C4 A — B— C — D — E
f2(C1)=7,f3(C2)=8,f3(C3)=10,f3(c4)=9
阶段1
阶段2 阶段3 阶段4
S0={A} S1={B1,B2} S2={C1,C2,C3,C4 } S3={D1,D2} S4={E}
f3(D1)=11,f4(D2)=13
案例---资源分配
D1 5 E
D2 2
[引例] 马车驿站问题
f(C1)=8
阶段 起点 1A
终点
B1 B2
可选路线
AB1 AB2
路线数 2
f(B1)=8
B1 5 A
f(A)=313 8
B2
2 3 6
7 6
C1 6
f(C2)=85
C2 3
f(C3)=54
3 C3 3
84
f(B2)=11 C4
f(C1)=5
A —B— C —
最k优=4化原理
(Optimality principle) :
最k优=3策略具备这样的决性策质::无D1论初E始 状态与初始决策如何,以后诸决策对 以第一个决策所形成的状态作为初 始状态的过程而言,必决然策构:成D2最优E策 策略.通俗地说:最优策略的子策略 也k是=2最优的.
例 A13—k如,其=B1,子1—在策C导略2入—:B案D11—例—C中决E2决决,,—策最策策最D:短::1优A距—CC策12离E略B,为1DD是11 C2—D1—E, D1—E也决是策最:优C3的。D2
(4)状态转移方程 (5)递归方程(k→n)
1、划分为4个阶段 2、用点集表示各阶段的状态 S1={A};s2= {B1,B2,B3}, s3= {C1,C2,C3}; s4= {D1,D2} 3、指标函数:Vk,4(i)为第k阶段第i点到E点的距离 4、最优值函数fk(i)为i点到E的最短距离 5、决策变量xk=d[i,j]为第k阶段第i状态的选择 6、边界条件: f5(E)=0 7、基本方程: fk(i)=min{d[i,j]+ fk+1(j) }(k=1,2,3,4)