丙烯制取化学工艺论文
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
丙烯生产工艺丙烯是一种重要的化工原料,广泛应用于塑料、纺织、油漆、涂料等领域。
现在,我将为大家介绍一种常见的丙烯生产工艺。
丙烯生产主要通过烯烃的裂解反应得到。
一般来说,丙烯的原料可以是石油、天然气或煤炭等。
其中,石油和天然气是目前主要的原料。
首先,将原料进行预处理。
石油和天然气中的杂质会对催化剂产生不良影响,因此需要经过一系列的处理,如气体除尘、硫化氢去除、尾气氯化和硫化等。
接下来,进行裂解反应。
裂解反应是将原料中的长烷烃、烷烃等高级烃类分解成低级烃类的反应。
一般采用流化床或管式催化裂解炉进行。
在裂解炉中,将原料加热至高温,通入催化剂,进行裂解反应。
催化剂通常是硅铝酸盐,能够提高反应速率和选择性。
裂解反应产生的气体混合物主要包括丙烯、丁烯和烷烃。
在裂解反应后,需要对裂解气体进行分离和处理。
通常采用凝结和吸附技术,将液态丙烯和丁烯从气体混合物中分离出来。
然后,通过精馏和连续吸附,将气态丙烯纯化。
最后,通过压缩和液化技术,将丙烯制成液气。
丙烯的产品质量主要取决于裂解反应的条件和催化剂的选择。
温度、热负荷、催化剂活性和选择性都对丙烯的产率和纯度有较大影响。
因此,在实际生产中需要根据不同原料的特点和生产规模的大小进行优化。
总体来说,丙烯生产过程具有高温、高压和反应速度快等特点,工艺较为复杂。
目前,国内外丙烯生产技术已经非常成熟,生产规模和产量均有较大提高。
未来,随着丙烯需求的不断增长,生产工艺和技术将继续发展,以提高丙烯的产量和质量,推动相关产业的发展。
综上所述,丙烯生产工艺是一个复杂且关键的过程,需要经过原料预处理、裂解反应、分离纯化等多个步骤。
优化工艺条件和提高催化剂效果,对提高丙烯产量和质量具有重要意义。
相信随着科技的不断进步,丙烯生产工艺将进一步完善,为我们的生活带来更多便利。
丙烯生产工艺
丙烯生产工艺是一种通过对烃类原料进行催化裂解得到的工艺。
其基本工艺流程为:先通过蒸汽裂解或催化裂解将石油、天然气等烷烃类原料转化为烯烃类化合物,然后通过再生式吸附、膨胀床、膜分离等方法进行气体提纯,最终将含丙烯高纯度的气体送至压缩储存或直接用于下游反应。
丙烯的生产主要涉及到催化裂解反应、气体分离和压缩、净化过程等关键技术环节。
其中,催化裂解反应是丙烯生产的核心技术,催化剂选择、反应温度、反应压力等因素均对反应效果有着关键影响。
气体分离和压缩技术则用于提纯气体,去除杂质及增加丙烯含量,同时压缩储存技术则保证加工过程中气体供应的充足稳定性。
在丙烯生产中,环保和安全问题一直备受关注,因此国内外生产厂家都会采用相应的环保措施,如气体回收利用、脱硫除酸、废气治理等等。
此外,丙烯生产装置的设计与操作也需要严格遵循相关的安全规范及标准,以确保生产过程中的安全性和可靠性。
摘要本设计综述了国内外丙烯酸生产的工艺及其发展前景。
在对各种丙烯酸的生产工艺进行详细比较的基础上,选择了丙烯两步氧化生产工艺生产丙烯酸。
首先,对丙烯两步氧化法生产丙烯酸工艺流程进行了设计,主要分为三个工段,分别是反应工段、吸收工段和精制工段。
其次,运用Aspen Plus 对工艺流程及各个设备进行模拟计算与优化,得到了各工段的工艺参数和设备参数,同时进行了物料衡算和热量衡算,在此基础上进行了反应器、精馏塔、吸收塔和换热器的设计及泵的选型,并设计了各个设备的自动控制方案,并绘制了反应器、塔的设备装配图、工艺流程图及带控制点的工艺流程图等。
最后对丙烯两步氧化法生产丙烯酸工艺进行了经济、环保和安全评价。
关键词:丙烯酸;反应;精制;工艺设计AbstractThe acrylic acid production processes and its developments at home and abroad were reviewed and summarized in this thesis. Based on the detailed comparison among various acrylic acid processes, the technology of two-step oxidation of propylene was selected.The technology of two-step oxidation of propylene consists of three sections, which are the reaction section, the absorb section and the refined section. The process parameters were determined and optimized using the Aspen Plus software, and the material balance and heat balance were also calculated. According to the results of the material balance and heat balance, the reactors, towers and heat exchangers were designed and the pumps were chosen properly. Meanwhile, the automatic control schemes of all equipments were also presented. Besides, the main equipment assembly drawings, the process flow diagrams and the workshop layout were given. Finally, the evaluations of economy, environment and safety of the technology program were carried out, which show that the technology is feasible and economically reasonable.Keywords acrylic acid;reaction;refining;technology design目录第一章绪论 (1)1.1概述 (1)1.2 国内外丙烯酸产能及市场分析 (2)第二章丙烯酸生产的工艺流程设计 (3)2.1工艺方案的选择 (3)2.2 工艺流程的模拟与优化 (8)第三章物料衡算与能量衡算 (18)3.1 物料衡算 (18)3.2 能量衡算 (25)第四章丙烯酸生产的设备设计与选型 (34)4.1 反应器设计 (34)4.2 塔设备的设计 (41)4.3 换热器的设计和选型 (50)4.4 泵的选型 (54)第五章电气仪表及自动控制 (59)5.1概述 (59)5.2常用控制系统 (59)5.3自动控制系统的选择 (60)5.4单元设备自动控制 (61)第六章安全、储运设计与三废处理 (67)6.1 安全设计 (67)6.2 包装与储存 (69)6.3 三废处理 (70)第七章 5万吨/年丙烯酸生产的经济评估 (72)7.1 项目总投资估算 (72)7.2 财务评价 (72)7.3评价结果 (77)第八章结论 (79)参考文献 (80)致谢 (81)附录 (83)第一章绪论1.1概述丙烯酸(英文名:Acrylic acid),分子式为C3H4O2,相对分子量为6,结构式为CH2=CHCOOH。
制取丙烯的化学工艺综述摘要:本文对制取丙烯的化学工艺进行了综述。
丙烯是一种重要的工业原料,在合成树脂、塑料、纺织品和涂料等领域有广泛的应用。
本文首先介绍了丙烯的性质和用途,然后分析了传统的丙烯制备工艺及其存在的问题。
接着介绍了一些新型的丙烯制备技术,包括煤气化制取丙烯、生物质制取丙烯和CO2催化制取丙烯等。
最后,对未来丙烯制备技术的发展进行了展望。
关键词:丙烯,化学工艺,制备技术,煤气化,生物质,CO2催化一、引言丙烯是一种重要的烯烃化合物,其化学式为C3H6,结构中含有双键,使其具有较高的反应活性。
丙烯是工业上最重要的烯烃之一,广泛应用于合成树脂、塑料、纺织品、涂料、橡胶和化妆品等领域。
丙烯具有一系列特殊的化学性质,使其在工业上有广泛的应用。
首先,丙烯具有高度的反应活性,容易进行聚合反应,因此广泛用于合成各种聚合物,如聚丙烯和聚丙烯酸。
其次,丙烯可以通过加氢、氧化、加聚等多种反应得到多种有机化合物,如丙醇、丙烯酸等。
此外,丙烯还可以用作燃料,其燃烧产生的热量高,热值大。
在工业上,丙烯主要用于生产聚丙烯和丙烯酸,聚丙烯是一种重要的塑料原料,广泛应用于包装材料、纤维、家具等领域;丙烯酸是合成高分子材料和特种化学品的重要原料,用于制备各种树脂、胶粘剂和表面涂料。
此外,丙烯还用于制备合成橡胶、丙烯腈纤维、丙烯醛和丙烯腈-丁二烯-苯乙烯共聚物等。
二、传统丙烯制备工艺2.1 裂解法制取丙烯裂解法是传统丙烯制备中最主要的方法之一。
该方法通过热裂解烃烷类烃化合物,将较大的烃烷分子裂解成较小的烯烃分子,其中包括丙烯。
常见的裂解原料是丙烷、丁烷、乙烯等。
在裂解过程中,原料在高温(通常在500-900°C)和催化剂的作用下发生热裂解反应。
该方法的优点是原料来源广泛、工艺成熟,丙烯产率较高。
然而,裂解法制取丙烯也存在一些问题,第一,裂解反应是一个高温高压的过程,对设备和催化剂要求较高,造成能源和成本的浪费;第二,裂解反应是一个复杂的多相反应过程,容易产生副产物,影响丙烯纯度和产率。
关于丙烯化学制取分析的研究随着经济社会的快速发展,丙烯已经成为重要原材料之一,市场对其需求量极大。
就丙烯的化学制取而言,当前所应用的工艺技术也需要不断的进行创新,以提升高质量丙烯产品的生产率,满足社会的需求。
在这种背景下,文章首先对丙烯制取的重要化学反应的相关理念进行解析,进而对当前所采用的几种关键技术进行了解析,最后给出了相关的技术的发展。
标签:丙烯;化學制取;工艺技术;发展1 丙烯制取的重要化学反应理念解析首先是协同反应。
该反应机构遵守伍德沃德-霍夫曼规则,其过渡状态包含烯类和亲烯基的π电子及碳氢键的σ电子。
烯反应一般具有相当高的活化能力,且分子间的反应仅发生在具有强亲电子基的亲烯情况下;但若加入如氯化铝这类催化剂,以其来增加该共轭系统的亲电子性,则可催化此反应,使反应得以在低于室温下进行。
烯类化合物的活性较一般的有机化合物高许多,在考虑过渡状态的几何结构并经过能量计算后,Houk在1997年提出丙烯反应比平常所见的丙烯乙烯反应的活化能低许多,这与丙烯在室温或更低温下即可进行烯反应的实验结果相符合。
而内部形式(丙烯重叠)的过渡状态又较外部形式(丙烯错开)低约2.7 kcal/mol。
其次是照光反应。
在早期所发表的文献中,要进行丙烯类化合物的(2+2)照光反应,均会加入如苯甲酮等敏化剂来引发反应并提高生产率。
例如DeBoer 在1973年就曾使用多种不同的敏化剂来进行相应的的照光反应,他们发现由于在其反应条件下并无有效的途径可以容许丙烯生产资料的裂解,因此复合物会经由(2+2)环化加成而得到二聚物,且较小的取代基会选择置于内部位置。
此外,二聚物在加热到230℃时,四员环会开环形成复合物。
但若是将复合物在不加入敏化剂的状况下直接照光,则会经由开环反应得到乙烯基卡宾,再经环化反应生成复合物。
最后是碳结合反应。
环丙烯与碳环接合在一起的型式有两种:融合丙烯类化合物;融合环丙烯类化合物。
当n?芏 6 时,类型一可以稳定的分离出来。
制取丙烯的化学工艺综述随着聚丙烯等下游产品需求的快速增长,以及以乙烷为原料的新建乙烯生产装置比例的增加,丙烯资源供给逐渐呈现出紧张态势。
相应地,以丙烯为目的产物的生产技术研究越来越活泼,丙烯生产技术已成为当前炼油和化工重点研究方向之一。
生产丙烯化学工艺1 丙烯的定义丙烯主要用于生产聚丙烯、丙烯腈、环氧丙烷以及异丙醇等,是仅次于乙烯的重要石油化工原料。
2 丙烯制取工艺的开展现状目前增产丙烯的化学工艺研究主要集中在4个方面:一是改良fcc等炼油工艺,挖掘现有装置潜力,增产丙烯的fcc装置升级技术;二是充分利用炼油及乙烯裂解副产的c4-8等资源,转化为乙烯、丙烯的低碳烯烃裂解技术、烯烃歧化技术;三是丙烷脱氢工艺;四是以天然气、煤等为原料,生产乙烯、丙烯的甲醇制烯烃工艺等。
2.1增产丙烯的fcc工艺技术全球fcc装置的生产能力约750mt/a,通过调整原料品种、催化剂、工况和操作条件来增产丙烯的开展潜力非常大,国内外许多公司都在积极开展这方面的研究。
与传统的fcc相比,这类工艺技术操作条件更为苛刻,要求反响温度、剂油比更高,催化时间更短。
运用这些技术,虽然汽油收率会受到一定影响,但汽油中的烯烃含量降低,质量得以提高,丙烯的产量比传统fcc高2~4倍。
我国炼油工业催化裂化加工能力大、掺渣比高,造成汽油中烯烃含量高,开发应用增产丙烯的fcc工艺技术,在提高油品质量的同时,为下游提供更多的低碳烯烃,具有良好的市场前景。
2.2低碳烯烃裂解制丙烯工艺技术低碳烯烃裂解是将c4-8烯烃在催化剂作用下转化为丙烯和乙烯的工艺,它不仅可以解决炼厂和石脑油裂解副产的c4-8的出路问题,又可以增产高附加值的乙烯、丙烯产品,成为近年研究较为活泼的领域。
烯烃裂解工艺,从投资费用、生产本钱与综合收益来看,均是最具吸引力的工艺。
固定床工艺流程相对简单,适于和现有蒸汽裂解结合;流化床工艺流程相对复杂,适于建设大规模生产装置,可以纳入烯烃联合装置,也可以单独建立装置。
长江大学工程技术学院毕业设计(论文)年产8万吨丙烯的生产工艺设计题目名称(精馏工段)题目类型毕业设计系部专业班级学生姓名指导教师辅导教师时间毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:目录毕业论文(设计)任务书 (Ⅰ)开题报告 (Ⅱ)指导教师审查意见 (Ⅲ)评阅教师评语 (Ⅳ)答辩会议记录 (Ⅴ)中文摘要 (Ⅵ)英文摘要 (Ⅶ)1 前言 (1)2 选题背景 (2)2.1 课题的来源、目的和意义 (2)2.2 国内外现状、发展趋势及存在的主要问题 (2)2.3 研究的指导思想与技术路线 (6)3 方案论证 (8)3.1 低压热泵工艺流程 (8)3.2 高压丙烯精馏流程 (8)4 过程论述 (10)4.1 基本原理 (10)4.2 丙烯的性质 (10)4.3 工艺流程 (12)4.4 精馏工段工艺计算 (12)5 结果分析 (45)6 结论或总结 (46)参考文献 ............................................................................................... 46買鲷鴯譖昙膚遙闫撷凄。
提高甲醇制丙烯工艺丙烯收率的探讨近年来,随着社会经济的快速发展和人们生活水平的不断提高,对于化工产品的需求量也在不断增加。
丙烯作为一种重要的化工原料,被广泛应用于医药、农药、合成橡胶、塑料等领域。
目前,甲醇制丙烯工艺已成为制备丙烯的主要方法之一。
然而,该工艺在丙烯收率方面还存在较大的提升空间。
本文将从反应机理、催化剂、反应条件等方面探讨如何提高甲醇制丙烯工艺的丙烯收率。
一、反应机理甲醇制丙烯的反应机理主要包括甲醇脱氢、甲酸酯化、丙烯生成三个步骤。
其中,甲醇脱氢是整个反应过程中最为关键的步骤,也是影响丙烯收率的主要因素之一。
甲醇脱氢反应需要催化剂的参与,目前主要采用的是氧化铝基质上的铬催化剂。
铬催化剂的活性主要来自于其表面的氧化铬物种,而且铬催化剂粒径的大小、铬物种的种类和含量等因素都会影响甲醇脱氢反应的活性和选择性。
因此,优化催化剂的制备方法,调节催化剂的物化性质,是提高甲醇制丙烯工艺丙烯收率的有效途径之一。
二、催化剂甲醇制丙烯工艺中常用的催化剂除了氧化铝基质上的铬催化剂外,还包括硅铝酸盐、分子筛等。
硅铝酸盐催化剂具有活性高、稳定性好等优点,但其缺点是选择性较差,易产生副反应。
分子筛催化剂具有孔径分布狭窄、分子筛骨架稳定性好等优点,但其缺点是制备成本高,难以实现工业化生产。
因此,目前氧化铝基质上的铬催化剂仍然是甲醇制丙烯工艺中的主要催化剂。
但是,针对铬催化剂的缺点,如活性低、稳定性差等问题,研究人员也在不断探索新型的催化剂。
三、反应条件甲醇制丙烯工艺的反应条件对于丙烯收率也有较大的影响。
反应温度、反应压力、甲醇与甲酸酯的比例等条件都会对甲醇制丙烯工艺的丙烯收率产生影响。
其中,反应温度是影响甲醇脱氢反应的最主要因素。
在一定的反应压力下,随着反应温度的升高,甲醇的脱氢速率增加,但同时也会增加副反应的产生,丙烯的选择性会下降。
因此,在确定反应温度时需要综合考虑反应速率和选择性的影响。
此外,反应压力、甲醇与甲酸酯的比例等条件也需要在实验中进行探究和优化。
丙烯精制工艺工段毕业设计一、引言丙烯精制工艺是石油化工领域中一项重要的技术,它涉及到丙烯的提纯、净化、分离等过程。
本文以丙烯精制工艺工段毕业设计为例,详细阐述了丙烯精制工艺的设计理念、工艺流程、设备选型、安全与环保措施等内容,旨在为相关领域的研究和实践提供参考。
二、设计理念丙烯精制工艺的设计理念是以提高产品质量、降低成本、安全环保为核心。
通过优化工艺流程,提高设备的自动化程度,降低人工干预,提高生产效率。
同时,注重环境保护,采用先进的环保技术和设备,确保生产过程对环境的影响最小化。
三、工艺流程丙烯精制工艺流程主要包括预处理、脱硫、脱水、除尘等步骤。
首先,对丙烯原料进行预处理,去除其中的杂质和水分。
然后,通过脱硫剂脱除丙烯中的硫化物。
接下来,采用高效脱水装置去除丙烯中的水分。
最后,使用高效过滤器去除丙烯中的颗粒物和粉尘。
在整个过程中,需要密切关注工艺参数的变化,确保产品质量和安全。
四、设备选型为了实现丙烯精制工艺的自动化和高效化,需要选择合适的设备和仪器。
根据工艺流程和参数要求,选择了适宜的泵、压缩机、阀门、加热器、冷凝器、过滤器等设备。
同时,为了确保生产安全和环保,选择了防爆、环保型的设备,如防爆电机、环保型过滤器等。
在设备选型过程中,注重设备的性能、可靠性、耐用性等方面,以确保生产过程的稳定性和安全性。
五、安全与环保措施丙烯精制工艺涉及到易燃、易爆、有毒物质的处理,因此需要采取相应的安全措施。
首先,加强设备维护和管理,确保设备正常运行,避免因设备故障引发事故。
其次,加强员工安全培训,提高员工的安全意识和操作技能。
同时,在生产过程中严格遵守安全操作规程,确保生产安全。
在环保方面,丙烯精制工艺会产生废气、废水和固体废弃物。
为了减少对环境的影响,采取了以下措施:一是加强废气处理,采用高效除尘器和脱硫剂等设备,确保废气达标排放;二是废水处理,采用絮凝剂沉淀法等处理方法,确保废水达标排放;三是固体废弃物分类处理,将可回收利用的废弃物进行回收利用,无法回收利用的废弃物则进行安全填埋处理。
年产8万吨丙烯的生产工艺设计(精馏工段)毕业设计1. 引言本篇文档描述了一种用于年产8万吨丙烯的生产工艺设计,主要关注于精馏工段的设计。
丙烯是一种重要的工业原料,在塑料、橡胶、纺织品等行业中具有广泛的应用。
因此,高效且稳定的生产工艺对于提高丙烯产量和质量具有重要意义。
2. 精馏工段概述精馏工段是丙烯生产过程中的关键环节,它通过分离混合物中的丙烯和杂质,提高丙烯的纯度和产品质量。
本工艺设计中,精馏工段采用了传统的蒸馏塔来实现分离。
3. 设计原则在精馏工艺设计中,有以下几个重要的设计原则:•降低能耗:通过优化塔设计和操作参数,最大限度地降低能耗。
•提高产品纯度:通过合理的操作条件和塔设计,提高丙烯的纯度,满足产品质量要求。
•确保设备安全性:考虑设备的可靠性和安全性,防止事故发生。
4. 设计步骤4.1 塔型选择根据生产规模和产品要求,本设计选择了常压下的蒸馏塔作为精馏设备。
蒸馏塔采用板式结构,具有较高的分离效率和操作灵活性。
4.2 操作参数选择在设计过程中,需要确定一些关键的操作参数,包括塔顶压力、回流比、冷凝温度等。
这些参数的选择需要通过模拟计算和实验验证,在保证丙烯纯度的前提下,尽可能降低能耗。
4.3 塔设计塔设计需要考虑塔的高度、塔板的数量和间距等因素。
高效的塔设计能够提高分离效率,降低能耗。
在本设计中,采用了理论计算和经验数据相结合的方法来确定塔设计参数。
4.4 热力学计算热力学计算是精馏工艺设计过程中的关键步骤。
通过计算混合物的热力学性质,可以确定操作参数和塔设计。
在本设计中,采用了常用的热力学计算方法,如赫希函数法和闵彻林方程。
4.5 安全性考虑在设计过程中,安全性是非常重要的考虑因素之一。
需要对塔进行全面的安全评估,包括对过程压力、温度和流量进行分析,防止塔内发生过热、过压等危险情况。
此外,还需要设计一套完善的安全控制系统,及时采取措施应对突发情况。
5. 结论在本毕业设计中,年产8万吨丙烯的生产工艺设计的精馏工段经过了系统的设计和优化。
毕业设计(论文)- 年产20万吨丙烷制丙烯合成工段工艺设计1. 引言在化工领域中,丙烷制丙烯是一项具有重要意义的工艺。
丙烯是一种广泛应用于塑料制造、合成橡胶和化学品生产等领域的基础原料。
本文致力于设计一个年产量达到20万吨的丙烷制丙烯合成工段的工艺流程。
2. 工艺介绍2.1 原料选择•主要原料:丙烷•辅助原料:空气、水蒸汽等2.2 丙烯合成反应丙烷制丙烯的主要反应过程是经过催化剂的催化作用,将丙烷分解生成丙烯。
反应方程式如下:C3H8 ⟶ C3H6 + H22.3 反应条件为了达到较高的丙烯产率和选择性,需要控制一定的反应条件:•反应温度:在400-500°C之间•反应压力:在1-2 MPa之间•反应物质的进料比例:根据具体工艺设计确定•催化剂选择:根据实验结果选择适合的催化剂3. 工艺流程设计3.1 原料准备在丙烯合成工段,首先需要对原料进行准备工作。
主要包括对丙烷、空气和水蒸汽的准备和预处理。
3.2 反应器设计反应器是丙烷合成丙烯工艺的核心装置。
在设计反应器时,需要考虑以下几个方面的因素:•反应器的体积与产能的关系•反应器的物质传质和热传递特性•反应器的操作压力和温度控制•反应器的安全性和可控性3.3 分离装置设计在丙烯合成反应之后,需要对产物进行分离和纯化。
常见的分离装置包括:冷凝器、分离塔、吸附塔等。
这些装置可以将反应产物中的杂质、副产物等分离出来,从而提高丙烯的纯度。
3.4 能耗分析在工艺设计中,除了关注产品的产量和质量外,还需要对工艺设计的能耗进行分析。
能耗分析可以帮助确定合理的能源利用方案,提高工艺的能源效率。
4. 结果与讨论通过对年产20万吨丙烷制丙烯合成工段的工艺设计,可以得到以下几个方面的结果和讨论:•反应器的尺寸和催化剂的选择对工艺的影响•对原料的预处理对丙烯合成的效果的影响•分离装置的效率和能耗对工艺的影响根据实际工艺设计和实验结果,可以对工艺进行调整和优化,以提高丙烯的产量和质量。
东北石油大学工程硕士专业学位论文催化裂化多产丙烯的研究摘要丙烯有机化工生产过程中重要的原料之一,主要用于生产聚丙烯。
聚丙烯由于其密度小、抗张强度强、耐腐蚀,等特点,在强度、刚性和透明性方面都比聚乙烯好,用途十分广泛,是最轻的通用塑料,另外聚丙烯可以作为合成树脂再进一步做成塑料,它的另一个用途是作为六大合成纤维之一的丙纶。
随着经济和科技的发展,人们对聚丙烯的需求不断扩大,这也极大地促进了丙烯的市场需求量。
传统蒸汽裂解生产丙烯工艺已不能满足市场的需求,结合我国目前催化裂化的生产特点,适当的调整生产方案和操作条件,在不影响油品生产的同时,又能提高丙烯的产量,达到既能创造经济效益又能够明显改善目前市场供不应求的现状的目的。
本论文正是从这一实际出发,比较了目前各种催化裂化多产丙烯工艺技术的特点,与炼厂实际相结合,采用两段提升管催化裂化多产丙烯(TMP)技术,对此工艺的操作条件、进料方式和催化剂的选择进行了深入的探讨和研究。
以大庆常压渣油为原料,首先在不同温度、剂油比、和停留时间等条件下对丙烯收率和产物分布进行了对比和优化;接着,又对第一段提升管反应的液体产物对多产丙烯的贡献进行了研究,以确立多产丙烯的最优方案;最后,在前期实验的基础上,又对碳四烃类和汽油回炼和不同的组合进料方式上进行了一系列的实验和生产模拟。
实验结果表明,在ZSM-5含量较高的LCC-200分子筛催化剂的催化作用下,采用组合进料方式要比单独以常压渣油为原料产出丙烯的收率要高,可达25%左右,同时也能兼顾汽油和柴油的收率和品质,而操作条件却比催化热裂解工艺缓和许多,与常规催化裂化相差不大。
可见,两段提升管催化裂化多产丙烯(TMP)工艺的优势很明显,其工业前景也很值得期待。
关键词:催化裂化,双提升管,多产丙烯催化裂化多产丙烯的研究ABSTRACTOne of the propylene organic chemical production process of raw materials, mainly for the production of polypropylene. Polypropylene because of its density, tensile strength, corrosion resistance, and other characteristics of strength, rigidity and transparency than polyethylene and wide range of uses is the lightest of GE Plastics, another polypropylene can be used as a synthetic resin further made of plastic, another use of it as one of the six synthetic fibers, polypropylene fiber. With the economic and technological development, the growing demand of polypropylene, which greatly promoted the market demand for propylene. Conventional steam cracker propylene production technology can not meet the needs of the market, combined with our current FCC production characteristics, appropriate adjustments to production programs and operating conditions, does not affect oil production, but also improve the yield of propylene, to reach both create economic benefits could significantly improve the purpose of the current market shortage of the status quo.This paper is from this practical comparison of the characteristics of a variety of FCC propylene technology, with the refinery's reality, with two to enhance the fluid catalytic cracking propylene (TMP) technology, this processoperating conditions, the choice of feeding method and catalyst in-depth discussion and research.Daqing atmospheric residue as raw material, first of all at different temperatures, catalyst to oil ratio, and residence time conditions on propylene yield and product distribution were compared and optimization; Then, the first paragraph to enhance the tube reaction liquid productthe contribution of propylene, in order to establish the optimal solution of propylene; Finally, on the basis of preliminary experiments, carbon hydrocarbons and gasoline back to the refining and different combinations of feeding method on a series ofexperimental and production simulation.The experimental results show that the LCC-200 zeolite catalyst ZSM-5 with higher levels of catalyst, the use of a combination feed than separate atmospheric residue as raw material output propylene yield is higher, up to 25%both yield and quality of petrol and diesel about the operating conditions than the catalytic pyrolysis process to ease many less with the conventional catalytic cracking. Visible, the two riser catalytic cracking propylene (TMP) process is very obvious advantages of its industrial prospects are worth the wait.Key words:Catalytic cracking,TSRFCC-Maximizing Propylene,Propylene东北石油大学工程硕士专业学位论文创新点摘要本实验目的在兼顾汽油和柴油的生产同时采用两段提升管催化裂解工艺提高丙烯与新鲜原料组合进料,和乙烯收率。
本科毕业论文(设计)年产10万吨丙烯分离工段工艺设计姓名:指导教师:院系:化学化工学院专业:化学工程与工艺提交日期:2012年5月5日目录中文摘要 (1)外文摘要 (2)引言 (3)1.绪论 (3)1.1概述 (3)1.1.1简介 (3)1.1.2丙烯的性质 (3)1.1.3丙烯的用途 (3)1.2丙烯生产工艺选择及分离流程确定 (3)1.2.1生产工艺选择 (3)1.2.2分离流程确定 (4)1.3设计任务书 (5)2.工艺流程 (5)2.1工艺流程图 (5)2.2工艺流程简述 (6)3.物料衡算 (6)3.1设计依据 (6)3.2裂解气及各组分产量 (6)3.3各裂解产物的相对分子量 (7)3.4脱丙烷塔物料衡算 (7)3.5脱甲烷塔物料衡算 (10)3.6脱乙烷塔物料衡算 (12)3.7乙烯精馏塔物料衡算 (15)3.8丙烯精馏塔物料衡算 (16)4.热量衡算 (18)4.1乙烯精馏装置热量衡算 (18)4.2丙烯精馏装置热量衡算 (23)4.3脱甲烷精馏装置热量衡算 (26)4.4脱乙烷精馏装置热量衡算 (30)4.5脱丙烷精馏装置热量衡算 (33)5.设备选型 (37)5.1丙烯精馏塔 (37)5.1.1丙烯精馏塔操作压力及温度的确定 (37)5.1.2丙烯精馏塔密度、表面张力的计算 (39)5.1.3塔板数的确定 (42)5.1.4精馏塔主要尺寸计算 (44)5.1.5塔板流体力学验算 (50)5.1.6主要设备设计与选型 (53)5.1.7塔高的计算 (55)5.1.8浮阀塔设计一览表 (56)5.2换热器 (57)5.2.1试算和初选换热器规格 (57)5.2.2核算总传热系数 (58)6.生产安全及三废处理 (62)6.1生产安全 (62)6.2废气处理 (62)6.3废渣处理 (62)6.4废水处理 (62)结束语 (63)参考文献 (64)致谢 (65)附录 (66)年产10万吨丙烯分离工段工艺设计刘洋指导老师:崔秀云(黄山学院化学化工学院,黄山,安徽245041)摘要:本设计为年产10万吨丙烯分离工段工艺设计。
目录第1章概述 (1)1.1 项目概况 (1)1.1.1 项目简介 (1)1.2 设计依据和原则 (1)1.2.1 设计依据 (1)1.2.2 设计原则 (2)第2章化工工艺及系统 (3)2.1 概述 (3)2.1.1 项目设计 (3)2.1.2 产品简述 (4)2.1.3 原料简述 (4)2.1.4 国内对丙烯的需求 (5)2.2 工艺简述 (6)2.2.1 工艺选择 (6)2.2.2 工艺路线介绍 (7)第3章物料衡算 (14)3.1 甲醇制丙烯反应热力学 (14)3.1.1 引言 (14)3.1.2 基础热力学数据及计算方法 (14)3.1.3 MTP反应的反应焓 (17)3.1.4 MTP反应的吉布斯自由能变及平衡常数 (19)3.1.5 烯烃之间热力学平衡计算 (21)第4章关键设备选型 (26)4.1 概述 (26)4.2 塔器设备的选型 (26)4.3 MTP反应器的选型 (28)4.4 DME反应器选型 (30)4.5 换热设备的选型 (31)4.6 冷却塔的选型 (34)4.7 压缩机的选型 (35)第5章土建 (37)5.1 设计依据 (37)5.1.1 国家规范和标准 (37)5.1.2 国家通用标准图集 (37)5.2 建筑工程 (38)5.2.1 设计原则 (38)5.2.2 设计方案 (38)5.2.3 建筑材料 (39)5.3 结构设计 (39)5.3.1 结构形式 (39)5.3.2 基础方案 (40)5.4 安全疏散 (40)第6章给水排水工程 (41)6.1 概述 (41)6.2 设计依据 (41)6.2.1 设计规范及标准 (41)6.3 设计原则 (42)6.4 给水系统 (42)6.4.1 冷却循环水子系统 (42)6.4.2 生活供子水子系统 (43)6.4.3 消防供水子系统 (43)6.4.4 排水系统 (44)第7章供电和通讯.............................................................................................................- 45 -7.1 设计依据.................................................................................................................- 45 -7.2 设计范围.................................................................................................................- 45 -7.3 设计原则.................................................................................................................- 45 -7.4 应急电源.................................................................................................................- 46 -7.5 防雷及接地.............................................................................................................- 46 - 第8章采暖通风及空气调节. (48)8.1 设计依据 (48)8.2 设计范围 (48)8.3 通风 (48)8.3.1 项目概述 (48)8.3.2 通风要求 (49)第9章附录 (50)第1章概述1.1项目概况1.1.1项目简介MTO工艺是由甲醇转化为乙烯、丙烯和丁烯混合物的工艺,最早提出MTO工艺的是美孚石油公司(Mobil),随后巴斯夫(BASF)、埃克森石油公司(Exxon)、美国环球石油公司(UOP)及挪威海德鲁公司(Hydro)等相继投入开发。
丙烯合成工艺《丙烯合成工艺》1. 丙烯合成工艺的历史1.1 早期的探索其实啊,丙烯合成工艺的历史就像一场漫长的冒险旅程。
早在很久以前,科学家们就开始琢磨怎么把各种原料变成丙烯这个有用的东西。
最开始的时候,这就像是在黑暗中摸索,没有太多的头绪。
比如说,最初人们是从石油炼制过程中的一些副产物里去寻找丙烯的踪迹。
那时候的方法比较简单,也很粗糙,就像我们在一堆杂物里翻找宝贝一样,能找到多少算多少,而且纯度还不怎么高。
1.2 技术的发展随着时间的推移,事情开始有了转机。
就好比我们从走路变成了骑自行车,速度和效率都有了提升。
在20世纪,化学工业不断发展,人们开始研究更有效的丙烯合成方法。
从一些简单的热裂解反应开始,到后来逐渐发展出更复杂、更精准的合成工艺。
这就像我们盖房子,一开始只是搭个简易的棚子,后来技术进步了,就能盖起高楼大厦了。
特别是在石油化工蓬勃发展的时期,丙烯的需求大增,这也促使了丙烯合成工艺不断地改进和创新。
2. 丙烯合成的制作过程2.1 原料的选择咱们先来说说原料这一块吧。
说白了就是,要合成丙烯得有东西来做基础啊。
最常见的原料呢,就是石油中的一些成分,像石脑油之类的。
这就好比我们做饭,石脑油就像是大米或者面粉,是最基本的材料。
当然啦,除了石油相关的原料,现在也有一些从天然气或者煤炭等其他资源转化而来的工艺在发展。
这就像是我们的食谱变得更加多样化了,可以从不同的食材做出美味的菜肴(丙烯)。
2.2 主要的合成反应那有了原料之后呢,就要进行反应了。
其中一种比较重要的反应就是裂解反应。
这个裂解反应啊,就像是把一个大的东西拆分成小的部分。
想象一下,有一个很长的链子(原料分子),我们用一把剪刀(反应条件)把它剪成一段一段的,其中就有我们想要的丙烯。
还有一种反应叫丙烷脱氢反应,这就好比是让一个比较害羞的小伙伴(丙烷)脱掉一件衣服(氢原子),然后变成另外一个小伙伴(丙烯)。
这些反应都需要在特定的温度、压力和催化剂的作用下进行。
XX大学工程硕士专业学位论文论文题目:聚丙烯生产中原料丙烯的精制硕士生:指导教师:教授工程领域:2012年 4 月 10 日Thesis for the Graduate Candidate Test Polypropylene raw material production ofpropylene refinedCandidate: Li XueshuangTutor: Lv ChunshengField: Chemical EngineeringDate of oral examination: 10th Apr.2012University: Northeast Petroleum University学位论文独创性声明本人所呈交的学位论文是我在指导教师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。
对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:学位论文使用授权声明本人完全了解XX大学有关保留、使用学位论文的规定。
学校有权保留学位论文并向国家主管部门或其指定机构送交论文的电子版和纸质版;有权将学位论文用于非赢利目的的少量复制并允许论文进入学校图书馆被查阅;有权将学位论文的内容编入有关数据库进行检索;有权将学位论文的标题和摘要汇编出版。
保密的学位论文在解密后适用本规定。
学位论文作者签名:导师签名:日期:日期:聚丙烯生产中原料丙烯的精制摘要本课题所依据的是以四万吨/年聚丙烯生产过程中的丙烯精制工艺装置为设计原型。
原料丙烯的主要来源以炼厂气(主要为重油流化催化裂化分离后得到的丙烯)为主,成本较低且资源丰富,杂质含量较高,这些有害的杂质主要有炔烃、二烯烃、水、O2、CO、CO2、S和As等。
传统的气体分离精馏装置可使乙烷、乙烯、丙烷、炔烃和二烯烃等杂质含量符合高效催化剂聚合时的要求。
浅析丙烯的制取化学工艺
【摘要】随着聚丙烯等下游产品需求的快速增长,以及以乙烷为原料的新建乙烯生产装置比例的增加,丙烯资源供应逐渐呈现出紧张态势。
相应地,以丙烯为目的产物的生产技术研究越来越活跃,丙烯生产技术已成为当前炼油和化工重点研究方向之一。
【关键词】生产;丙烯;化学工艺
1.丙烯的定义
丙烯主要用于生产聚丙烯、丙烯腈、环氧丙烷以及异丙醇等,是仅次于乙烯的重要石油化工原料。
2.丙烯制取工艺的发展现状
目前增产丙烯的化学工艺研究主要集中在4个方面:一是改进fcc等炼油工艺,挖掘现有装置潜力,增产丙烯的fcc装置升级技术;二是充分利用炼油及乙烯裂解副产的c4-8等资源,转化为乙烯、丙烯的低碳烯烃裂解技术、烯烃歧化技术;三是丙烷脱氢工艺;四是以天然气、煤等为原料,生产乙烯、丙烯的甲醇制烯烃工艺等。
2.1增产丙烯的fcc工艺技术
全球fcc装置的生产能力约750mt/a,通过调整原料品种、催化剂、工况和操作条件来增产丙烯的发展潜力非常大,国内外许多公司都在积极开展这方面的研究。
与传统的fcc相比,这类工艺技术操作条件更为苛刻,要求反应温度、剂油比更高,催化时间更短。
运用这些技术,虽然汽油收率会受到一定影响,但汽油中的烯烃含量降低,质量得以提高,丙烯的产
量比传统fcc高2~4倍。
我国炼油工业催化裂化加工能力大、掺渣比高,造成汽油中烯烃含量高,开发应用增产丙烯的fcc工艺技术,在提高油品质量的同时,为下游提供更多的低碳烯烃,具有良好的
市场前景。
2.2低碳烯烃裂解制丙烯工艺技术
低碳烯烃裂解是将c4-8烯烃在催化剂作用下转化为丙烯和乙烯的工艺,它不仅可以解决炼厂和石脑油裂解副产的c4-8的出路问题,又可以增产高附加值的乙烯、丙烯产品,成为近年研究较为活跃的领域。
烯烃裂解工艺,从投资费用、生产成本与综合收益来看,均是最具吸引力的工艺。
固定床工艺流程相对简单,适于和现有蒸汽裂解结合;流化床工艺流程相对复杂,适于建设大规模生产装置,可以纳入烯烃联合装置,也可以单独建立装置。
随着我国一批大型乙烯裂解装置的扩建与新建,c4+烯烃资源越来越丰富,对开发出自主知识产权的烯烃裂解技术,解决c4+烯烃副产、增产高附加值丙烯需求迫切。
2.3烯烃歧化制丙烯工艺技术
烯烃歧化技术多年以前已经开发成功,只是因为近年来一些地
区丙烯价格逐步走高,这一技术又重新引起了人们的重视。
它是一种通过烯烃碳-碳双键断裂并重新转换为烯烃产物的催化反应,目
前以乙烯和2-丁烯为原料歧化为丙烯的生产技术研究较为活跃,主要有abb lummus公司的oct高温催化剂工艺和法国石油研究院(ifp)
的meta-4低温催化剂工艺。
烯烃歧化工艺可应用于石脑油蒸汽裂解装置增产丙烯,投资增加不多,即可提高石脑油裂解装置的丙烯/乙烯产量比,但缺点是每生产1t丙烯,要消耗掉0.42t乙烯,因此只有在丙烯价格高于乙烯价格、乙烯产量过剩时才是经济可行的。
另外歧化技术不能将异丁烯以及c5-8烯烃转化为丙烯,应用受到一定限制。
近年开发的自动歧化技术,不用或用少量乙烯,应用前景看好。
2.4丙烷脱氢制丙烯工艺技术
丙烷脱氢是强吸热过程,可在高温和相对低压下获得合理的丙烯收率。
丙烷脱氢技术具有3大优势:首先,是进料单一,产品单一(主要是丙烯);其次,是生产成本只与丙烷密切相关,而丙烷价格与石脑油价格、丙烯市场没有直接的关联,这可以帮助丙烯衍生物生产商改进原料的成本结构,规避一些市场风险;第三,是对于丙烯供应不足的衍生物生产厂,可购进成本较低的丙烷生产丙烯,免除运输与储存丙烯的高成本支出。
与其它生产技术相比,获得同等规模的丙烯产量,丙烷脱氢技术的基建投资相对较低,目前的经济规模是250kt/a。
丙烷原料价格对生产成本影响较大,只有当丙烯与丙烷的长期平均最小价差大于200美元/t时,工厂才能有较好的利润。
中东地区丙烷资源丰富、价格稳定有利于建设丙烷脱氢厂。
我国目前尚不具备建设丙烷脱氢厂的条件,对这方面的研究,可作为一定的技术储备。
2.5甲醇制烯烃工艺技术
在原油价格攀升,天然气或煤炭资源相对丰富的情况下,以天然气或煤为原料生产甲醇,再以甲醇生产烯烃(mto工艺)或以甲醇生产丙烯(mtp工艺)的技术越来越受关注。
目前比较成熟的工艺主要有uop/hydro公司的mto工艺和lurgi公司的mtp工艺。
mto、mtp工艺可作为以石油为原料生产烯烃的替代或补充,与原油和石脑油价格相比,天然气价格相对独立,因此利用mto技术有利于改善原料成本结构,这对于原油资源日益紧张的我国非常有意义。
与石脑油或乙烷裂解相比,当原油价格高于16美元/bbl或乙烷价格高于3美元/mbtu时,mto可以提供较低的生产成本和较高的投资回报。
2.6烯烃生产工艺的最新进展
过去几年里增产丙烯工艺取得了重大进展,这些工艺各俱特色,但也存在一些不足之处,为取长补短,这些工艺出现了多种应用组合,导致了工艺性能的重大改进。
烯烃裂解技术与石脑油蒸汽裂解工艺组合。
烯烃裂解装置(如ocp工艺)的进料可以是石脑油裂解、fcc、焦化、mto等副产的c4-8烯烃混合物,而且烯烃裂解产生的c4-8蒸汽可以?环进裂解炉进一步反应。
ocp装置每生产1t丙烯可联产0.25t乙烯,当它与石脑油蒸汽裂解装置一体化建设,能大大降低投资和运行费用,减少c4+副产,多产30%的丙烯。
烯烃裂解工艺与mto组合。
mto的特点是每生产1t乙烯和丙烯,仅产出0.2tc4+副产品,如果再增加一套ocp装置转化较重的烯烃,
乙烯与丙烯收率可提高20%,达到85%~90%,丙烯与乙烯产量比增至1.75,c4+副产品几乎减少80%。
通过优化mto催化剂和mto与烯烃裂解工艺的结合,丙烯与乙烯比可达到2.0以上。
3.结束语
我国炼油企业,基本都建有副产丙烯的回收装置和丙烯衍生物生产装置;炼油化工一体化企业,既有炼油部分,又有蒸汽裂解制乙烯部分,还有加工副产丙烯的成套装置,因此组合应用fcc工艺多产丙烯、烯烃裂解工艺生产丙烯等技术,具有良好的应用基础,今后必将会得以重点发展。
■
【参考文献】
[1]朱明慧.国外丙烯生产技术最新进展及技术经济比较[j].国际石油经济,2006.
[2]王滨.c4、c5烯烃制乙烯丙烯催化技术进展[j].分子催化,2006.
[3]桑磊.丙烯氧化工艺的研究[d].山东科技大学,2007.。