线代教案第1章行列式
- 格式:doc
- 大小:787.00 KB
- 文档页数:14
线性代数教学教案第1章行列式授课序号01那么它们就称为一个逆序,一个排列中逆序的总数就称为这个排列的逆序数,排列二.二阶、三阶行列式123nnn n n n nn a a a a 23n n n n nna a a +21222,12123231323,1313331212,1131)+n n n n n n n n n n nna a a a a a a a a a a a a a a a a a a --+-+阶行列式(递归定义).余子式与代数余子式:由行列式D 中划去ij a i 行和第j 列后,余下的元素按照原来的顺序构阶行列式定义为 2123n nn n n n nna a a a a 表示对所有的列标排列12n j j j 求和.12x =0n nn nn a . 11121,1,11,210000n n n n a a a a a a ---,1112300000n n n nn a a a a a a ,112200000000nna a a .授课序号020ni nj a A =,n ,i ≠, ,i j =, =D A ⎧授课序号030000000x y yx.行列式11111231n n n n nD x x x ----==111111n a +3434a a x x a ++的根.0000003200013.122110000nn n x a x ---.00000000000000000000b a b c d c dc d.1114,证明:()0f x '=有且仅有两个实根授课序号04a x +11122212n n n n nna a a a a a a 122n n D D Dx x D D D==,,,, 1,1,1n n n n j nn j nnb a a a b a a -+12n n x b x b a x ==+当12,,,n b b b 全为0时,得到1111221122a x a a x a a x +⎧⎪+⎪⎨+3511x =-1n a x -=互相关联,X 公司持有持有Z 公司20%a x +a x a x ++。
《线性代数》 教 案编 号:教学过程:(含复习上节内容、引入新课、中间组织教学以及如何启发思维等) 导入(10分钟)本章主要内容和知识点 新授课内容(75分钟) 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得 211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和:212221a b a b -,这就是公式(2)中1x 的表达式的分子。
同理将D 中第二列的元素a 12,a 22 换成常数项b 1,b 2 ,可得到另一个行列式,用字母2D 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和:121211b a b a -,这就是公式(2)中2x 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中 例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得0≠D定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式 243122421----=D .(-14)例3. 解线性方程组 .55730422⎪⎩⎪⎨⎧=+-=++-=++-z y x z y x z y x解 先计算系数行列式573411112--=D 069556371210≠-=----+-=《线性代数》教案编号:n n nna =n n nna =阶行列式的等价定义为:n n nna =1:《线性代数》教案编号:《线性代数》教案编号:《线性代数》教案编号:《线性代数》教案编号:其中行列式mnm m nna a a a a a a a a212222111211D =为按行列式的运算规则所得到的一个数;而n m ⨯矩阵是 n m ⨯个数的整体,不对这些数作运算。
线性代数教案第一章 行列式行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件.重点:行列式性质;行列式的计算。
难点:行列式性质;高阶行列式的计算;克莱姆法则。
§1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组⎩⎨⎧=+=+22221211112111b x a x a b x a x a (1)用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=211222112112112211222112122211a a a a a b b a x a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记22211211a a a a D =,2221211a b a b D =,2211112b a b a D =则当D ≠0时,方程组(1) 的解(2)可以表示成2221121122212111a a a a a b a b DD x ==, 2221121122111122a a a ab a b a DD x ==, (3)象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x 2的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组⎩⎨⎧=+=+231422121x x x x 解:这时 0214323142≠=⨯-⨯==D , 5243132411-=⨯-⨯==D ,3112221122=⨯-⨯==D , 因此,方程组的解是2511-==D D x ,2322==D D x , 对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212- 1062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=令 333231232221131211a a a a a aa a a D = 3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =. 当 D ≠0时,(4)的解可简单地表示成D D x 11=,D Dx 22=,DD x 33= (6)它的结构与前面二元一次方程组的解类似.例3 解线性方程组⎪⎩⎪⎨⎧=-+=-+=+-423152302321321321x x x x x x x x x 解:28231523112=---=D , 132345211101=---=D , 472415131022=--=D , 214311230123=-=D .所以,281311==D D x ,284722==D D x ,43282133===D D x . 例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数).解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.§1.2 排列在n 阶行列式的定义中,要用到排列的某些知识,为此先介绍排列的一些基本知识. 定义1 由数码1,2,…,n 组成一个有序数组称为一个n 级排列.例如,1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列.由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!=6个.数字由小到大的n 级排列1234…n 称为自然序排列.定义2 在一个n 级排列i 1i 2…i n 中,如果有较大的数 i t 排在较小的数 i s 的前面(i s <i t ), 则称i t 与i s 构成一个逆序,一个n 级排列中逆序的总数,称为这个排列的逆序数,记作N (i 1i 2…i n ).例如, 在4 级排列3412中, 31,32,41,42,各构成一个逆序数,所以,排列3412的逆序数为N (3412)=4.同样可计算排列52341的逆序数为N (52341)=7.容易看出, 自然序排列的逆序数为0.定义3 如果排列i 1i 2…i n 的逆序数N (i 1i 2…i n )是奇数,则称此排列为奇排列,逆序数是偶数的排列则称为偶排列.例如,排列3412是偶排列.排列52341是奇排列. 自然排列123…n 是偶排列. 定义4 在一个n 级排列i 1…i s …i t …i n 中, 如果其中某两个数i s 与i t 对调位置,其余各数位置不变,就得到另一个新的n 级排列i 1…i t …i s …i n ,这样的变换称为一个对换,记作(i s ,i t ).如在排列3412中,将4与2对换, 得到新的排列3214. 并且我们看到:偶排列3412经过4与2的对换后,变成了奇排列3214. 反之,也可以说奇排列3214经过2与4的对换后,变成了偶排列3412.一般地,有以下定理:定理1 任一排列经过一次对换后,其奇偶性改变. 证明:首先讨论对换相邻两个数的情况,该排列为:a 1a 2…a l i jb 1b 2…b mc 1c 2…c n将相邻两个数i 与j 作一次对换,则排列变为a 1a 2…a l j ib 1 b 2…b mc 1c 2…c n显然对数a 1,a 2,…a l ,b 1,b 2,…,b m 和c 1c 2…c n 来说,并不改变它们的逆序数.但当i<j 时, 经过i 与j 的对换后,排列的逆序数增加1个;当i >j 时,经过i 与j 的对换后,排列的逆序数减少1个.所以对换相邻两数后,排列改变了奇偶性.再讨论一般情况,设排列为a 1a 2…a l ib 1b 2…b m jc 1c 2…c n将i 与j 作一次对换,则排列变为a 1a 2…a l jb 1b 2…b m ic 1 c 2…c n这就是对换不相邻的两个数的情况.但它可以看成是先将i 与b 1对换,再与b 2对换,…,最后与b m 的对换,即i 与它后面的数作m 次相邻两数的对换变成排列a 1a 2…a lb 1b 2…b m i jc 1…c n然后将数j 与它前面的数i ,b m …,b 1作m +1次相邻两数的对换而成.而对换不相邻的数i 与j (中间有m 个数),相当于作2m +1次相邻两数的对换.由前面的证明知,排列的奇偶性改变了2m +1次,而2m +1为奇数,因此,不相邻的两数i ,j 经过对换后的排列与原排列的奇偶性不同.定理2 在所有的n 级排列中(n ≥2),奇排列与偶排列的个数相等,各为2!n 个.证明:设在n !个n 级排列中,奇排列共有p 个,偶排列共有q 个.对这p 个奇排列施以同一个对换,如都对换(1,2),则由定理1知p 个奇排列全部变为偶排列,由于偶排列一共只有q 个,所以p ≤q ;同理将全部的偶排列施以同一对换(1,2),则q 个偶排列全部变为奇排列,于是又有q ≤p ,所以q = p ,即奇排列与偶排列的个数相等.又由于n 级排列共有n !个,所以q + p = n !,2!n p q ==.定理3 任一n 级排列i 1i 2…i n 都可通过一系列对换与n 级自然序排列12…n 互变,且所作对换的次数与这个n 级排列有相同的奇偶性.证明:对排列的级数用数学归纳法证之. 对于2级排列,结论显然成立.假设对n –1级排列,结论成立,现在证明对于n 级排列,结论也成立.若i n =n ,则根据归纳假设i 1i 2…i n –1是n –1级排列,可经过一系列对换变成12…(n –1),于是这一系列对换就把i 1i 2…i n 变成12…n .若i n ≠n ,则先施行i n 与n 的对换,使之变成i 1'i 2'…'i 'n –1n ,这就归结成上面的情形.相仿地,12…n 也可经过一系列对换变成i 1i 2…i n ,因此结论成立.因为12…n 是偶排列,由定理1可知,当i 1i 2…i n 是奇(偶)排列时,必须施行奇(偶)数次对换方能变成偶排列,所以,所施行对换的次数与排列i 1i 2…i n 具有相同的奇偶性.思考:1.决定i 、j 的值,使 (1) 1245i 6j 97为奇排列; (2) 3972i 15j 4为偶排列.2.排列n (n –1)(n –2)…321经过多少次相邻两数对换变成自然顺序排列?§1.3 n 阶行列式本节我们从观察二阶、三阶行列式的特征入手.引出n 阶行列式的定义. 已知二阶与三阶行列式分别为2112221122211211a a a a a a a a -=312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= 其中元素a ij 的第一个下标i 表示这个元素位于第i 行,称为行标,第二个下标j 表示此元素位于第j 列,称为列标.我们可以从中发现以下规律:(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.作为二、三阶行列式的推广我们给出n 阶行列式的定义.定义1 由排成n 行n 列的n 2个元素a ij (i ,j =1,2,…,n )组成的符号nnn n nn a a a a a a a a a 212222111211称为n 阶行列式.它是n !项的代数和,每一项是取自不同行和不同列的n 个元素的乘积,各项的符号是:每一项中各元素的行标排成自然序排列,如果列标的排列为偶排列时,则取正号;为奇排列,则取负号.于是得nnn n nn a a a a a a a a a 212222111211=∑n j j j 21n n nj j j j j j N a a a 212121)()1(- (1)其中∑nj j j 21表示对所有的n 级排列j 1j 2…j n 求和.(1)式称为n 阶行列式按行标自然顺序排列的展开式.)(21)1(n j j j N -n nj j j a a a 2121称为行列式的一般项.当n =2、3时,这样定义的二阶、三阶行列式与上面§1.1中用对角线法则定义的是一致的.当n =1时,一阶行列为|a 11|= a 11.如当n =4时,4阶行列式44342414434241333231232221131211a a a a a a a a a a a a a a a a 表示4!=24项的代数和,因为取自不同行、不同列4个元素的乘积恰为4!项.根据n 阶行列式的定义,4阶行列式为44342414434241333231232221131211 a a a a a a a a a a a a a a a a ∑-444=j j j j j j j j j j j N a a a a 213214321321)()1( 例如a 14a 23a 31a 42行标排列为1234,元素取自不同的行;列标排列为4312,元素取自不同的列,因为N (4312)=5,所以该项取负号,即–a 14a 23a 31a 42是上述行列式中的一项.为了熟悉n 阶行列式的定义,我们来看下面几个问题. 例1 在5阶行列式中,a 12a 23a 35a 41a 54这一项应取什么符号?解:这一项各元素的行标是按自然顺序排列的,而列标的排列为23514. 因 N (23514)=4,故这一项应取正号.例2 写出4阶行列式中,带负号且包含因子a 11a 23的项. 解:包含因子a 11a 23项的一般形式为44j j j j N a a a a 34332311)13()1(-按定义,j 3可取2或4,j 4可取4或2,因此包含因子a 11a 23的项只能是a 11a 23a 32a 44或a 11a 23a 34a 42但因 N (1324)=1为奇数N (1342)=2为偶数所以此项只能是 –a 11a 23a 32a 44.例3 计算行列式hg v u f e y x d c b a 0000 解 这是一个四阶行列式,按行列式的定义,它应有4!=24项.但只有以下四项adeh ,adfg ,bceh ,bcfg不为零.与这四项相对应得列标的4级排列分别为1234,1243,2134和2143,而N (1234)=0,N (1243)=1,N (2134)=1和N (2143)=2,所以第一项和第四项应取正号,第二项和第三项应取负号,即hg v u f e y x d c b a 0000= adeh –adfg –bceh +bcfg 例4 计算上三角形行列式nnnn a a a a a a D 21221211 000=其中a ii ≠0 (i =1, 2,…, n ).解:由n 阶行列式的定义,应有n !项,其一般项为n nj j j a a a 2121但由于D 中有许多元素为零,只需求出上述一切项中不为零的项即可.在D 中,第n 行元素除a nn 外,其余均为0.所以j n =n ;在第n –1行中,除a n –1n –1和a n –1n 外,其余元素都是零,因而j n –1只取n –1、n 这两个可能,又由于a nn 、a n –1n 位于同一列,而j n =n .所以只有j n –1 = n –1.这样逐步往上推,不难看出,在展开式中只有a 11a 22…a nn 一项不等于零.而这项的列标所组成的排列的逆序数是N (12…n )=0故取正号.因此,由行列式的定义有nnnn a a a a a a D 2122121100==a 11a 22…a nn 即上三角形行列式的值等于主对角线上各元素的乘积.同理可求得下三角形行列式nnn n a a a a a a021222111=a 11a 22…a nn 特别地,对角形行列式nna a a 0002211=a 11a 22…a nn 上(下)三角形行列式及对角形行列式的值,均等于主对角线上元素的乘积.例5 计算行列式0000001121n n n a a a - 解 这个行列式除了a 1n a 2n –1…a n 1这一项外,其余项均为零,现在来看这一项的符号,列标的n 级排列为n (n –1)…21,N (n (n –1)…21)= (n –1)+ (n –2)+…+2+1=2)1(-⋅n n ,所以 0000000001121n n na a a -=11212)1()1(n n n n n a a a --- 同理可计算出000112222111211n n na a a a a a a -=nnnn n nn na a a a a a 112121000-- =11212)1()1(n n n n n a a a --- 由行列式的定义,行列式中的每一项都是取自不同的行不同的列的n 个元素的乘积,所以可得出:如果行列式有一行(列)的元素全为0,则该行列式等于0.在n 阶行列式中,为了决定每一项的正负号,我们把n 个元素的行标排成自然序排列,即n nj j j a a a 2121.事实上,数的乘法是满足交换律的,因而这n 个元素的次序是可以任意写的,一般地,n 阶行列式的项可以写成n n j i j i j i a a a 2211 (2)其中i 1i 2…i n ,j 1 j 2…j n 是两个n 阶排列,它的符号由下面的定理来决定.定理1 n 阶行列式的一般项可以写成n n n n j i j i j i j j j N i i i N a a a 22112121)()()1(+- (3)其中i 1i 2…i n ,j 1j 2…j n 都是n 级排列.证明:若根据n 阶行列式的定义来决定(2)的符号,就要把这n 个元素重新排一下,使得它们的行标成自然顺序,也就是排成''2'121n nj j j a a a (4)于是它的符号是)'''(21)1(n j jj N -现在来证明(1)与(3)是一致的.我们知道从(2)变到(4)可经过一系列元素的对换来实现.每作一次对换,元素的行标与列标所组成的排列i 1i 2…i n ,j 1j 2…j n 就同时作一次对换,也就是N (i 1i 2…i n )与N (j 1j 2…j n )同时改变奇偶性,因而它的和N (i 1i 2…i n )+N (j 1j 2…j n )的奇偶性不改变.这就是说,对(2)作一次元素的对换不改变(3)的值,因此在一系列对换之后有)'''()'''()12()()(21212121)1()1()1(n n n n j j j N j j j N n N j j j N i i i N -=--++=这就证明了(1)与(3)是一致的.例如,a 21a 32a 14a 43是4阶行列式中一项,它和符号应为(–1)N (2314)+N (1243)= (–1)2+1= –1.如按行标排成自然顺序,就是a 14a 21a 32a 43,因而它的符号是(–1)N (4123)=(–1)3= –1同样,由数的乘法的交换律,我们也可以把行列式的一般项n nj j j a a a 2121中元素的列标排成自然顺序123…n ,而此时相应的行标的n 级排列为i 1i 2…i n ,则行列式定义又可叙述为∑-nn n i i i n i i i i i i N nnn n nna a a a a a a a a a a a21212121)(212222111211)1(=.思考题:1.如果n 阶行列式所有元素变号,问行列式的值如何变化? 2.由行列式的定义计算f (x )=xx x x x 111123111212-中x 4与x 3的系数,并说明理由.§1.4 行列式的性质当行列式的阶数较高时,直接根据定义计算n 阶行列式的值是困难的,本节将介绍行列式的性质,以便用这些性质把复杂的行列式转化为较简单的行列式(如上三角形行列式等)来计算.将行列式D 的行列互换后得到的行列式称为行列式D 的转置行列式,记作D T ,即若nnn n nn a a a a a a a a a D212222111211=, 则nnnn n n T a a a a a a a a a D212221212111=.反之,行列式D 也是行列式D T 的转置行列式,即行列式D 与行列式D T 互为转置行列式.性质1 行列式D 与它的转置行列式D T 的值相等.证:行列式D 中的元素a ij (i , j =1, 2, …,n )在D T 中位于第j 行第i 列上,也就是说它的行标是j , 列标是i ,因此,将行列式D T 按列自然序排列展开,得∑-=nn n j j j nj j j j j j N T a a a D 21212121)()1(这正是行列式D 按行自然序排列的展开式.所以D =D T .这一性质表明,行列式中的行、列的地位是对称的,即对于“行”成立的性质,对“列”也同样成立,反之亦然.性质2 交换行列式的两行(列),行列式变号. 证:设行列式)()(21212111211行行s i a a a a a a a a a a a a D nnn n sn s s in i i n= 将第i 行与第s 行(1≤i <s ≤n )互换后,得到行列式)()(212121112111行行s i a a a a a a a a a a a a D nnn n in i i sn s s n=显然,乘积n s i nj sj ij j a a a a 11在行列式D 和D 1中,都是取自不同行、不同列的n 个元素的乘积,根据§3 定理1,对于行列式D ,这一项的符号由)()1(1)1(n s i j j j j N n s i N +-决定;而对行列式D 1,这一项的符号由)()1(1)1(n s i j j j j N n i s N +-决定.而排列1…i …s …n 与排列1…s …i …n 的奇偶性相反,所以)()1(1)1(n s i j j j j N n s i N +-= –)()1(1)1(n s i j j j j N n i s N +-即D 1中的每一项都是D 中的对应项的相反数,所以D = –D 1.例1 计算行列式53704008000051753603924--=D 解:将第一、二行互换,第三、五行互换,得504008053070392417536)1(2---=D 将第一、五列互换,得120!5543215084000753004392067531)1(3-=-=⋅⋅⋅⋅-=---=D 推论 若行列式有两行(列)的对应元素相同,则此行列式的值等于零. 证:将行列式D 中对应元素相同的两行互换,结果仍是D ,但由性质2有D = –D , 所以D =0.性质3 行列式某一行(列)所有元素的公因子可以提到行列式符号的外面.即nnn n in i i n nnn n in i i n a a a a a a a a a k a a a ka ka ka a a a211111211211111211= 证:由行列式的定义有 左端=∑-nn i n j j j nj ij j j j j N a ka a 21121)()1(1)( =∑-nn i n j j j nj ij j j j j N a a a k211211)()1(=右端.此性质也可表述为:用数k 乘行列式的某一行(列)的所有元素,等于用数k 乘此行列式. 推论:如果行列式中有两行(列)的对应元素成比例,则此行列式的值等于零. 证:由性质3和性质2的推论即可得到.性质4 如果行列式的某一行 (列)的各元素都是两个数的和,则此行列式等于两个相应的行列式的和,即nnn n in i i n nnn n in i i n nnn n in in i i i i n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a21211121121211121121221111211+=+++ 证:左端=∑+-nn i i n j j j nj ij ij j j j j j N a c b a a 212121)()1(21)(=∑-nn i n j j j nj ij j j j j j N a b a a 21212121)()1(∑-+nn i n j j j nj ij j j j j j N a c a a 21212121)()1( =nnn n in i i n nnn n in i i n a a a c c c a a a a a a b b b a a a212111211212111211+=右端.性质5 把行列式的某一行 (列)的所有元素乘以数k 加到另一行(列)的相应元素上,行列式的值不变.即nnn n sn s s ini i n a a a a a a a a a a a a D21212111211=nnn n snin s i s i in i i n a a a a ka a ka a a a a a a a2122112111211+++证:由性质4右端=nnn n ini i ini i n a a a ka ka ka a a a a a a21212111211+nnn n sns s in i i n a a a a a a a a a a a a21212111211=k ⋅0 +nnn n sns s in i i n a a a a a a a a a a a a21212111211=左端 作为行列式性质的应用,我们来看下面几个例子.例2 计算行列式3111131111311113=D 解:这个行列式的特点是各行4个数的和都是6,我们把第2、3、4各列同时加到第1列,把公因子提出,然后把第1行×(–1)加到第2、3、4行上就成为三角形行列式.具体计算如下:4826200002000020111163111131111311111631161316113611163=⨯====D 例3 计算行列式112012120112110-----=D 解:130211021102011)112121110011112121011110------=-----------=D 4)2()2()1(12000420021102011)1(2200420021102011=-⨯-⨯-⨯-=------=-⨯------=例4 试证明:011=++++=cb a d b a dc da cb dc b a D 11证:把2、3列同时加到第4列上去,则得0111111)(11=+++=++++++++++++=a d d c cb b a dc b ad c b a a d b c b a d c d c b a c b d c b a b a D 1111例5 计算n +1阶行列式xa a a a x a a a a x a a a a xD n n n321212121=解:将D 的第2列、第3列、…、第n+1列全加到第1列上,然后从第1列提取公因子∑=+ni iax 1得xa a a x a a a x a a a a x D n n nn i i32222111111)(∑=+==nn i i a x a a a a a x a a a x a x ------+∑=2312212111010010001)(=)())()((211n ni ia x ax a x a x ---+∑=例6 解方程0)1(11111)2(111112111111111111=------xn xn x x解法一:×(–a 1) ×(–a 2) …… ×(–a n )=-⨯------)1( )1(11111)2(111112111111111111xn xn x x])2][()3[()1)(()2(00)3(000001000000011111x n x n x x xn xn x x------=------所以方程的解为x 1=0, x 2=1, …, x n –2=n –3, x n –1=n –2.解法二:根据性质2的推论,若行列式有两行的元素相同,行列式等于零.而所给行列式的第1行的元素全是1,第2行,第3行,…第n 行的元素只有对角线上的元素不是1,其余均为1.因此令对角线上的某个元素为1,则行列式必等于零.于是得到1–x =1 2–x =1 … (n –2)–x =1 (n –1)–x =1有一成立时原行列式的值为零.所以方程的解为x 1=0, x 2,=1,…, x n –2=n –3, x n –1=n –2.例7 计算n 阶行列式),2,1( 321213132n i a x xa a a a x a a a a x a a a a xD i n nn=≠= 解:将第1行乘以(–1)分别加到第2、3、…、n 行上得nn a x xa a x xa a x x a a a a x D ------=00001312132从第一列提出x –a 1,从第二提出x –a 2,…,从第n 列提出x –a n ,便得到1101010011)())((3322121----------=nn n a x a a x a a x a a x x a x a x a x D由,1111a x a a x x-+=-并把第2、第3、…、第n 列都加于第1列,有 1010000101)())((3322121nn ni i in a x a a x a a x a a x a a x a x a x D ----+---=∑=)1)(())((121∑=-+---=ni iin a x a a x a x a x 例8 试证明奇数阶反对称行列式000021212112=---=nnnn a a a a a a D证:D 的转置行列式为00021212112nnnn Ta a a a a a D ---=从D T 中每一行提出一个公因子(–1),于是有D a a a a a a D n nnnnnT )1(000)1(21212112-=----=,但由性质1知道D T =D∴ D =(–1)n D又由n 为奇数,所以有D = –D , 即 2D =0, 因此 D =0.思考题:1.证明下列各题:222333111)(111c cb b a ac b a c cb ba a ++=. 2.计算下列n 阶行列式:111110000000002211n n a a a a a a ---;§1.5 行列式按一行(列)展开本节我们要研究如何把较高阶的行列式转化为较低阶行列式的问题,从而得到计算行列式的另一种基本方法——降阶法.为此,先介绍代数余子式的概念.定义 在n 阶行列式中,划去元素a ij 所在的第i 行和第j 列后,余下的元素按原来的位置构成一个n –1阶行列式,称为元素a ij 的余子式,记作Mij .元素a ij 的余子式Mij 前面添上符号(–1)i+j 称为元素a ij 的代数余子式,记作A ij .即A ij =(–1)i +j M ij .例如:在四阶行列式44434241343332312423222114131211a a a a a a a a a a a aa a a a D = 中a 23的余子式是M 23=444241343231141211a a a a a a a a a 而 A 23=(–1)2+3M 23= –444241343231141211a a a a a a a a a 是a 23的代数余子式. 定理1 n 阶行列式D 等于它的任意一行(列)的元素与其对应的代数余子式的乘积之和,即D =a i 1A i 1+a i 2A i 2+…+a in A in (i =1,2,…,n )或 D =a 1j A 1j +a 2j A 2j +…+a nj A nj (j=1,2,…,n ).证明:只需证明按行展开的情形,按列展开的情形同理可证. 1°先证按第一行展开的情形.根据性质4有nnn n n nnnn n nn a a a a a a a a a a a a a a a a a a D2122221112112122221112110000000++++++++++==nnn n nnnn n n n nnn n n a a a a a a a a a a a a a a a a a a a a a212222112122221122122221110+++=按行列式的定义∑-=nn n j j j nj j j j j j N nnn n na a a a a a a a a a21212121)(212222111)1(0111111112)(1121221)1(A a M a a a a nn n j j j nj j j j j N ==-=∑同理121212*********12212222112)1(00)1(00A a M a a a a a a a a a a a a a a a nnn n nnnn n n =-=-=… … …n n n n n nn n nnn nnn nnn n n n A a M a a a a a a a a a a a a a a a 1111111122121121222211)1(00)1(00=-=-=----所以 D =a 11A 11+a 12A 12+…+a 1n A 1n .2°再证按第i 行展开的情形将第i 行分别与第i –1行、第i –2行、…、第1行进行交换,把第i 行换到第1行,然后再按1°的情形,即有22121111112111211211)1()1()1()1()1(i i i i i i nnn n nini i i M a M a a a a a a a a a a D +-+----+--=-=inin i i i i in n in i A a A a A a M a +++=--+++- 221111)1()1(定理2 n 阶行列式D 中某一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即:a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s )或 a 1j A 1t +a 2j A 2t +…+a nj A nt =0 (j ≠t ).证:只证行的情形,列的情形同理可证.考虑辅助行列式)()(212121112111行行s i a a a a a a a a a a a a D nnn n in i i in i i n= 这个行列式的第i 行与第s 列的对应元素相同,它的值应等于零,由定理1将D 1按第s 行展开,有D 1= a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s ).定理1和定理2可以合并写成a i 1A s 1+a i 2A s 2+…+a in A sn =⎩⎨⎧≠=)(0)(s i s i D或 a 1j A 1t +a 2j A 2t +…+a jn A nt =⎩⎨⎧≠=)(0)(t j t j D定理1表明,n 阶行列式可以用n –1阶行列式来表示,因此该定理又称行列式的降阶展开定理.利用它并结合行列式的性质,可以大大简化行列式的计算.计算行列式时,一般利用性质将某一行(列)化简为仅有一个非零元素,再按定理1展开,变为低一阶行列式,如此继续下去,直到将行列式化为三阶或二阶.这在行列式的计算中是一种常用的方法.例1 计算行列式 5101242170131312-----=D解:D 的第四行已有一个元素是零,利用性质5,有( 1 33283111)1(01332183131111213214-⨯⨯----=----=-=+D8525534)1(25503401111 11-=--=---=+例2 计算n 阶行列式abb a a b a b a D 00000000000000=解:按第一列展开得nn n n n n n b a bb aa bab b a b b ab a a b aa D 1111111)1()1( 000000000)1(00000000)1(+-+-++-+=-+=-+-=例3 计算yy x x D -+-+=1111111111111111,其中 xy ≠0.解:根据定理1,把行列式适当地加一行一列,然后利用性质5,有yy x x y y xx D ------=-⨯-+-+=000100010001000111111)1(111111110111101111011111 第2列提出因子x ,第3列提出–x ,第4列提出y ,第5列提出–y ,得加到各 行11 1 1 1100000100000101111110101001001010001111111)()(2222⨯⨯⨯⨯=--=--------=y x y y x x yx y y x x y y x x D例4 试证∏≤<≤-----=ni j j in nn n n n n a aa a a a a a a a a a a a 111312112232221321)(1111(1)式中左端叫范德蒙行列式.结论说明,n 阶范德蒙行列式之值等于a 1, a 2, …, a n ,这n个数的所有可能的差a i –a j (1≤j<i ≤n )的乘积.证明:用数学归纳法1°当n=2时,计算2阶范德蒙行列式的值:122111a a a a -=可见n=2时,结论成立.2°假设对于n –1阶范德蒙行列式结论成立,来看n 阶范德蒙行列式:把第n –1行的(–a 1)倍加到第n 行,再把第n –2行的(–a 1)倍加到第n –1行,如此继续作,最后把第1行的(–a 1)倍加到第2行,得到211231132211212312321221131211312112232221223222132100011111111-----------------------=n nn n n n n n nn n n nn n n n nn n n nna a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a)()()()()()(1213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n ---------=---223223211312111)())((------=n nn n nn a a a a a a a a a a a a后面这个行列式是n –1阶范德蒙行列式,由归纳假设得∏≤<≤----=ni j j in nn n n a aa a a a a a 22232232)(111于是上述n 阶范德蒙行列式等于∏≤<≤----ni j j in a aa a a a a a 211312)()())(( ∏≤<≤-ni j j ia a1=)(。
最新东北大学线性代数课件第一章_行列式东北大学线性代数课件第一章_行列式第一章行列式教学基本要求: 1. 1. 了解行列式的定义.2. 掌握行列式的性质和计算行列式的方法.3. 会计算简单的n 阶行列式.4. 了解Cramer 法则.一、行列式的定义 1. 定义nnn n nna a a a a a a a a 212222111211称为n 阶行列式,记作D (或n D 或||ij n a ),它是n 2个数(1,2,,;1,2,,)ij a i n j n ==的一个运算结果:1112121222111112121112n n n n n n nna a a a a a D a A a A a A a a a ==+++,(1.1)其中,(1,2,,;1,2,,)ij a i n j n ==为行列式位于第i 行且第j 列的元素,111(1)j j j A M +=-(1,2,,)j n =,而1j M 为划掉行列式第1行和第j 列的全部元素后余下的元素组成的1n -阶行列式,即2121222312131111j j n j j n j n n j n j nna a a a a a a a M a a a a -+-+-+=1j M 称为元素1j a 的余子式,1j A 称为元素1ja 的代数余子式.2. 基本行列式:(1)一阶行列式 a a =||. 例如,|106|106=,2121-=-.1112112212212122a a a a aa a a =-.112233122331132132a a a a a a a a a ++ 132231122133112332a a a a a a a a a ---.(4)三角形行列式①对角行列式111122nn nna a a a a =.②下三角行列式11221nn n nn a a a a a a =.③上三角行列式1111122nnn nna a a a a a =.④1(1)212111(1)nn n n n n n a a a a a --=-.⑤1(1)212111(1)nn n n n n n nn a a a a a a --=-. ⑥111(1)212111(1)nn n n n n n a a a a a a --=-.3. 行列式的性质nnn n n n a a a a a a a a a D212222111211=,nnn nn n T a a a a a aa a a D212221212111=性质1.1 D D T =. (1.2)性质1.1的意义:行列式的行所具有的性质列也具有.下面仅针对行叙述行列式的性质. 性质1.2(行列式的展开性质) 1112121222112212n n i i i i in in n n nna a a a a a a A a A a A a a a =+++, (1,2,,)i n =. (1.3)例如,行列式1214020311202302003059D A A -==+ 3214442396A A A ==+=.一个n 阶行列式有个余子式,有个代数余子式;一个元素的余子式与代数余子式或或 .应该注意到,一个元素的余子式或代数余子式与该元素的有关,与该元素的无关.性质1.3(行列式的公因子性质)11i in i in ka ka k a a =. (1.4)性质1.3还可以这样表述:用数k 乘以行列式某一行的每一个元素,等于用数k 乘以行列式.例如,24612340524052(58)116106106=?=?-=---.0.510.520.531234050.54050.5(58)29106106=?=?-=---. 推论行列式的一行元素全为零,行列式为零.性质1.4(行列式的拆分性质)11121112212111211112112121212.n i i i i in in n n nnnn i i in i i in n n nnn n nna a abc b c b c a a a a a a a a a b b b c c c a a a a a a +++=+ (1.5)性质1.4可以推广到一行有更多个数相加的情形.性质1.5 行列式两行元素对应全相等,行列式为零. 推论1 行列式两行元素对应成比例,行列式为零. 推论2 设行列式||ij n D a =,则1122i j i j in jn ij a A a A a A D δ+++=?. (1.6)这里,1,,0,.ij i j i j δ=?=?≠?ij δ为Kronecker 符号.性质1.6(行列式的不变性质)nnjn inn n j i n j i nn in jn in n n i j in i j i a a a a a a a a a a a a a ka a a a a ka a a a a ka a a a122212111111222212111111=+++. (1.7)性质1.6的意义:任何一个行列式都可化为三角形行列式,从而算出值.性质1.7(行列式的变号性质)12121212()i i inj j jnj j jni i ina a a a a a i j a a a a a a =-≠. (1.8)总结:利用性质1.6及其它性质与推论,可以更容易地将一个行列式化为“三角形”行列式.步骤如下:111211111121112122212222121212100n nn n n n n n n n nn nn nnnnna a a a a a a a a a a a a a a a a a a a a a ------'''''''→'''(n 1)(n 1)(n 1)(n 1)11121111112111(n 1)(n 1)(n 1)2221222212(n 1)100000n n n n n n n nnnnnnna a a a a a a a a a a a a a a a a -------------''''''''''''''→→→''''.例如,582900610312540610312610540312601504321-=-=-=--=-.在实际计算中,往往是“化零”与“展开”结合着进行,需要根据行列式的特点灵活地运用行列式的性质.二、行列式的计算行列式的计算过程,大多可以通过如下符号指示:交换i , j 两行(列):i j r r ?(i j c c ?);第i 行(列)提取公因子k :i r k ÷(i c k ÷);第j 行(列)的k 倍加到第i 行(列):i j r kr +(i j c kc +).例1.1 计算行列式011212120112110-----=D .解 011212120112110-----=D112121110121121210111265----?-?+---?-?=)()(46242=?+?-=.或 01120112110210101210121021102110D -----==---- 51012(1)1212(2)4211=?---=-?-=.例1.2 计算行列式0203112002003059D -=. 解 653216953021300)1(25=-=?-?=D . 或144414443939(3)(2)906D A A M M =+=-+=-?-+?=.。
表示这个数在个排列的逆序数,记做212n nn n nna a a a 阶行列式。
它是取自不同行和不同列的n 个元素的乘积的一个排列。
当是奇排列时,(1.4)式带有负号,也就是可写成12212(nn n j j j n n nna a a a =∑级排列求和。
行列式D 通常a =112212n n nna a a a a =的值也成立同样的结论:211220n nna a a =1,11(1)2,110(1)n n n n n n a a a a ---=-)对角行列式:1200nλλλ=20(1)0nλλ=-做了一次对换,因此由定理1.1知:它们的逆序数之和的奇偶性不变1212j j 112212(nn n i i i n n nna a a a =-∑12nj j j 121212n k k kn l l ln n n nna a a a a a a a a ,1221212n l l ln k k kn n n nna a a D a a a a a a =(1)a a a -∑∑行列式中有两行(或两列)元素对应相同,则此行列式为零。
12121212i i in i i in n n nnn n nnka ka ka k a a a a a a a a a = 12nj j j 1221212121212n n n n n n n mmn n nnn n nna a cbc b c b b b c c c a a a a a a a a a +++=+ (强调:只拆一行,其余行不变)。
11112i n i nj j j ∑行列式中某行(或列)的元素k 倍地加到另一行对应元素上,此行列式的值a bb aaa11n i ij in n njnna a a a a a1,11,11,11,1,11,11,11,1,1,1i i j i j i n i i j i j i n n n j n j nna a a a a a a a a a ----+-++-+++-+212nn n nna a a a10n ij n njnna a a a 列交换后换到第一列,得11,1,11,,1(1)(i ji j i n njn j nna a a a a ------=-⋅-21200000i in n n nna a a a a ++++++++ 112121212000000n n n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a +++ a A a A ++121212n i i ini i inn n nna a a a a a a a a。
3.三阶行列式定义:式的左边称为三阶行列式(3-th determinant ),通常也记为∆.在∆中,横的称为行(row ),纵的称为列(column ),其中a ij (i ,j =1,2,3)是数,称它为此行列式的第i 行第j 列的元素.式的右边称为三阶行列式的展开式.利用二阶行列式可以把展开式写成:323122211333312321123332232211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a +-= 若记 3332232211a a a a M =, 3331232112a a a a M =, 3231222113a a a a M =, 111111)1(M A +-=, 122112)1(M A +-=, 133113)1(M A +-=则有 131312121111333231232221131211A a A a A a a a a a a a a a a ++==∆ 其中 j A 1称为元素j a 1的代数余子式(algebraic complement minor)(3,2,1=j ),j M 1称为元素j a 1的余子式(complement minor),它是∆中划去元素j a 1所在的行、列后所余下的元素按原位置组成的二阶行列式.4.三元线性方程组的解法:引进了三阶行列式, 对于三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 的解就可写成: ∆∆=11x ∆∆=22x ∆∆=33x .称也为方程组(1—4)的系数行列式,它是由未知数的所有系数组成的行列式, j ∆(j =1,2,3)是将∆的第j 列换成常数列而得到的三阶行列式。
5.三阶行列式对角线法则计算法则:如图1—1.例1 计算三阶行列式312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=。
教案教学教案设计(续页)第一 章 行列式 §1。
1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22- b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2—a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1。
2)容易验证(1.2)式是方程组(1.1)的解.称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1.1)的系数行列式,记为D 。
我们若记 2221211a b a b D =2211112b a b a D =方程组的解(1.2)式可写成 D D x 11=DDx 22=对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1.3) 与二元线性方程组类似,用加减消元法可求得它的解: D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1。
第一章 行列式一、教学目的:掌握行列式的概念;熟练掌握行列式的性质及计算方法; 利用克莱姆法则解线性方程组。
二、学时分配:三、重点、难点:熟练运用行列式的性质,掌握行列式计算的方法 四、作业:§1 n 阶行列式定义:一阶行列式就是元素自身,1111||a a =,当n >1时规定n 阶行列式为: ∑==nj ij ij nnn n nn A a a a a a a a a a a 1212222111211j=1,2,…,n;或∑==ni ij ij nnn n n n A a a a a a a a a a a 1212222111211j=1,2,…,n;其中ij j i ij M A +-=)1(称为元素ij a 的代数余子式;ij M 是从n 阶行列式中划去ij a 的所在的行和列得到的n-1阶行列式,称为元素ij a 的余子式。
按此定义计算行列式的方法通常称为拉普拉斯(laplace )展开法,可以简述为:n 阶行列式等于任一行(列)元素与其代数余子式乘积之和。
例1 计算对角形行列式na a a21和na a a21其中未写出的数都是零。
解:依行列式的定义,按第一行依次展开,;)1(213211121n n n a a a a a a a a a a==-=+=-=+nnna a a a a a a 321121)1(n n n a a a 213)1()1(++++-= n n n a a a 212/)3()1(+-= n n n a a a 212/)1()1(--=类似地,三角行列式有相同的结果nn nnn n a a a a a a a a a 221121222111=11,212)1(1,121,21)1(n n n n n nnn n n n n na a a a a a a a a -----=例2 计算2n 阶行列式abab a bb a ba baD n=2解:按第1行展开,得0000)1(000212ba b a bb a ba b aa b a bb aba a D n n⋅-+⋅=+)1(222)1(22)1(22)(----=-=n n n D b a D b D a以此作为递推公式,得n n n n b a D b a D b a D )()()(222122)2(22222-=-==-=--例3证明nnn nmmm mnnn nm n n m mmm m b b b b a a a a b b c a b b c c a a a a111111111111111111110000⋅= 证:令nnn n mmm m b b b b D a a a a D1111211111==把D 1中元素ij a 的余子式记作ijM ',对D 1的阶数m 用数学归纳法。
第一章 行列式主要内容:排列N 阶行列式行列式的性质 行列式的计算 行列式展开定理 Cramer 法则§1.1 二阶与三阶行列式一、二阶行列式二元线性方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩(1)(2)用消元法解:22(1):a ⨯1122112222122,a a x a a x b a +=12(2):a ⨯1221112222212,a a x a a x b a +=两式相减消去2x 得:112212*********();a a a a x b a a b -=- 类似地,消去1x 得:112212212112121(),a a a a x a b b a -=- 所以当112212210a a a a -≠时,方程组的有解:122122*********b a a b x a a a a -=-,112121*********.a b b ax a a a a -=- (3)引入行列式记号11122122a a a a 11221221a a a a =-,其中称ij a 为二阶行列式的元素, i 为行标,j为列标,其计算遵循对角线法则,即主对角线元素乘积减去副对角线元素的乘积。
从而上面二元线性方程组的解122122*********b a a b x a a a a -=-,112121211221221a b b ax a a a a -=-可以表示为:112222111122122,b a b a x a a a a = 111122211122122a b a b x a a a a =(4) 例1:求解二元线性方程组1212321221x x x x -=⎧⎨+=⎩解:由于323(4)70,21D -==--=≠ 112212(2)14,11D -==--= 231232421,21D ==-=- 因此,11142,7D x D === 22213.7D x D -===- 二、三阶行列式三元线性方程组111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ (5) 同样可以用消元法求解,分析其解的结构后引入三阶行列式记号:111213212223313233a a a a a a a a a =112233122331132132a a a a a a a a a ++112332122133132231a a a a a a a a a ---,其计算遵循对角线法则。
线性代数教案第一章 行列式行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件.重点:行列式性质;行列式的计算。
难点:行列式性质;高阶行列式的计算;克莱姆法则。
§1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组⎩⎨⎧=+=+22221211112111b x a x a b x a x a (1)用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=211222112112112211222112122211a a a a a b b a x a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记22211211a a a a D =,2221211a b a b D =,2211112b a b a D =则当D ≠0时,方程组(1) 的解(2)可以表示成2221121122212111a a a a a b a b DD x ==, 2221121122111122a a a a b a b a D D x ==, (3) 象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x 2的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组⎩⎨⎧=+=+231422121x x x x 解:这时 0214323142≠=⨯-⨯==D ,5243132411-=⨯-⨯==D ,3112221122=⨯-⨯==D ,因此,方程组的解是2511-==D D x ,2322==D D x , 对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212- 1062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=令 333231232221131211a a a a a aa a a D = 3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =. 当 D ≠0时,(4)的解可简单地表示成D D x 11=,D Dx 22=,DD x 33= (6)它的结构与前面二元一次方程组的解类似.例3 解线性方程组⎪⎩⎪⎨⎧=-+=-+=+-423152302321321321x x x x x x x x x 解:28231523112=---=D , 132345211101=---=D , 472415131022=--=D , 21431123123=-=D . 所以,281311==D D x ,284722==D D x ,43282133===D D x .例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数). 解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.§1.2 排列在n 阶行列式的定义中,要用到排列的某些知识,为此先介绍排列的一些基本知识. 定义1 由数码1,2,…,n 组成一个有序数组称为一个n 级排列.例如,1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列.由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!=6个.数字由小到大的n 级排列1234…n 称为自然序排列.定义2 在一个n 级排列i 1i 2…i n 中,如果有较大的数 i t 排在较小的数 i s 的前面(i s <i t ), 则称i t 与i s 构成一个逆序,一个n 级排列中逆序的总数,称为这个排列的逆序数,记作N (i 1i 2…i n ).例如, 在4 级排列3412中, 31,32,41,42,各构成一个逆序数,所以,排列3412的逆序数为N (3412)=4.同样可计算排列52341的逆序数为N (52341)=7.容易看出, 自然序排列的逆序数为0.定义3 如果排列i 1i 2…i n 的逆序数N (i 1i 2…i n )是奇数,则称此排列为奇排列,逆序数是偶数的排列则称为偶排列.例如,排列3412是偶排列.排列52341是奇排列. 自然排列123…n 是偶排列. 定义4 在一个n 级排列i 1…i s …i t …i n 中, 如果其中某两个数i s 与i t 对调位置,其余各数位置不变,就得到另一个新的n 级排列i 1…i t …i s …i n ,这样的变换称为一个对换,记作(i s ,i t ).如在排列3412中,将4与2对换, 得到新的排列3214. 并且我们看到:偶排列3412经过4与2的对换后,变成了奇排列3214. 反之,也可以说奇排列3214经过2与4的对换后,变成了偶排列3412.一般地,有以下定理:定理1 任一排列经过一次对换后,其奇偶性改变.证明:首先讨论对换相邻两个数的情况,该排列为:a 1a 2…a l i jb 1b 2…b mc 1c 2…c n将相邻两个数i 与j 作一次对换,则排列变为a 1a 2…a l j ib 1 b 2…b mc 1c 2…c n显然对数a 1,a 2,…a l ,b 1,b 2,…,b m 和c 1c 2…c n 来说,并不改变它们的逆序数.但当i<j 时, 经过i 与j 的对换后,排列的逆序数增加1个;当i >j 时,经过i 与j 的对换后,排列的逆序数减少1个.所以对换相邻两数后,排列改变了奇偶性.再讨论一般情况,设排列为a 1a 2…a l ib 1b 2…b m jc 1c 2…c n将i 与j 作一次对换,则排列变为a 1a 2…a l jb 1b 2…b m ic 1 c 2…c n这就是对换不相邻的两个数的情况.但它可以看成是先将i 与b 1对换,再与b 2对换,…,最后与b m 的对换,即i 与它后面的数作m 次相邻两数的对换变成排列a 1a 2…a lb 1b 2…b m i jc 1…c n然后将数j 与它前面的数i ,b m …,b 1作m +1次相邻两数的对换而成.而对换不相邻的数i 与j (中间有m 个数),相当于作2m +1次相邻两数的对换.由前面的证明知,排列的奇偶性改变了2m +1次,而2m +1为奇数,因此,不相邻的两数i ,j 经过对换后的排列与原排列的奇偶性不同.定理2 在所有的n 级排列中(n ≥2),奇排列与偶排列的个数相等,各为2!n 个.证明:设在n !个n 级排列中,奇排列共有p 个,偶排列共有q 个.对这p 个奇排列施以同一个对换,如都对换(1,2),则由定理1知p 个奇排列全部变为偶排列,由于偶排列一共只有q 个,所以p ≤q ;同理将全部的偶排列施以同一对换(1,2),则q 个偶排列全部变为奇排列,于是又有q ≤p ,所以q = p ,即奇排列与偶排列的个数相等.又由于n 级排列共有n !个,所以q + p = n !,2!n p q ==.定理3 任一n 级排列i 1i 2…i n 都可通过一系列对换与n 级自然序排列12…n 互变,且所作对换的次数与这个n 级排列有相同的奇偶性.证明:对排列的级数用数学归纳法证之. 对于2级排列,结论显然成立.假设对n –1级排列,结论成立,现在证明对于n 级排列,结论也成立.若i n =n ,则根据归纳假设i 1i 2…i n –1是n –1级排列,可经过一系列对换变成12…(n –1),于是这一系列对换就把i 1i 2…i n 变成12…n .若i n ≠n ,则先施行i n 与n 的对换,使之变成i 1'i 2'…'i 'n –1n ,这就归结成上面的情形.相仿地,12…n 也可经过一系列对换变成i 1i 2…i n ,因此结论成立.因为12…n 是偶排列,由定理1可知,当i 1i 2…i n 是奇(偶)排列时,必须施行奇(偶)数次对换方能变成偶排列,所以,所施行对换的次数与排列i 1i 2…i n 具有相同的奇偶性.思考:1.决定i 、j 的值,使 (1) 1245i 6j 97为奇排列; (2) 3972i 15j 4为偶排列.2.排列n (n –1)(n –2)…321经过多少次相邻两数对换变成自然顺序排列?§1.3 n 阶行列式本节我们从观察二阶、三阶行列式的特征入手.引出n 阶行列式的定义. 已知二阶与三阶行列式分别为2112221122211211a a a a a a a a -=312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= 其中元素a ij 的第一个下标i 表示这个元素位于第i 行,称为行标,第二个下标j 表示此元素位于第j 列,称为列标.我们可以从中发现以下规律:(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.作为二、三阶行列式的推广我们给出n 阶行列式的定义.定义1 由排成n 行n 列的n 2个元素a ij (i ,j =1,2,…,n )组成的符号nnn n nn a a a a a a a a a 212222111211称为n 阶行列式.它是n !项的代数和,每一项是取自不同行和不同列的n 个元素的乘积,各项的符号是:每一项中各元素的行标排成自然序排列,如果列标的排列为偶排列时,则取正号;为奇排列,则取负号.于是得nnn n nn a a a a a a a a a 212222111211=∑n j j j 21n n nj j j j j j N a a a 212121)()1(- (1)其中∑nj j j 21表示对所有的n 级排列j 1j 2…j n 求和.(1)式称为n 阶行列式按行标自然顺序排列的展开式.)(21)1(n j j j N -n nj j j a a a 2121称为行列式的一般项.当n =2、3时,这样定义的二阶、三阶行列式与上面§1.1中用对角线法则定义的是一致的.当n =1时,一阶行列为|a 11|= a 11.如当n =4时,4阶行列式44342414434241333231232221131211a a a a a a a a a a a a a a a a 表示4!=24项的代数和,因为取自不同行、不同列4个元素的乘积恰为4!项.根据n 阶行列式的定义,4阶行列式为44342414434241333231232221131211 a a a a a a a a a a a a a a a a ∑-444=j j j j j j j j j j j N a a a a 213214321321)()1( 例如a 14a 23a 31a 42行标排列为1234,元素取自不同的行;列标排列为4312,元素取自不同的列,因为N (4312)=5,所以该项取负号,即–a 14a 23a 31a 42是上述行列式中的一项.为了熟悉n 阶行列式的定义,我们来看下面几个问题. 例1 在5阶行列式中,a 12a 23a 35a 41a 54这一项应取什么符号?解:这一项各元素的行标是按自然顺序排列的,而列标的排列为23514. 因 N (23514)=4,故这一项应取正号.例2 写出4阶行列式中,带负号且包含因子a 11a 23的项. 解:包含因子a 11a 23项的一般形式为44j j j j N a a a a 34332311)13()1(-按定义,j 3可取2或4,j 4可取4或2,因此包含因子a 11a 23的项只能是a 11a 23a 32a 44或a 11a 23a 34a 42但因 N (1324)=1为奇数N (1342)=2为偶数所以此项只能是 –a 11a 23a 32a 44.例3 计算行列式hgvuf e y x d c b a 0000解 这是一个四阶行列式,按行列式的定义,它应有4!=24项.但只有以下四项adeh ,adfg ,bceh ,bcfg不为零.与这四项相对应得列标的4级排列分别为1234,1243,2134和2143,而N (1234)=0,N (1243)=1,N (2134)=1和N (2143)=2,所以第一项和第四项应取正号,第二项和第三项应取负号,即hgvuf e y x d c b a 0000= adeh –adfg –bceh +bcfg例4 计算上三角形行列式nnnn a a a a a a D 21221211 000=其中a ii ≠0 (i =1, 2,…, n ).解:由n 阶行列式的定义,应有n !项,其一般项为nnj j j a a a 2121但由于D 中有许多元素为零,只需求出上述一切项中不为零的项即可.在D 中,第n 行元素除a nn 外,其余均为0.所以j n =n ;在第n –1行中,除a n –1n –1和a n –1n 外,其余元素都是零,因而j n –1只取n –1、n 这两个可能,又由于a nn 、a n –1n 位于同一列,而j n =n .所以只有j n –1 = n –1.这样逐步往上推,不难看出,在展开式中只有a 11a 22…a nn 一项不等于零.而这项的列标所组成的排列的逆序数是N (12…n )=0故取正号.因此,由行列式的定义有nnnn a a a a a a D 2122121100==a 11a 22…a nn 即上三角形行列式的值等于主对角线上各元素的乘积.同理可求得下三角形行列式nnn n a a a a a a021222111=a 11a 22…a nn 特别地,对角形行列式nna a a 0002211=a 11a 22…a nn 上(下)三角形行列式及对角形行列式的值,均等于主对角线上元素的乘积.例5 计算行列式0000001121n n n a a a - 解 这个行列式除了a 1n a 2n –1…a n 1这一项外,其余项均为零,现在来看这一项的符号,列标的n 级排列为n (n –1)…21,N (n (n –1)…21)= (n –1)+ (n –2)+…+2+1=2)1(-⋅n n ,所以 0000000001121n n na a a -=11212)1()1(n n n n n a a a --- 同理可计算出000112222111211n n na a a a a a a -=nnnn n nn na a a a a a 112121000-- =11212)1()1(n n n n n a a a --- 由行列式的定义,行列式中的每一项都是取自不同的行不同的列的n 个元素的乘积,所以可得出:如果行列式有一行(列)的元素全为0,则该行列式等于0.在n 阶行列式中,为了决定每一项的正负号,我们把n 个元素的行标排成自然序排列,即n nj j j a a a 2121.事实上,数的乘法是满足交换律的,因而这n 个元素的次序是可以任意写的,一般地,n 阶行列式的项可以写成n n j i j i j i a a a 2211 (2)其中i 1i 2…i n ,j 1 j 2…j n 是两个n 阶排列,它的符号由下面的定理来决定.定理1 n 阶行列式的一般项可以写成n n n n j i j i j i j j j N i i i N a a a 22112121)()()1(+- (3)其中i 1i 2…i n ,j 1j 2…j n 都是n 级排列.证明:若根据n 阶行列式的定义来决定(2)的符号,就要把这n 个元素重新排一下,使得它们的行标成自然顺序,也就是排成''2'121n nj j j a a a (4)于是它的符号是)'''(21)1(n j jj N -现在来证明(1)与(3)是一致的.我们知道从(2)变到(4)可经过一系列元素的对换来实现.每作一次对换,元素的行标与列标所组成的排列i 1i 2…i n ,j 1j 2…j n 就同时作一次对换,也就是N (i 1i 2…i n )与N (j 1j 2…j n )同时改变奇偶性,因而它的和N (i 1i 2…i n )+N (j 1j 2…j n )的奇偶性不改变.这就是说,对(2)作一次元素的对换不改变(3)的值,因此在一系列对换之后有)'''()'''()12()()(21212121)1()1()1(n n n n j j j N j j j N n N j j j N i i i N -=--++=这就证明了(1)与(3)是一致的.例如,a 21a 32a 14a 43是4阶行列式中一项,它和符号应为(–1)N (2314)+N (1243)= (–1)2+1= –1.如按行标排成自然顺序,就是a 14a 21a 32a 43,因而它的符号是(–1)N (4123)=(–1)3= –1同样,由数的乘法的交换律,我们也可以把行列式的一般项n nj j j a a a 2121中元素的列标排成自然顺序123…n ,而此时相应的行标的n 级排列为i 1i 2…i n ,则行列式定义又可叙述为∑-n n n i i i n i i i i i i N nnn n nna a a a a a a a a a a a 21212121)(212222111211)1(=.思考题:1.如果n 阶行列式所有元素变号,问行列式的值如何变化? 2.由行列式的定义计算f (x )=xx x x x111123111212-中x 4与x 3的系数,并说明理由.§1.4 行列式的性质当行列式的阶数较高时,直接根据定义计算n 阶行列式的值是困难的,本节将介绍行列式的性质,以便用这些性质把复杂的行列式转化为较简单的行列式(如上三角形行列式等)来计算.将行列式D 的行列互换后得到的行列式称为行列式D 的转置行列式,记作D T ,即若nnn n n n a a a a a a a a a D212222111211=, 则nnnn n n Ta a a a a a a a a D 212221212111=.反之,行列式D 也是行列式D T 的转置行列式,即行列式D 与行列式D T 互为转置行列式.性质1 行列式D 与它的转置行列式D T 的值相等.证:行列式D 中的元素a ij (i , j =1, 2, …,n )在D T 中位于第j 行第i 列上,也就是说它的行标是j , 列标是i ,因此,将行列式D T 按列自然序排列展开,得∑-=nn n j j j nj j j j j j N T a a a D 21212121)()1(这正是行列式D 按行自然序排列的展开式.所以D =D T .这一性质表明,行列式中的行、列的地位是对称的,即对于“行”成立的性质,对“列”也同样成立,反之亦然.性质2 交换行列式的两行(列),行列式变号. 证:设行列式)()(21212111211行行s i a a a a a a a a a a a a D nnn n sn s s in i i n= 将第i 行与第s 行(1≤i <s ≤n )互换后,得到行列式)()(212121112111行行s i a a a a a a a a a a a a D nnn n in i i sn s s n=显然,乘积n s i nj sj ij j a a a a 11在行列式D 和D 1中,都是取自不同行、不同列的n 个元素的乘积,根据§3 定理1,对于行列式D ,这一项的符号由)()1(1)1(n s i j j j j N n s i N +-决定;而对行列式D 1,这一项的符号由)()1(1)1(n s i j j j j N n i s N +-决定.而排列1…i …s …n 与排列1…s …i …n 的奇偶性相反,所以)()1(1)1(n s i j j j j N n s i N +-= –)()1(1)1(n s i j j j j N n i s N +-即D 1中的每一项都是D 中的对应项的相反数,所以D = –D 1.例1 计算行列式53704008000051753603924--=D 解:将第一、二行互换,第三、五行互换,得504008053070392417536)1(2---=D 将第一、五列互换,得120!5543215084000753004392067531)1(3-=-=⋅⋅⋅⋅-=---=D 推论 若行列式有两行(列)的对应元素相同,则此行列式的值等于零. 证:将行列式D 中对应元素相同的两行互换,结果仍是D ,但由性质2有D = –D , 所以D =0.性质3 行列式某一行(列)所有元素的公因子可以提到行列式符号的外面.即nnn n in i i n nn n n in i i n a a a a a a a a a k a a a ka ka ka a a a211111211211111211= 证:由行列式的定义有 左端=∑-nn i n j j j nj ij j j j j N a ka a 21121)()1(1)( =∑-nn i n j j j nj ij j j j j N a a a k211211)()1(=右端.此性质也可表述为:用数k 乘行列式的某一行(列)的所有元素,等于用数k 乘此行列式. 推论:如果行列式中有两行(列)的对应元素成比例,则此行列式的值等于零. 证:由性质3和性质2的推论即可得到.性质4 如果行列式的某一行 (列)的各元素都是两个数的和,则此行列式等于两个相应的行列式的和,即nnn n in i i n nn n n in i i n nnn n in in i i i i n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a21211121121211121121221111211+=+++证:左端=∑+-nn i i n j j j nj ij ij j j j j j N a c b a a 212121)()1(21)(=∑-nn i n j j j nj ij j j j j j N a b a a 21212121)()1(∑-+nn i n j j j nj ij j j j j j N a c a a 21212121)()1( =nnn n in i i n nn n n in i i n a a a c c c a a a a a a b b b a a a212111211212111211+=右端.性质5 把行列式的某一行 (列)的所有元素乘以数k 加到另一行(列)的相应元素上,行列式的值不变.即nn n n sn s s ini i na a a a a a a a a a a a D21212111211=nnn n sn in s i s i in i i na a a a ka a ka a a a a a a a2122112111211+++ 证:由性质4右端=nn n n in i i in i i n a a a ka ka ka a a a a a a21212111211+nnn n sn s s ini i n a a a a a a a a a a a a21212111211=k ⋅0 +nnn n sn s s ini i n a a a a a a a a a a a a21212111211=左端 作为行列式性质的应用,我们来看下面几个例子.例2 计算行列式3111131111311113=D解:这个行列式的特点是各行4个数的和都是6,我们把第2、3、4各列同时加到第1列,把公因子提出,然后把第1行×(–1)加到第2、3、4行上就成为三角形行列式.具体计算如下:4826200002000020111163111131111311111631161316113611163=⨯====D例3 计算行列式011212120112110-----=D解:13211021102011)112121110011112121011110------=-----------=D 4)2()2()1(12420021102011)1(22042002110211=-⨯-⨯-⨯-=------=-⨯------=例4 试证明:011=++++=cb adb a dcd a c b d c b aD 11证:把2、3列同时加到第4列上去,则得0111111)(11=+++=++++++++++++=a dd cc b b ad c b a dc b a adb c b a d c d c b a c b d c b a b a D 1111例5 计算n +1阶行列式xa a a a x a a a a x a a a a x D n n n 321212121= 解:将D 的第2列、第3列、…、第n+1列全加到第1列上,然后从第1列提取公因子∑=+ni iax 1得xa a a x a a a x a a a a x D n n n ni i 32222111111)(∑=+==nni i a x a a a a a x a a a x a x ------+∑= 2312212111010010001)( =)())()((211n ni ia x ax a x a x ---+∑=例6 解方程0)1(11111)2(111112111111111111=------xn xn x x解法一:×(–a 1) ×(–a 2) …… ×(–a n )=-⨯------)1( )1(11111)2(111112111111111111xn xn x x])2][()3[()1)(()2(00)3(000001000000011111x n x n x x xn xn x x------=------所以方程的解为x 1=0, x 2=1, …, x n –2=n –3, x n –1=n –2.解法二:根据性质2的推论,若行列式有两行的元素相同,行列式等于零.而所给行列式的第1行的元素全是1,第2行,第3行,…第n 行的元素只有对角线上的元素不是1,其余均为1.因此令对角线上的某个元素为1,则行列式必等于零.于是得到1–x =1 2–x =1 … (n –2)–x =1 (n –1)–x =1有一成立时原行列式的值为零.所以方程的解为x 1=0, x 2,=1,…, x n –2=n –3, x n –1=n –2.例7 计算n 阶行列式),2,1( 321213132n i a x xa a a a x a a a a x a a a a xD i n nn =≠= 解:将第1行乘以(–1)分别加到第2、3、…、n 行上得nn a x xa a x xa a x x a a a a x D ------= 0000001312132 从第一列提出x –a 1,从第二提出x –a 2,…,从第n 列提出x –a n ,便得到10101010011)())((3322121----------=nn n a x a a x a a x a a x x a x a x a x D 由,1111a x a a x x-+=-并把第2、第3、…、第n 列都加于第1列,有 100010000101)())((3322121nn n i i in a x a a x a a x a a x a a x a x a x D ----+---=∑= )1)(())((121∑=-+---=ni iin a x a a x a x a x 例8 试证明奇数阶反对称行列式000021212112=---=n nnn a a a a a a D证:D 的转置行列式为00021212112nnnn T a a a a a a D ---=从D T 中每一行提出一个公因子(–1),于是有D a a a a a a D n n nnnnT )1(000)1(21212112-=----=,但由性质1知道D T =D∴ D =(–1)n D又由n 为奇数,所以有D = –D , 即 2D =0, 因此 D =0.思考题:1.证明下列各题:222333111)(111c c b b a a c b a c c b b a a ++=. 2.计算下列n 阶行列式:111110000000002211n n a a a a a a ---;§1.5 行列式按一行(列)展开本节我们要研究如何把较高阶的行列式转化为较低阶行列式的问题,从而得到计算行列式的另一种基本方法——降阶法.为此,先介绍代数余子式的概念.定义 在n 阶行列式中,划去元素a ij 所在的第i 行和第j 列后,余下的元素按原来的位置构成一个n –1阶行列式,称为元素a ij 的余子式,记作Mij .元素a ij 的余子式Mij 前面添上符号(–1)i+j 称为元素a ij 的代数余子式,记作A ij .即A ij =(–1)i +j M ij .例如:在四阶行列式44434241343332312423222114131211a a a a a a a a a a a aa a a a D = 中a 23的余子式是M 23=444241343231141211a a a a a a a a a 而 A 23=(–1)2+3M 23= –444241343231141211a a a a a a a a a 是a 23的代数余子式. 定理1 n 阶行列式D 等于它的任意一行(列)的元素与其对应的代数余子式的乘积之和,即D =a i 1A i 1+a i 2A i 2+…+a in A in (i =1,2,…,n )或 D =a 1j A 1j +a 2j A 2j +…+a nj A nj (j=1,2,…,n ).证明:只需证明按行展开的情形,按列展开的情形同理可证. 1°先证按第一行展开的情形.根据性质4有nnn n n nnnn n nn a a a a a a a a a a a a a a a a a a D2122221112112122221112110000000++++++++++==nnn n nnnn n n n nnn n n a a a a a a a a a a a a a a a a a a a a a21222211212222112212222111+++= 按行列式的定义∑-=nn n j j j nj j j j j j N nnn n na a a a a a a a a a21212121)(212222111)1(0111111112)(1121221)1(A a M a a a a nn n j j j nj j j j j N ==-=∑同理12121212122212212212222112)1(00)1(00A a M a a a a a a a a a a a a a a a nnn n nnnn n n =-=-=… … …n n n n n nn n nnn nnn nnn n n n A a M a a a a a a a a a a a a a a a 1111111122121121222211)1(00)1(00=-=-=----所以 D =a 11A 11+a 12A 12+…+a 1n A 1n .2°再证按第i 行展开的情形将第i 行分别与第i –1行、第i –2行、…、第1行进行交换,把第i 行换到第1行,然后再按1°的情形,即有22121111112111211211)1()1()1()1()1(i i i i i i nnn n nini i i M a M a a a a a a a a a a D +-+----+--=-=inin i i i i in n in i A a A a A a M a +++=--+++- 221111)1()1(定理2 n 阶行列式D 中某一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即:a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s )或 a 1j A 1t +a 2j A 2t +…+a nj A nt =0 (j ≠t ).证:只证行的情形,列的情形同理可证.考虑辅助行列式)()(212121112111行行s i a a a a a a a a a a a a D nnn n in i i in i i n= 这个行列式的第i 行与第s 列的对应元素相同,它的值应等于零,由定理1将D 1按第s 行展开,有D 1= a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s ).定理1和定理2可以合并写成a i 1A s 1+a i 2A s 2+…+a in A sn =⎩⎨⎧≠=)(0)(s i s i D或 a 1j A 1t +a 2j A 2t +…+a jn A nt =⎩⎨⎧≠=)(0)(t j t j D定理1表明,n 阶行列式可以用n –1阶行列式来表示,因此该定理又称行列式的降阶展开定理.利用它并结合行列式的性质,可以大大简化行列式的计算.计算行列式时,一般利用性质将某一行(列)化简为仅有一个非零元素,再按定理1展开,变为低一阶行列式,如此继续下去,直到将行列式化为三阶或二阶.这在行列式的计算中是一种常用的方法.例1 计算行列式 511242170131312-----=D解:D 的第四行已有一个元素是零,利用性质5,有( 1 3323111)1(013321831311112113214-⨯⨯----=----=-=+D8525534)1(25503401111 11-=--=---=+例2 计算n 阶行列式abb a a bab a D 000000000000=解:按第一列展开得nn n n n n n b a bb aa bab b a b b ab a a b a a D 1111111)1()1( 000000000)1(00000000)1(+-+-++-+=-+=-+-=例3 计算yy x xD -+-+=1111111111111111,其中 xy ≠0.解:根据定理1,把行列式适当地加一行一列,然后利用性质5,有yy x x y y xx D ------=-⨯-+-+=00100010001000111111)1(111111110111101111011111第2列提出因子x ,第3列提出–x ,第4列提出y ,第5列提出–y ,得加到各 行11 1 1 1100000100000101111110101001001010001111111)()(2222⨯⨯⨯⨯=--=--------=y x y y x x y x y y x x y y x x D例4 试证∏≤<≤-----=ni j j i n nn n n nna a a a a a a a a a a a a a 111312112232221321)(1111(1) 式中左端叫范德蒙行列式.结论说明,n 阶范德蒙行列式之值等于a 1, a 2, …, a n ,这n 个数的所有可能的差a i –a j (1≤j<i ≤n )的乘积.证明:用数学归纳法1°当n=2时,计算2阶范德蒙行列式的值:122111a a a a -=可见n=2时,结论成立.2°假设对于n –1阶范德蒙行列式结论成立,来看n 阶范德蒙行列式:把第n –1行的(–a 1)倍加到第n 行,再把第n –2行的(–a 1)倍加到第n –1行,如此继续作,最后把第1行的(–a 1)倍加到第2行,得到211231132211212312321221131211312112232221223222132100011111111-----------------------=n nn n n n n n nn n n nn n n n n n n n nna a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a)()()()()()(1213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n ---------=---223223211312111)())((------=n nn n nn a a a a a a a a a a a a后面这个行列式是n –1阶范德蒙行列式,由归纳假设得∏≤<≤----=ni j j i n nn n na a a a a a a a 22232232)(111于是上述n 阶范德蒙行列式等于∏≤<≤----ni j j in a aa a a a a a 211312)()())(( ∏≤<≤-ni j j ia a1=)(。
第1章行列式(共4学时)一、教学目标及基本要求1.了解逆序数的概念2.掌握n阶行列式的定义和行列式的性质3.掌握行列式的按行(列)展开定理4.利用行列式的性质和展开定理计算行列式的值二、教学内容与学时分配1.预备知识2.n阶行列式的定义(2学时)3.行列式的性质4.行列式的展开(2学时)三、教学内容的重点及难点重点:利用行列式性质及展开计算行列式难点:行列式的计算技巧四、教学内容的深化和拓宽行列式的拉普拉斯展开定理及行列式在实际中的应用,或讲稿中部分结论推广五、思考题与习题思考题:见讲稿作业:2,(2),(4),(6);3,(1),(3);7,(1),(3),(5)六、教学方式与手段注意行列式定义的引入,应用启发式讲稿内容1.1 预备知识为什么要学习行列式呢?因为它是一个很重要的数学工具,在数学的各个分支中都经常用到,比如,用二阶行列式来解二元线性方程组,用三阶行列式来解三元方程线性组等;又如,已知平面的三点),(),,(),,(332211y x y x y x ,则以这三点为顶点的三角形面积为下面行列式的绝对值:.11121332211y x y x y x 这一章主要引进行列式的概念并讨论行列式的性质,以及利用行列式的性来计算行列式的值。
下面我们利用线性方程组的求解引入行列式的概念。
设有二元线性方程组⎪⎩⎪⎨⎧=+=+)2()1(22221211212111b x a x a b x a x a可用消元法来解该方程组。
1222211211222111222)(:)2()1(a b a b x a a a a a a -=-⨯-⨯ 2111122211222112111)(:)1()2(a b a b x a a a a a a -=-⨯-⨯若0)(21122211≠-a a a a ,则211222112111122211222111222211,a a a a ab a b x a a a a a b a b x --=--=如果我们定义bc ad dc b a -=,dc b a 称为二阶行列式,横排称为行,纵排称为列,二阶行列式共有二行二列四个元素,其值等于主对角线元素之积与次对角线元素之积的差。
这样一来,二元线性方程组的解可简单表示为DD x D D x 2211,==其中22211211a a a a D =为方程组未知数的系数所组成的行列式称为方程组的系数行列式;2221211a b a b D =(用方程组的常数项代替系数行列式的第1列)2211112b a b a D =(用方程组的常数项代替系数行列式的第2列)类似地,我们可用三阶行列式来解三元线性方程组:⎪⎩⎪⎨⎧=++=+=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a +定义322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a D ++==332112322311312213a a a a a a a a a --- 且0≠D ,则DD x D Dx D D x 332211,,===这里的D 是由三行三列组成的三阶行列式,每个ij a 为三阶行列式的一个元素,i 表示行标,j 表示列标,i 行、j 列的交叉点就是元素ij a 。
前面我们定义了二阶、三阶行列式,要引入)3(>n n 阶行列式,上面的方法显然是不行的,一方面,行列式的阶数增大,等式右边的项数也必增多,写出所有的项数较困难(n 阶行列式右边有!n 项),也没有必要;另一方面,等式右端每一项的符号何时取正?何时取负?为此,首先介绍,全排列、逆序数等概念。
把n 个不同的元素排成一列,叫做这n 个元素的全排列,简称排列。
如3个不同元素3,2,1的所有可能排列有:.312,321,231,213,132,123n 个不同元素的所有不同排列的个数,称为排列数,通常用n P 表示,如上63=P如求n 个自然数n ⋅⋅⋅,3,2,1的全排列数!123)1(n n n P n =⋅⋅⋅⋅⋅-=在!n 个不同排列中,规定某一个排列为标准顺序的排列,一般地,规定从小到大的排列为标准顺序(标准排列或称为自然排列)。
如果在一个排列n j i S S S S S ⋅⋅⋅⋅⋅⋅⋅⋅⋅21中,j i S S >而i S 在j S 的前面,则说它们形成了一个逆序(或反序),一个排列中所有逆序的总数叫做这个排列的逆序数,用][1n s s t ⋅⋅⋅表示。
如0]123[=t , 1]132[=t , 3]321[=t)(][111小的数的个数后面比s s s s t n =⋅⋅⋅ )(22小的数的个数后面比s s +⋅⋅⋅+ )(11小的数的个数后面比--+n n s s)(22大的数的个数前面比s s =)(33大的数的个数前面比s s + ⋅⋅⋅+)(大的数的个数前面比n n s s +如510013]421365[=++++=t ,或510121]421365[=++++=t又如).1(2112)2()1(]321)1([-=++⋅⋅⋅+-+-=⋅⋅⋅-n n n n n n t 逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。
在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换。
将相邻两个元素对调,叫做相邻对换。
定理1 一个排列中,任意两个元素对换排列改变奇偶性。
证明:分相邻对换与非相邻对换两种情形来证明。
情形1:相邻对换.1111m l m l b bab a a b abb a a ⋅⋅⋅⋅⋅⋅⇒⋅⋅⋅⋅⋅⋅易知经过相邻对换后,11,,,,,l m a a b b ⋅⋅⋅⋅⋅⋅中的任何两个元素间的逆序个数没有变化,同时b a ,两个元素与元素11,,,,,l m a a b b ⋅⋅⋅⋅⋅⋅所形成的逆序总个数也没发生变化, 因此只有b a ,两个元素本身之间的逆序的个数发生了变化。
设[]11l m t a a abb b t ⋅⋅⋅⋅⋅⋅=,则当b a <时,即b a ,不构成逆序,经过相邻对换后,b a ,构成逆序,所以[]111l m t a a bab b t ⋅⋅⋅⋅⋅⋅=+。
当b a >时,即b a ,构成逆序,经过相邻对换后,b a ,不构成逆序,所以[]111l m t a a bab b t ⋅⋅⋅⋅⋅⋅=-。
即不论b a >,还是b a <,经过相邻对换后排列的逆序数不是增加1就是减少1,从而排列的奇偶性发生改变。
情形2:非相邻对换.111111n m l n m l c ac b bb a a c bc b ab a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⇒⋅⋅⋅⋅⋅⋅⋅⋅⋅ 设其对换过程为1111111.m l m n l m n a a ab b bc c a a bab b c c +⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−−−−→⋅⋅⋅⋅⋅⋅⋅⋅⋅b 经过次相邻对换m −−−−−−→a 经过次相邻对换.111n m l c ac b bb a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅共经过了12+m 次相邻对换,所以前后两个排列的奇偶性相反。
推论 奇排列调成标准排列的对换次为奇数,偶排列调成标准排列的对换次数为偶数。
有了以的基本概念,我们可以给出n 阶行列式的定义。
1.2 n 阶行列式的定义为了得到n 阶行列式的定义,我们先研究三阶行列式的结构,三阶行列式的定义为322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 332112322311312213a a a a a a a a a --- (1)等式右端是6项(3!项)之和,其中3项为正,3项为负,每项都是位于不同行不同列的元素的乘积。
(2)每一项各元素的行标排列成123,因此右端的任意一项除符号外可写成321321p p p a a a 的形式,其中321p p p 为123的某个排列。
显然也可把右端每一项的列标排成自然顺序123,而行标写为123的某个排列321p p p ,即除符号外,行列式的每一项可写为321321p p p a a a 。
(3)行标排列的逆序数为0带正号项的列标排列为123 312 231 逆序数 0 2 2 带负号项的列标排列为321 132 213 逆序数 3 1 1 易知带正号的项其列标排列的逆序数为偶数 带负号的项其列标排列的逆序数为奇数如果我们假设321p p p 的逆序数为t ,则三阶行列式可定义为∑-==⨯32132132133333231232221131211)1(p p p p p p tij a a aa a a a a a a a a a仿此可得n 阶行列式的定义:定义 2n个数排列成n 行n 列的一个表D a a a a a a a a a nnn n nn=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅212222111211,并按下式计值∑∑⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅-=)(21)(2121212121)1()1(n n n n p p p n p p p tp p p np p p ta a aa a aD ,其中][1n p p t t ⋅⋅⋅=,n p p ⋅⋅⋅1为n ⋅⋅⋅3,2,1的全排列,则称D 为n 阶行列式。
当n 取2或3时即为前面所讲的二阶或三阶行列式,1=n 时,a a = 例 计算下列行列式的值 1.对角行列式12111122212()(1)n n t i iip p np p p nnna a a a a a a λλλλ⋅⋅⋅==-⋅⋅⋅⋅⋅⋅⋅⋅⋅∑令在行列式nn ija ⨯中,不论0=<>ij a j i j i 都有或,因此在n np p p a a a ⋅⋅⋅2121中只有当n p p p n =⋅⋅⋅==,,2,121不为0,其余各项均为0。
故原式1n λλ=⋅⋅⋅2.=⋅⋅⋅=⋅⋅⋅-+-1121)1(21n n ni n i i na a a a λλλλ令∑⋅⋅⋅⋅⋅⋅-)(212121)1(n n p p p np p p ta a a此题不为0的元素有这样的特点1+=+n j i乘积n np p p a a a ⋅⋅⋅2121中,只要有一个元素为0,则整个乘积为0,要使乘积不为0,则每一个元素均不为0,即满足1,1,112,112121=⋅⋅⋅-==⇒+=+⋅⋅⋅+=++=+n n p n p n p n p n n p n p原式n n n n n n n n t a a a λλλ⋅⋅⋅-=⋅⋅⋅-=--⋅⋅⋅-21)1(211)1(21]321)1([)1()1(3.nnnna a a a a a D 000022211211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(主对角线以下的元素全为0,称为上三角行列式)解:据行列式的特点,对每个⎩⎨⎧≤>=ji a ji a ij ij 0由于∑⋅⋅⋅⋅⋅⋅-=)(212121)1(n n p p p np p p ta a aD ,从而不同行不同列的所有元素乘积中,不为0的项必须满足1,,1,,1,,2,111121=⋅⋅⋅-==⇒≥-≥⋅⋅⋅≥≥--p n p n p n p n p p p n n n n故nn a a a D ⋅⋅⋅=22114.1212121223(1)1()01000020(1)(1)0001000n n t t p p np n n n p p p a a a a a a a n n-⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅∑[231]1(1)!(1)!t n n n n ⋅⋅⋅-=-=-从行列式的构成可知,不为0的项,只有1212,3,,,1n n p p p n p -====L思考题:用行列式的定义说明:一个n 阶行列式中等于零的元素的个数,若比2n n -多,则此行列式必等于零。