下)

(1)

由此猜想,

(2)结论:

证明:设等比数列的公比为,则,所以

所以

如(1)是从个别事实中推演出一般结论,像这样的推理通常称为归纳推理。

如(2)是根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理。

说明:

(1)归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。(2)归纳推理的一般步骤:

①通过观察个别情况发现某些相同的性质。

②从已知的相同性质中推出一个明确表述的一般命题(猜想)。

(3)类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性

质相似性越多,相似的性质与推测的性质之间的关系就越相

关,从而类比得出的结论就越可靠。

(4)类比推理的一般步骤:

①找出两类事物之间的相似性或者一致性。

②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。

2. 演绎推理

现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它们的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树。从繁茂的阔叶树可以推知当时有温暖湿润的气候。所以南极大陆曾经在温湿的热带。

被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立。西藏高原南端的喜马拉雅山横空出世,雄视世界。珠穆朗玛峰是世界第一高峰,登上珠峰顶,一览群山小。谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海。地质学家是怎么得出这个结论的呢?

科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石。还发现了鱼龙的化石。地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋。科学家们研究喜马拉雅变迁所使用的方法,就是一种名叫演绎推理的方法。

1. 演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理方法。

2. 演绎推理的一般模式

分析喜马拉雅山所在的地方,曾经是一片汪洋的推理过程:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里……大前提

在喜马拉雅山上发现它们的化石……小前提

喜马拉雅山曾经是海洋……结论

M-P(M是P)

常用格式:

S-M(S是M)

S-P(S是P)

三段论:(1)大前提……已知的一般原理

(2)小前提……所研究的特殊情况

(3)结论……根据一般原理,对特殊情况作出的判断

用集合论的观点分析:若集合M中的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。

练习:分析下面几个推理是否正确,说明为什么?

(1)因为指数函数是增函数,

(2)因为无理数是无限小数

而是指数函数而是无限小数

所以是增函数所以是无理数

(3)因为无理数是无限小数,而(=0.333……)是无限小数,所以是无理数

说明:在应用“三段论”进行推理的过程中,大前提、小前提或推理形式之一错误,都可能导致结论错误。

比较:合情推理与演绎推理的区别与联系

从推理形式上看,归纳是由部分到整体、个体到一般的推理;类比推理是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理。

从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。

人们在认识世界的过程中,需要通过观察、实验等获取经验;也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化,系统化,合情推理和演绎推理分别在这两个环节中扮演着重要的角色。

就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理。因此,我们不仅要学会证明,也要学会猜想。

(二)直接证明与间接证明

1. 综合法与分析法

(1)综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经

过一系列的推理证明,最后推导出所要证明的结论成立,这种证明方法叫做综合法又叫顺推证法。

它的基本思路是“由因导果”,即从“已知”得“可知”,再逐步推向未知的方法。

(2)分析法

我们从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件,这种证明方法叫分析法,它的特点是:从未知看需知,再逐步靠近已知。

2. 间接证明

反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法。

(三)数学归纳法

用数学归纳法证明一个与正整数有关的命题的步骤:

(1)证明:当n取第一个值时结论正确;

(2)假设当n=k(k ,且k )时结论正确,证明当n=k+1时结论也正确。

由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。

数学归纳法被用来证明与自然数有关的命题:递推基础不