高一集合测试最新精华版试题(包含答案)
- 格式:doc
- 大小:847.00 KB
- 文档页数:5
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}3.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,3,54.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤-C .{}3a a >D .{}1a a <-5.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞6.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 7.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR8.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a的取值范围是( ) A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤11.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<12.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-13.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,114.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}--- C .{2,1,0,1,2}--D .()3,3-二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.全集U =R ,集合{}3A x x =≤-,则 UA =______.18.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 19.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.20.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.21.集合*83A x NN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”. (1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”? (2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆. (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ; (3)若A 中至少有一个元素,求a 的取值范围.29.用描述法表示下列集合: (1)所有被3整除的整数组成的集合; (2)不等式235x ->的解集;(3)方程210x x ++=的所有实数解组成的集合; (4)抛物线236y x x =-+-上所有点组成的集合; (5)集合{}1,3,5,7,9.30.(1)集合{a, b, c, d }的所有子集的个数是多少? (2)集合{a 1, a 2, …, an }的所有子集的个数是多少?【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 2.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤,所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=; 故选:A 4.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B 5.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D6.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C. 7.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 8.A 【解析】 【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围. 【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z ,∵M N ⋂有且只有2个元素,∴0<a ≤1. 故选:A. 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.B 【解析】 【分析】化简集合A 和B ,根据集合并集定义,即可求得答案. 【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B. 11.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 12.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 13.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B. 14.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.A B C ##C B A 【解析】 【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系. 【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=,集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=,集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.{}3x x >-【解析】 【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-, 所以UA ={}3x x >-,故答案为:{}3x x >- 18. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.19.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭20.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 21.{1,2}##{2,1} 【解析】 【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}22.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2623.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立,当1x =时,不等式214x ≤<成立,当2x =时,不等式214x ≤<不成立,当4x =时,不等式214x ≤<不成立,所以{}1A B ⋂=,故答案为:{}124.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤. 综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个.28.(1)9,8⎛⎫+∞ ⎪⎝⎭ (2)当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)9,8⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用A 是空集,则Δ00a <⎧⎨≠⎩即可求出a 的取值范围; (2)对a 分情况讨论,分别求出符合题意的a 的值,及集合A 即可; (3)分A 中只有一个元素和有2个元素两种情况讨论,分别求出参数的取值范围,即可得解.(1)解: A 是空集,0a ∴≠且∆<0,9800a a -<⎧∴⎨≠⎩,解得98a >, a ∴的取值范围为:9,8⎛⎫+∞ ⎪⎝⎭; (2)解:①当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎬⎩⎭, ②当0a ≠时,0∆=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭, 综上所求,当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)解:A 中至少有一个元素,则当A 中只有一个元素时,0a =或98a =;当A 中有2个元素时,则0a ≠且0∆>,即9800a a ->⎧⎨≠⎩,解得98a <且0a ≠; 综上可得98a ≤时A 中至少有一个元素,即9,8a ⎛⎤∈-∞ ⎥⎝⎦ 29.(1){|3,Z}x x k k =∈ (2){}4,R x x x ∈(3)2{|10,R}x x x x ++=∈(4)()2{,|36}x y y x x =-+-(5){|21,15x x n n =-≤≤且*N }n ∈【解析】【分析】根据题设中的集合和集合的表示方法,逐项表示,即可求解.(1)解:所有被3整除的整数组成的集合,用描述法可表示为:{|3,Z}x x k k =∈(2)解:不等式235x ->的解集,用描述法可表示为:{}4,R x x x ∈.(3)解:方程210x x ++=的所有实数解组成的集合,用描述法可表示为:2{|10,R}x x x x ++=∈.(4)解:抛物线236y x x =-+-上所有点组成的集合,用描述法可表示为:()2{,|36}x y y x x =-+-.(5)解:集合{}1,3,5,7,9,用描述法可表示为:{|21,15x x n n =-≤≤且*N }n ∈. 30.(1)16;(2)2n【解析】【分析】设集合A 为集合的子集,利用分步计数原理分析每个元素出现的情况,即得解【详解】(1)由题意,若A 为集合{a, b, c, d }的子集则集合A 中的元素只能从a, b, c, d 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有222216⨯⨯⨯=种情况故集合{a, b, c, d }的所有子集的个数是16(2)由题意,若A 为集合{a 1, a 2, …, an }的子集则集合A 中的元素只能从a 1, a 2, …, an 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有22...22n ⨯⨯⨯=种情况故集合{a 1, a 2, …, an }的所有子集的个数是2n。
高中数学集合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ150分;考试时间90分钟.第Ⅰ卷(选择题;共60分)一、选择题:本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.1.已知集合M={x N|4-x N}∈∈;则集合M 中元素个数是( ) A .3 B .4 C .5 D .62.下列集合中;能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4;*x N ∈} C .{y||y |<4;y N ∈} D .{连续三个自然数} 3. 已知集合{}1,0,1-=A ;则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ;}31{<≤-=x x B ;那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ;则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=;则a 的值为( ) A .-3或1 B .2 C .3或1 D .17. 若集合}8,7,6{=A ;则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 定义A —B={x|x A x B ∈∉且};若A={1;3;5;7;9};B={2;3;5};则A —B 等于( ) A .A B .B C .{2} D .{1;7;9}9.设I 为全集;1S ;2S ;3S 是I 的三个非空子集;且123S S S I ⋃⋃=;则下面论断正确的是( )A .()I 123(C S )S S ⋂⋃= φB .()1I 2I 3S [C S )(C S ]⊆⋂C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅D .()1I 2I 3S [C S )(C S ]⊆⋃ 10.如图所示;I 是全集;M ;P ;S 是I 的三个子集;则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()I (C )M P S ⋂⋂D .()I (C )M P S ⋂⋃11. 设},2|{R x y y M x ∈==;},|{2R x x y y N ∈==;则( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-;若M N ≠∅;则有( ) A .1a <- B .1a >- C . 1a ≤- D .1a ≥-第Ⅱ卷(非选择题 共90分)二、填空题:本大题6小题;每小题5分;共30分. 把正确答案填在题中横线上13.用描述法表示右侧图中阴影部分的点(含边界上的点)组成的集合M 是___________________________.14. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ;}5,4{)()(=⋂B C A C U U ;}6{=⋂B A ;则A 等于_________15. 若集合{}2,12,4a a A --=;{}9,1,5a a B --=;且{}9=B A ;则a 的值是________; 16.设全集{|230}U x N x =∈≤≤;集合*{|2,,15}A x x n n N n ==∈≤且;*{|31,,9}B x x n n N n ==+∈≤且;C={x|x 是小于30的质数};则[()]U C A B C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且;则实数a 的取值范围是________________18.某城市数、理、化竞赛时;高一某班有24名学生参加数学竞赛;28名学生参加物理竞赛;19名学生参加化学竞赛;其中参加数、理、化三科竞赛的有7名;只参加数、物两科的有5名;只参加物、化两科的有3名;只参加数、化两科的有4名;若该班学生共有48名;则没有参加任何一科竞赛的学生有____________名三、解答题:本大题共5小题;共60分;解答应写出文字说明;证明过程或演算步骤.19. 已知:集合{|A x y ==;集合2{|23[03]}B y y x x x ==-+∈,,; 求A B (本小题8分)20.若A={3;5};2{|0}B x x mx n =++=;A B A =;{5}A B =;求m 、n 的值。
高一集合测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},B={2,3,4},则A∩B等于()。
A. {1,2,3}B. {2,3}C. {1,4}D. {4,5}答案:B2. 若集合M={x|x^2-3x+2=0},则M中元素的个数为()。
A. 0B. 1C. 2D. 3答案:C3. 集合P={x|x是无理数},Q={x|x是有理数},则P∪Q等于()。
A. {x|x是实数}B. {x|x是无理数}C. {x|x是有理数}D. {x|x是复数}答案:A4. 已知集合R={x|x^2+x-2=0},则R的补集为()。
A. {x|x^2+x-2≠0}B. {x|x^2+x-2=0}C. {x|x∈R且x≠-2且x≠1}D. {x|x∈R且x=-2或x=1}答案:A5. 若A={x|-2<x<3},B={x|x>1},则A∩B等于()。
A. {x|-2<x<1}B. {x|1<x<3}C. {x|-2<x<3}D. {x|x>3}答案:B6. 集合S={x|x=2n, n∈Z},T={x|x=2n+1, n∈Z},则S∩T等于()。
A. {0}B. ∅C. {1}D. {2}答案:B7. 若A={x|x^2-5x+6=0},则A中的元素为()。
A. {2,3}B. {2,4}C. {3,6}D. {1,6}答案:A8. 集合U={x|x是小于10的正整数},则U的元素个数为()。
A. 8B. 9C. 10D. 11答案:B9. 若集合V={x|x^2-4=0},则V的补集为()。
A. {x|x≠-2且x≠2}B. {x|x^2-4≠0}C. {x|x∈R且x≠-2且x≠2}D. {x|x∈R且x=-2或x=2}答案:C10. 集合W={x|x是4的倍数},X={x|x是8的倍数},则W∩X等于()。
A. {x|x是4的倍数}B. {x|x是8的倍数}C. {x|x是2的倍数}D. {x|x是16的倍数}答案:B二、填空题(每题4分,共20分)11. 集合{1,2,3}的子集个数为______。
高一数学集合试题答案及解析1.已知集合M={},P={},则M P=()A.B.(3,)C.{3,}D.{(3,)}【答案】D【解析】即求两个一次函数与图象的交点,并用点集形式给出.因为M={(x,y)|x+y=2},P={(x,y)|x-y=4},所以M∩P=={(3,-1)},故选D。
【考点】本题主要考查交集的概念、二元一次方程组解法。
点评:本题主要考查交集的概念、二元一次方程组解法。
应特别注意结合中元素是有序数对。
2.对于非空集合M、P,把所有属于M而不属于P的元素组成的集合称为M与P的差集,记作,用数学符号描述这一集合则__________________,且在下列给出的4个集合中,必与相等的集合的序号是______________.①M;②P;③;④;⑤【答案】,且,③【解析】由定义,表示的是在M中而不在P中的元素,∴,且,从而表示的是在M中且在P中的元素,故选③.【考点】本题主要考查差集的概念、集合中元素的性质。
点评:这是一道新定义问题,考查学生的学习能力、阅读能力。
3.设全集U={x||x|<4,且x∈Z},S={-2,1,3},且P是U的子集,若P S,则这样的集合PU共有()A.5个B.6个C.7个D.8个【答案】D【解析】U=,由P S知,而,∴共有子集U个.一般地,有n个元素的集合有2n个子集,有2n-1个真子集.【考点】本题主要考查子集的概念。
点评:注意从集合中元素的有无、多少依次考虑。
一般地,有n个元素的集合有2n个子集,有2n-1个真子集。
特别注意空集是任何集合的子集。
P=()4.已知全集U={x|x为小于或等于20的素数},P={3,7,11,17},则UA.{5,9,13,19}B.{1,5,13,19}C.{2,5,13,19}D.{1,2,5,13,19}【答案】C【解析】U={2,3,5,7,11,13,17,19},由补集的概念比较两个集合即得,选C。
高一数学集合测试题及答案高一数学 集合 测试题一、选择题(每小题5分,共60分)1.下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥0∉φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( ) (A )4 (B )5 (C )6 (D )7 2.集合{1,2,3}的真子集共有( ) (A )5个 (B )6个 (C )7个 (D )8个3.集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12}C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )(A )(a+b )∈ A (B) (a+b) ∈B (C)(a+b)∈C (D) (a+b) ∈ A 、B 、C 任一个4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( )(A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ 5.已知集合A={022≥-xx } B={0342≤+-x xx }则A B ⋃=( )(A )R (B ){12≥-≤x x x 或}(C ){21≥≤x x x 或} (D ){32≥≤x x x 或}6.设f (n )=2n +1(n ∈N),P ={1,2,3,4,≠⊂5},Q ={3,4,5,6,7},记P ∧={n ∈N|f (n )∈P },Q∧={n ∈N|f (n )∈Q },则(P ∧∩NðQ∧)∪(Q ∧∩NðP∧)=( )(A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}7.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a 等于( )(A )-4或1 (B )-1或4 (C )-1 (D )48.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )⋃(C U B )=( ) (A ){0} (B ){0,1} (C ){0,1,4} (D ){0,1,2,3,4}10.设A={x 0152=+-∈px xZ },B={x 052=+-∈q x xZ },若A ⋃B={2,3,5},A 、B 分别为( )(A ){3,5}、{2,3} (B ){2,3}、{3,5}(C ){2,5}、{3,5} (D ){3,5}、{2,5}11.设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b,则不等式ax 2+bx+c ≥0的解集为( )(A )R (B )φ(C ){a b x x 2-≠}(D ){ab2-} 12.已知P={04<<-m m },Q={012<--mx mxm ,对于一切∈x R 成立},则下列关系式中成立的是( ) 13.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N 等于( )(A )φ (B ){φ} (C ){0} (D )Z14.已知集合则实数的取值范围是( ) A .B .C .[-1,2]D .15.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(C U A )⋂B={4},(C U A )⋂(C U B )={1,5},则下列结论正确的是( ) (A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3,(A )P Q(B )Q P(C )P=Q (D )P ⋂Q=φ≠⊂≠⊂16. 设集合10,2A ⎡⎫=⎪⎢⎭⎣, 1,12B ⎡⎤=⎢⎥⎣⎦, 函数()()1,221,x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩,若0x A ∈,且()0f f x A ∈⎡⎤⎣⎦,则0x 的取值范围是( )A .10,4⎛⎤ ⎥⎦⎝B .11,42⎛⎤ ⎥⎦⎝C .11,42⎛⎫ ⎪⎝⎭D .30,8⎡⎤⎢⎥⎣⎦17. 在R 上定义运算e : 2a b ab a b =++e ,则满足()20x x -<e 的实数x 的取值范围为( )A. (0,2)B. (-1,2)C.()(),21,-∞-+∞U D. (-2,1) .18. 集合P={x|x 2=1},Q={x|mx=1},若QP ,则m 等于( )A .1B .-1C .1或-1D .0,1或-119.设全集U={(x,y )Ry x ∈,},集合M={(x,y )122=-+x y },N={(x,y)4-≠x y },那么(C U M )⋂(C U N )等于( )(A ){(2,-2)} (B ){(-2,2)}(C )φ (D )(C U N ) 20.不等式652+-x x <x 2-4的解集是( )(A ){x 2,2>-<x x 或} (B ){x 2>x }(C ){ x3>x } (D ){ x 2,32≠<<-x x 且}二、填空题1. 在直角坐标系中,坐标轴上的点的集合可表示为2. 若A={1,4,x},B={1,x 2}且A ⋂B=B ,则x= 3. 若A={x 01032<-+x x} B={x 丨3<x },全集U=R ,则A )(B CU⋃=4. 如果集合 中只有一个元素,则a 的值是 5. 集合{a,b,c}的所有子集是 真子集是 ;非空真子集是 6. 方程x 2-5x+6=0的解集可表示为方程组的解集可表示为⎩⎨⎧=-=+0231332y x y x 7.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。
高一数学集合练习题及答案(新版)一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合102x A xx -⎧⎫=<⎨⎬-⎩⎭,{1}B x x =>-,则( ) A .RA B ⊆B .RA B ⊆ C .B A ⊆ D .A B ⊆3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-5.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-6.已知集合{1,0,1}A =-,{|3x B x =≥,则A B =( )A .{0}B .{0,1}C .{0,1}-D .{1,0,1}-7.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .38.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤9.设集合{}02A x x =≤≤,B={1,2,3},C={2,3,4},则()A B C =( ) A .{2}B .{2,3}C .{1,2,3,4}D .{0,1,2,3,4}10.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,211.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-12.已知集合(){}2{34},log 22A x Zx B x x =∈-≤<=+<∣∣,则A B 的元素个数为( ) A .3B .4C .5D .613.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅14.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0 B .2C .4D .815.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3-二、填空题16.若{}31,3,a a ∈-,则实数a 的取值集合为______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______. 21.已知集合{}1,2,3A =,{}1,0,1B =-,则A B ⋃=___________.22.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.23.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.24.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.25.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 三、解答题26.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .27.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ; (2)若______,求实数a 的取值范围.28.设函数()()21,R f x ax a x =-∈的不动点(满足()f x x =)、稳定点(满足()()f f x x =)的集合分别为A 、B .若A B =≠∅,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.D 【解析】 【分析】首先解分式不等式求出集合A ,再根据补集的定义求出RA 、RB ,再根据集合间解得基本关系判断可得; 【详解】 解:由102x x -<-,等价于()()120x x --<,解得12x <<, 所以{}10|122x A xx x x -⎧⎫=<=<<⎨⎬-⎩⎭,{}R|12A x x x =≤≥或又{1}B x x =>-,所以{}R 1B x x =≤-, 所以A B ⊆ 故选:D 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 4.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-,41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 5.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 6.B 【解析】 【分析】由对数的运算性质,并解指数不等式可得31{|log }2B x x =≥,再由集合的交运算求A B . 【详解】由31{|log }2B x x =≥,而311log 02-<<, 所以{0,1}A B =. 故选:B 7.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 8.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 9.C 【解析】 【分析】根据集合交、并的定义,直接求出()A B C . 【详解】因为集合{}02A x x =≤≤,B={1,2,3},所以{}1,2A B =, 所以()A B C ={1,2,3,4}. 故选:C 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D 12.A 【解析】 【分析】根据对数函数的单调性解得集合B ,再求A B ⋂即可得到其元素个数. 【详解】因为{34}A x Zx =∈-≤<∣{}3,2,1,0,1,2,3=---, ()2log 22x +<,即()22log 2log 4x +<,故024x <+<,解得22x -<<,即{|22}B x x =-<<,则{}1,0,1A B ⋂=-,其包含3个元素.13.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解. 【详解】 由x31,得03x <≤, 所以}{N ,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.{}0,1,3【解析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,3 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2. 18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:820.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1.21.{}10123-,,,, 【解析】 【分析】根据并集的定义可得答案. 【详解】{}1,2,3A =,{}1,0,1B =-,∴{}10123A B ⋃=-,,,,. 故答案为:{}10123-,,,,. 22.24a ≤≤【解析】 【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围. 【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a ax <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132aa ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤.故答案为:24a ≤≤23.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.24.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤25.9,4⎧-⎨⎩【解析】 【分析】 由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x 1x =a ={1A =;若方程(*)有一个根是x =1x =a ={1A =+.综上,a 的取值集合为9{,4-.故答案为:9{,4-.三、解答题26.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅ 【解析】 【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可; (2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.27.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.28.13,44⎡⎤-⎢⎥⎣⎦【解析】【分析】根据函数的不动点、稳定点的定义结合题意分别求出集合A 、B ,再结合结合A B =≠∅即可求解.【详解】由题意可知,()21f x ax x =-=, {}210A x ax x -=-=,由()()f f x x =,得()()342222221110a x a x x a ax x a xax a --+-=--+-+=, (){}2211B x a ax x =--={}3422210x a x a x x a =--+-=. ()(){}222110x ax x a x ax a =--+-+=. 当0a =时,()1f x =-.则集合{}1A B ==-,满足题设要求.当0a ≠时,当A B =≠∅时,方程210ax x --=有解,对方程2210a x ax a +-+=根的情况进行分类讨论若方程2210a x ax a +-+=有两个不相等的实数根,则22 1+40-4(1-) >0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a >, 此时两个方程没有公共解,集合B 中有四个元素,不合题意,舍去. 若方程2210a x ax a +-+=有两个相等的实数根,则22 1+40-4(1-) =0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a = 此时方程210ax x --=的两根分别为2,23-, 方程2210a x ax a +-+=的根为1223x x ==-. 验证得2,23A B ⎧⎫==-⎨⎬⎭⎩ 若方程2210a x ax a +-+=无实数根,此时A B =,则22 1+40-4(1-) <0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得1344a -≤<且0a ≠ 综上所述,实数a 的取值范围为13,44⎡⎤-⎢⎥⎣⎦. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}22A x x =-<≤,{}10B x x =-≥,则()R A B ⋂=( ) A .{}21x x -≤≤B .{}2x x ≤-C .{}12x x ≤<D .{}2x x >2.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π3.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .164.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1}B .{0,1}C .{0,1,2}D .∅5.已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3},则 ()UA B ⋃=( )A .{4,5}B .{1,2}C .{2,3}D .{1,2,3,4} 6.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( )A .{1,2}B .{2,4}C .{0,2}D .{3,4}7.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的 B .T 、V 中至多有一个关于乘法是封闭的 C .T 、V 中有且只有一个关于乘法是封闭的 D .T 、V 中每一个关于乘法都是封闭的8.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( ) A .A C ⋂=∅ B .A C A ⋃= C .B C B = D .A B C =9.已知集合{}{01}A xx a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( ) A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥10.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加参加径赛和田赛有3人,同时参加径赛和球类比赛有3人,没有人同时参加三项比赛.只参加球类比赛的人数为( ) A .6B .7C .8D .9 11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}x x -<<∣D .{2,1,0,1,2}-- 12.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( ) A .6B .7C .8D .913.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤14.给出下列关系:①13∈R ;②3∈Q ;③-3∉Z ;④3-∉N ,其中正确的个数为( ) A .1B .2C .3D .415.设集合{}{}1,2,20A B x ax ==-=,若B A ⊆,则由实数a 组成的集合为( ) A .{1}B .{2}C .{1,2}D .{0,1,2}二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.已知非空集合A ,B 满足:A B =R ,A B =∅,函数()3,,32,x x A f x x x B ⎧∈=⎨-∈⎩对于下列结论:①不存在非空集合对(),A B ,使得()f x 为偶函数; ②存在唯一非空集合对(),A B ,使得()f x 为奇函数; ③存在无穷多非空集合对(),A B ,使得方程()0f x =无解. 其中正确结论的序号为_________.18.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.19.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.20.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.21.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 22.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q ⋂=,则实数a 的取值范围是___________.23.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.24.若集合234|0Ax x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知全集U =R ,集合{}04A x x =≤≤,(){}lg 2B x y x ==-. (1)求()UA B ;(2)若集合()0,C a =,且C A B ⊆,求实数a 的取值范围.27.已知全集U =R ,集合{}22150A x x x =--<,集合()(){}2210B x x a x a =-+-<.(1)若1a =,求UA 和UB ;(2)若A B A ⋃=,求实数a 的取值范围.28.已知函数()f x =A ,函数()g x =的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.29.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.30.已知集合{}250A x x x a =-+≤,B =[3,6].(1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】 求出集合RA ,根据集合的交集运算,求得答案.【详解】由题意,{}22A x x =-<≤,则R{|2A x x =≤-或2}x > ,{}10{|1}B x x x x =-≥=≤,故()R {|2}A B x x ⋂=≤-, 故选:B【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 3.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 4.A 【解析】 【分析】首先列举表示集合A ,再求A B . 【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=. 故选:A 5.A 【解析】 【分析】先求出A B ,再由补集运算得出答案. 【详解】{}1,2,3A B =,则(){}4,5UA B ⋃=,故选:A .【解析】 【分析】化简集合P ,根据集合的包含关系确定M . 【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对, 又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错, 故选:A. 7.A 【解析】 【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可. 【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确. 故选:A . 8.C 【解析】 【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可. 【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C 9.C 【解析】 【分析】利用交集的定义即得. 【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤. 故选:C. 10.C【解析】 【分析】 由容斥原理求解 【详解】设同时参加球类比赛和田赛的人数为x ,由于没有人同时参加三项比赛 故281581433x =++---,得3x = 故只参加球类比赛的人数为14338--= 故选:C 11.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 12.B 【解析】 【分析】解对数不等式化简A ,求出B 可得答案. 【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<, 所以N B A ={2,3,4,5,6,7,8}=, 则B 中元素的个数为7. 故选:B 13.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D. 14.B 【解析】 【分析】根据数集的定义,即可得答案; 【详解】13是实数,①②错误;-3是整数,③④正确.所以正确的个数为2. 故选:B. 15.D 【解析】 【分析】由题设可知集合B 是集合A 的子集,集合B 可能为空集,故需分类讨论 【详解】解析:由题意,当=B ∅时,a 的值为0; 当{}=1B 时,a 的值为2; 当{}=2B 时,a 的值为1, 故选:D二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}1 17.①③ 【解析】 【分析】通过求解332x x =-可以得到在集合A ,B 含有何种元素的时候会取到相同的函数值,因为存在能取到相同函数值的不同元素,所以即使当x 与x -都属于一个集合内时,另一个集合也不会产生空集的情况,之后再根据偶函数的定义判断①是否正确,根据奇函数的定义判断②是否正确,解方程()0f x =判断③是否正确 【详解】①若x A ∈,x A -∈,则3()f x x =,3()f x x -=-,()()f x f x ≠- 若x B ∈,x B -∈,则()32f x x =-,()32f x x -=--,()()f x f x ≠- 若x A ∈,x B -∈,则3()f x x =,()32f x x -=--,()()f x f x ≠- 若x B ∈,x A -∈,则()32f x x =-,3()f x x -=-,()()f x f x ≠- 综上不存在非空集合对(),A B ,使得()f x 为偶函数 ②若332x x =-,则1x =或2x =-,当{}1B =,A B =R时,(1)312f =⨯-满足当1x =时31x =,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数当{}2B =-,A B =R时,(2)3(2)28f -=⨯--=-满足当2x =-时38x =-,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数所以存在非空集合对(),A B ,使得()f x 为奇函数,且不唯一 ③30x =解的0x =,320x -=解的23x =,当非空集合对(,)A B 满足0A ∉且23B ∉,则方程无解,又因为A B =R ,A B =∅,所以存在无穷多非空集合对(),A B ,使得方程()0f x =无解 故答案为:①③ 【点睛】本题主要考查集合间的基本关系与函数的奇偶性,但需要较为缜密的逻辑推理 ①通过对x 所属集合的分情况讨论来判断是否存在特殊的非空集合对(,)A B 使得函数()f x 为偶函数②观察可以发现3x 为已知的奇函数,通过求得不同元素的相同函数值将解析式32x -归并到3x 当中,使得()f x 成为奇函数③通过求解解析式零点,使得可令两个解析式函数值为0的元素均不在所对应集合内即可得到答案18.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=,∴()22sin 23g x x π⎛⎫=+ ⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒ 19.[2,+∞) 【解析】 【分析】根据A B ⊆结合数轴即可求解. 【详解】∵{}22A x x =-≤≤≠∅,A B ⊆, ∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).20.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<< 21.2 【解析】 【分析】先求P Q 后再计算即可. 【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:222.()4,+∞【解析】【分析】求出集合P ,根据P Q Q ⋂=,得Q P ⊆,列出不等式即可得解.【详解】 解:{}{22804P x x x x x =-->=>或}2x <-, 因为P Q Q ⋂=,所以Q P ⊆,所以4a >.故答案为:()4,+∞.23.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】【分析】根据()f x =.【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =, {,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭. ()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 24.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭.25.{}|43,N n n k k =+∈【解析】【分析】用数学式子表示出自然语言即可.【详解】被4除余3的自然数即为4的整数倍加3,因此{|43,N}A n n k k ==+∈.故答案为:{}|43,N n n k k =+∈.三、解答题26.(1)()4,+∞(2)02a <≤【解析】【分析】(1)先求出集合B ,再按照并集和补集计算()U A B 即可;(2)先求出[)0,2A B =,再由C A B ⊆求出a 的取值范围即可.(1){}2B x x =<,{}4A B x x ⋃=≤,()()4,U A B ⋃=+∞;(2) [)0,2A B =,由题得()[)0,0,2a ⊆故02a <≤.27.(1)(][)35,U A =-∞-⋃+∞,,U B R =(2)[-【解析】【分析】(1)根据一元二次不等式的解法,求解集合()3,5A =-,B =∅,再根据补集运算求解即可;(2)由题知B A ⊆,再分B =∅和B ≠∅两种情况讨论求解即可;(1)解:由已知,()3,5A =-所以(][)35,U A =-∞-⋃+∞,当1a =时,(){}210B x x =-<=∅,所以U B R =,(2)若A B A ⋃=,则B A ⊆当B =∅时,1a =,适合题意故B ≠∅,从而1a ≠∵()()222110a a a --=-≥(当且仅当1a =时取等号)∴221a a >-,∴()221,B a a =- 由B A ⊆得221351a a a -≥-⎧⎪≤⎨⎪≠⎩,解之得1a -≤≤1a ≠ 综上所述,a的取值范围为[-28.(1)1{|03A B x x ⋂=-<≤或1}x =; (2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可;(2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭; 当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 29.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞30.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线,故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-.。
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e -D .()2,e - 3.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( ) A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-4.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅5.已知集合{}1,2,3,4A =,{}25B x x =<,则A B =( )A .{}1B .{}1,2C .{}1,2,3D .{}1,2,3,46.若集合{A y y ==,{}3log 2B x x =≤,则A B =( )A .(]0,9B .[)4,9C .[]4,6D .[]0,9 7.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2) B .{1,2} C .{0,1,2} D .{0,1,2,3} 8.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3-9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤<B .{}|15x x ≤<C .{}|15x x -≤<D .{}|13x x ≤≤10.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5} 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂=12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)- B .(2,)-+∞ C .(2,1)-- D .(,2)-∞- 14.()Z M 表示集合M 中整数元素的个数,设{}1|8A x x =-<<,{}|527B x x =-<<,则()Z A B =( )A .5B .4C .3D .215.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( )A .AB .BC .(5,1]-D .[4,0)-二、填空题16.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________.17.已知集合{}2410A x mx x =++=有两个子集,则m 的值是__________. 18.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.20.已知(1,2)A =-,(1,3)B =,则A B =________21.若{}231,13a a ∈--,则=a ______.22.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.23.若集合(){,|M x y y =,(){},|1N x y x ==,则M N =______.24.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______. 25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R 这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值;(2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).27.已知集合{|lg(3)A x y x ==-+,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.29.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<.(1)若2a =-,求()R A B ⋃;(2)若A B A =,求a 的取值范围.30.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.3.A【解析】【分析】先求B ,再求并集即可【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=-故选:A4.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A5.B【解析】【分析】求出集合B,根据集合的交集运算求得答案.【详解】 因为{}5252B x x x x ⎧⎫=<=<⎨⎬⎩⎭ ,所以{}1,2A B =, 故选:B6.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .7.B【解析】【分析】求得集合{|03}A x x =<<,根据集合交集的概念及运算,即可求解.【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B =-<=<<=-,根据集合交集的概念及运算,可得{1,2}A B =.故选:B.8.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .9.D【解析】【分析】求解分式不等式的解集,再由补集的定义求解出A R ,再由交集的定义去求解得答案.1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R .故选:D10.B【解析】【分析】 由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.D【解析】【分析】 先求出R N ,再结合交集定义即可求解.【详解】由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.B【解析】【分析】先计算出集合,A B ,再计算A B 即可.【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞.14.B【解析】【分析】先求得A B ,再根据()Z M 的定义求解.【详解】解:因为{}1|8A x x =-<<,{}57|527|22⎧⎫=-<<=-<<⎨⎬⎩⎭B x x x x , 所以7|12⎧⎫=-<<⎨⎬⎩⎭A B x x , 所以()4=Z A B ,故选:B15.C【解析】【分析】根据集合并集的概念及运算,正确运算,即可求解.【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-.故选:C.二、填空题16.{2,3}##{3,2}【解析】【分析】由交集的运算求解【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}17.0或4【解析】【分析】由题意得A 只有一个元素,对m 分类讨论求解【详解】当0m =时,1{}4A =-,满足题意 当0m ≠时,由题意得1640m ∆=-=,4m =综上,0m =或4m =故答案为:0或418.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.19. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}20.(1,2)##{}12,x x x R <<∈【解析】【分析】根据集合交集的定义可得解.【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=.故答案为:(1,2)21.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.22.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.23.(){}1,0【解析】【分析】根据交运算的含义,求解方程组,即可求得结果.【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故MN =(){}1,0.故答案为:(){}1,0. 24.2【解析】【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案.【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根,所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍;当2m =时,{}{}224201B x x x =-+==,满足条件. 故答案为:225.[)2020,∞+【解析】【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围.【详解】由2202120200x x -+<,解得:12020x <<,∴()1,2020A =,又A B ⊆,且{}|B x x a =<,∴2020a ≥,故a 的取值范围为[)2020,∞+.故答案为:[)2020,∞+三、解答题26.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b a b a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.27.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1)()R A B ⋃{|2x x =≤-或1}x ≥ (2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1)解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.30.(1)2,13⎡⎤⎢⎥⎣⎦ (2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<, 因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<, 21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.。
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学集合单元质量检测 姓名
满分:100分 时间:100分钟
一、选择题(每小题4分)
1. 下列说法中,正确的是( )
A 任何一个集合必有两个子集;
B 若,A B φ=则,A B 中至少有一个为φ
C 任何集合必有一个真子集;
D 若S 为全集,且,A
B S =则,A B S == 2. 集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )
(A )(a+b )∈ A (B) (a+b) ∈B (C)(a+b) ∈ C (D) (a+b) ∈ A 、B 、C 任一个
3. 设P 、Q 为两个非空实数集合,定义集合{|,},P Q a b a P b Q +=+∈∈{0,2,5},P =若}6,2,1{=Q ,则P+Q 中元素的个数是( )
A .9
B .8
C .7
D .6
4. 已知全集U ,M 、N 是U 的非空子集,且M N ,则必有( )
A. M N
B. M N
C.M=N
D.M=N 5. 设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( )
(A ){3,5}、{2,3} (B ){2,3}、{3,5} (C ){2,5}、{3,5} (D ){3,5}、{2,5}
6.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N C Q ∧)∪(Q ∧∩N C P ∧)=( )
(A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}
7. 设一元二次方程 20ax bx c ++= (a<0) 的根的判别式042=-=∆ac b ,则不等式20ax bx c ++≥的解集为( )
(A )R (B )φ (C ){a b x x 2-≠} (D ){a
b 2-}
8. 满足{1}A {1,2,3,4,5},且A 中所有元素之和为奇数的集合A 的个数是( )
A.5
B.6
C.7
D.8
9. 设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(C U A )⋂B={4},(C U A )⋂(C U B )={1,5},则下列结论正确的是( )
(A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3,
10. 设全集U={(x,y )R y x ∈,},集合M={(x,y )
12
2=-+x y },N={(x,y)4-≠x y },那么(C U M )⋂(C U N )等于( ) (A ){(2,-2)} (B ){(-2,2)} (C )φ (D )(C U N )
二、填空题(每小题5分)
11. 在直角坐标系中,坐标轴上的点的集合可表示为
12.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1} 则a =
13. 设全集为U ,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。
(1) (2)
(3)
14. 已知集合{
}{}11,910,7,5,3,13,1⊆⊆P ,则满足条件的集合P 的个数为 15. 设数集31,43M x m x m N x n x n ⎧
⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭
,且M N 、都是集合{}01x x ≤≤的子集,如果把b a -叫做集合{}
x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是 16. 设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是
三、解答题(每小题10分)
17. 设U R =,集合{}2|320A x x x =++=,{}
2|(1)0B x x m x m =+++=;
若φ=B A C U )(,求m 的值。
18
19.已知集合22{|2},{|
},{|0}11x x A x x x x B x C x ax x b x x
=-≤===-+>--,且(A ∪B)∩C=Φ, (A ∪B)∪C=R ,求,a b 的值。
高一数学集合单元质量检测答案
2012.7.21
一、选择题(每小题4分)
1. D
2. B
3. B
4. A
5. A
6. A
7. D
8. A
9. C
10. A 二、填空题(每小题5分)
11. {(x,y)0=⋅y x }
12. -1或4
13. (1) (A ⋃B ));(B A C u ⋂⋂(2)[(C U A )⋂(C U B )]C ⋂;(3)(A ⋂B )⋂(C U C )
14. 32
15. 112
16. {211≤
≤-k k } 三、解答题(每小题10分)
17. 解:{}2,1A =--,由(),U C A B B A φ=⊆得,
当1m =时,{}1B =-,符合B A ⊆;
当1m ≠时,{}1,B m =--,而B A ⊆,∴2m -=-,即2m =
∴1m =或2。
18
19.解:对于A,由得
或x=0
∴A={0}∪[1,3].
对于B,由
∴B=
于是可得A∪B=[0,3].
又∵(A∪B)∩C=,(A∪B)∪C=R,
∴C=(-∞,0)∪(3,+∞)①
此时,注意到C={x|ax2-x+b>0},②
∴由①、②得ax2-x+b=ax(x-3)且a>0
因此,比较等式两边的系数得。