相遇问题应用题
- 格式:doc
- 大小:19.50 KB
- 文档页数:6
相遇问题的应用题(一)
1.甲乙两只船同时从相距210千米的两港口相对开出,6小时相遇,甲船每小时行20千米,
乙船每小时行多少千米?
2.甲,乙两辆汽车从A,B两城相向前行,甲车每小时行驶50.5千米,乙车每小时行驶40
千米,它们同时出发,经过5小时后两车相遇,两地相距多少千米?
3.甲,乙两人同时分别从两地相向出发,甲每分钟走80米,乙每分钟走70米,走了8分
钟后,两人还相距300米,那么甲乙两地相距多少米?
4.甲乙两地相距328.5千米,两辆汽车同时从两地相对开出,经过4.5小时两车相遇,已
知其中一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?
5.甲乙两人同时同两地相向而行,4小时后相遇,甲每小时行6千米,乙每小时行5千米,
两地相距多少千米?
6.两地相距600千米,一列货车和一列客车同时从两地相向而行,经过3小时相遇。
客车
每小时行80千米,货车每小时行多少千米?
7.甲乙两地相距600千米,一列货车和一列客车同时从两地相向开出,客车每小时行90
千米,货车每小时行110千米,两车相遇时,各行多少千米?
8.A,B两个城市相距565千米,一列慢车有A城开往B城,每小时行55千米,2小时后,
一列快车由B城开往A城,每小时行75千米,快车开出几小时后两列火车相遇?
9.甲乙两港相距584千米,上午8时一只货轮从甲港开往乙港,下午1时,一只客轮从乙
港开往甲港,客轮开出12小时后与货轮相遇,货轮每小时行16千米,客轮每小时行多少千米?
10.东,西两城相距650千米,甲乙两车同时从东,西两地相对开出,2.5小时后,两车还
相距400千米,两车再行多少小时才能相遇?。
相遇问题的应用题30道1. 甲、乙两人分别从相距 120 千米的 A、B 两地同时出发,相向而行。
甲每小时行 30 千米,乙每小时行 20 千米,几小时后两人相遇?解析:两人相向而行,他们的相对速度为甲的速度加上乙的速度,即 30 + 20 = 50 千米/小时。
根据时间 = 路程÷速度,可得相遇时间为 120÷50 = 2.4 小时。
2. 小明和小红同时从学校和家出发,相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过 10 分钟相遇。
学校到家的距离是多少米?解析:两人的速度和为 60 + 50 = 110 米/分钟,10 分钟相遇,所以路程 = 速度×时间,即 110×10 = 1100 米。
3. 甲车每小时行 40 千米,乙车每小时行 50 千米,两车同时从相距 360 千米的两地相向而行,几小时相遇?解析:相对速度为 40 + 50 = 90 千米/小时,相遇时间 = 360÷90 = 4 小时。
4. 两艘轮船同时从相距 480 千米的两个港口相对开出,甲船每小时行 35 千米,乙船每小时行 45 千米,几小时后两船相遇?解析:速度和为 35 + 45 = 80 千米/小时,相遇时间 = 480÷80 = 6 小时。
5. 甲、乙两地相距 560 千米,一辆客车和一辆货车同时从两地相对开出,客车每小时行 80 千米,货车每小时行 60 千米,几小时后两车相遇?解析:相对速度为 80 + 60 = 140 千米/小时,相遇时间 = 560÷140 = 4 小时。
6. 明明和亮亮在周长为 400 米的环形跑道上跑步,明明每秒跑 5 米,亮亮每秒跑 3 米,他们同时从同一地点出发,反向而行,多长时间后两人第一次相遇?解析:反向而行,相对速度为 5 + 3 = 8 米/秒,跑道周长为 400 米,相遇时间= 400÷8 = 50 秒。
四年级相遇问题应用题50道1、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行80千米,乙列车每小时行60千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行32千米,经过3小时两车相遇。
两个车站之间的铁路长多少千米?3、师徒两人合作加工550个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后加工完?4、甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天挖85米,两队合作8天挖好,这条水渠一共长多少米?5、甲、乙两艘轮船从相距632千米的两地相对开出而行,已知乙船每小时行42千米,甲船每小时行37千米,几小时两船相遇?6、两地相距280千米,两车同时从两地相对开出,经过4小时在途中相遇。
甲每小时行30千米、乙每小时行多少千米?7、甲、乙两车同时从相距480千米的两地相对而行,经过6小时在途中相遇。
乙车每小时行35千米,甲每小时行多少千米?8、A、B两地相距3400米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了20分钟,他们相遇了吗?9、甲、乙两辆车同时从两地出发相向而行。
已知甲车每小时行45千米,乙车每小时行32千米,经过4小时后还相距2千米,两地相距多少千米?10、小明、小丽、小芳同时跳绳,跳了3分钟,小明每分钟跳89个,小丽每分钟跳92个,小芳每分钟跳91个,他们一共跳了多少个?11、小明和小华从甲地同时出发,小明步行每分钟走60米,小华骑自行车每分钟行200米,小华到达距甲地 5200米的乙地后,立即调头返回,途中与小明相遇,求相遇时小明一共走了多少米?12、A、B两城相距80千米,甲、乙两人都骑自行车从A城同时出发,甲比乙每小时慢8千米,乙到B城当即折返,距B城20千米处与甲相遇,那么甲的速度是多少?13、A、B两村相距3500 米,小明和小军分别从两村出发相向而行。
相遇的应用题及答案相遇的应用题及答案相遇应用题的知识从一个运动物体变成两个运动物体,涉及到物体运动的速度、方向、出发地点,出发时间等不同因素。
以下是相遇的应用题及答案,欢迎阅读。
相遇的应用题及答案篇11、甲乙两人同时从相距90千米的两地相向而行。
甲每小时行8千米,乙每小时比甲多行2千米。
几小时后他们在途中相遇?2、甲乙两人从相距99千米的两地相对开出,3小时后相遇,已知甲每小时行15千米,乙每小时行多少千米?3、甲乙两人同时从两地骑车相向而行,甲的速度是每小时20千米,乙每小时行18千米,两人在距离中点3千米的地方相遇。
问两地相距多少千米?4、两列火车同时从甲乙两城相对开出,甲车每小时行76千米,乙车每小时行82千米,两车开出3小时后,还相距156千米。
甲乙两城相距多少千米?5、甲乙两地相距384千米,两辆汽车从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
甲车开出64千米后,两车才出发,再经过几小时两车相遇?6、小明与妈妈同时从家出发去距家810千米的电影院看电影。
小明心急,先以每分钟54米的速度跑到电影院,发现票还在妈妈手上,所以马上以原速返回,又在5分钟后与妈妈在路上相遇。
问:妈妈每分钟走多少米?7、从甲地开车到乙地,客车要用24小时才能到达,货车要用40小时才能到达,如果客,货两车从两地同时同向开出,已知客车每小时行80千米,则多少小时后两车相遇?8、两个修路队共修长450米的'公路,甲队每天修15米,乙队每天修13米,甲队先修2天后,再和乙队合作,还要多少天才能完成?相遇的应用题及答案篇2一、基本题型1、甲乙两列火车同时从相距700千米的两地相向而行,甲车每小时行85千米,乙车每小时行90千米,两列火车几小时相遇?2、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过5小时两车相遇。
两个车站之间的铁路长是多少千米?3、甲乙两列火车同时从相距988千米的两地相向而行,经过8小时两车相遇,甲车每小时行93千米,乙车每小时行多少千米?二、综合练习1、师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时后还有70个没有加工完?2、甲乙两队和挖一条水渠,甲队从东往西挖,每天挖75米,乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖完,这条水渠一共长多少米?3、甲乙两艘轮船从相距654千米的两地相对开出相向而行,8小时两船还相距22千米,已知乙船每小时行42千米,甲船每小时行多少千米?4、一辆汽车和一辆自行车从相距1725千米的甲乙两地同时出发,相向而行,3小时后两车相遇,已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?5、两地相距270千米,甲乙两列火车同时从两地相对开出,经过4小时相遇,已知甲车的速度是乙车的1.5倍,求甲乙两列火车每小时各行多少千米?6、甲乙两城相距680千米,从甲城开往乙城的普通客车每小时行60千米,2小时候,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?7、甲乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了一小时,5小时候两车相遇。
初一一元一次方程相遇问题经典应用题一、甲、乙两人从两地同时出发相向而行,甲每分钟走60米,乙每分钟走50米,经过15分钟两人相遇。
两地相距多少米?A. 1650米B. 1500米C. 1350米D. 1800米(答案:A)二、A、B两地相距480千米,甲、乙两车分别从A、B两地相对开出,经过4小时相遇。
已知甲车每小时行65千米,乙车每小时行多少千米?A. 55千米B. 60千米C. 65千米D. 70千米(答案:A)三、小明和小华从两地同时出发,相向而行。
小明每分钟走50米,小华每分钟走70米,经过12分钟两人相遇。
小明比小华少走多少米?A. 120米B. 140米C. 240米D. 280米(答案:C)四、两地相距900千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车每小时行70千米,两车经过几小时相遇?A. 6小时B. 8小时C. 10小时D. 12小时(答案:C)五、小红和小绿从两地同时出发,相向而行。
小红每分钟走45米,小绿每分钟走55米,两人相遇时,小红比小绿少走了100米。
两人相遇用了多少时间?A. 5分钟B. 10分钟C. 15分钟D. 20分钟(答案:B)六、A、B两地相距600千米,甲车从A地出发,每小时行60千米,乙车从B地出发,每小时行90千米。
两车相向而行,甲车先行1小时后,乙车才出发,乙车出发几小时后与甲车相遇?A. 3小时B. 4小时C. 5小时D. 6小时(答案:C)七、甲、乙两人分别从两地同时出发,相向而行。
甲每分钟走60米,乙每分钟走40米。
相遇时,甲比乙多走了200米。
两人相遇用了多少时间?A. 10分钟B. 15分钟C. 20分钟D. 25分钟(答案:A)八、两地相距800千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车的速度是甲车的1.2倍。
两车经过几小时相遇?A. 4小时B. 5小时C. 6小时D. 7小时(答案:B)。
相遇问题应用题相遇问题,是指两个或更多个物体在运动过程中是否会相遇的问题。
这类问题在日常生活和科学研究中都有广泛的应用。
本文将以几个实际案例,讨论相遇问题的应用。
案例一:会议室预定假设某公司有许多会议室,员工需要提前预定会议室进行会议。
为了避免冲突,公司需要一个系统来判断员工预定的会议室是否会发生时间上的冲突。
问题描述假设有两个员工A和B,他们分别预定了会议室A和会议室B。
员工A的会议预定时间为上午10点到11点,员工B的会议预定时间为上午9点到上午10点。
那么他们的会议时间是否会发生冲突呢?解决方案我们可以通过判断两个预定时间段的重叠情况来判断是否会发生冲突。
假设员工A的会议时间段为[a1, a2],员工B的会议时间段为[b1, b2],其中a1 < a2且b1 < b2。
那么会议时间是否冲突可以通过以下条件判断:•当b1 >= a2或a1 >= b2时,会议时间不冲突;•否则,会议时间冲突。
根据上述规则,我们可以编写一个程序来判断会议时间是否冲突,实现会议室预定系统。
案例二:两车相遇的时间假设有两辆车A和B,分别从A点和B点同时出发,相对速度分别为Va和Vb。
我们想要知道两辆车何时会相遇。
问题描述假设车A从A点出发经过t小时到达B点,而车B从B点出发经过t小时到达A点。
我们想要求出两辆车相遇的时间。
解决方案假设两辆车相遇的时间为t,相遇时车A和车B分别行驶的距离分别为Da和Db。
根据题目描述,我们可以得到以下的等式:Da = Va * t Db = Vb * t由此可以得到关于t的方程:Da + Db = Va * t + Vb * t根据上述方程,我们可以求解出t的值,即两辆车相遇的时间。
案例三:人追击问题假设有两个人A和B,A的速度为Va,B的速度为Vb。
A和B从同一地点同时开始运动,A始终追击B。
如果A的速度大于B的速度,那么A可以追上B吗?问题描述假设A和B的初始位置为0,初始时刻为t=0。
相遇问题应用题及答案相遇问题是一类常见的数学应用题,在实际生活中有着广泛的应用。
本文将通过几个具体的案例,来介绍相遇问题的应用和求解方法。
案例一:追及问题假设有两个人,A和B,通过一条笔直的道路从相距100公里的地点同时出发,A的速度是10公里/小时,B的速度是15公里/小时。
问题是,A追上B需要多长时间?解答:设A追上B需要的时间为t小时。
由题目可知,A走的距离为10t公里,B走的距离为15t公里。
根据相遇问题的性质,A追上B时走过的距离相等,即10t = 15t - 100。
解方程可得t = 5小时。
因此,A需要5小时才能追上B。
案例二:船速问题假设有一船行驶在静水中,船速为12公里/小时。
此时,船上投掷下去的某物品飘行的速度为8公里/小时,且与船运动方向相同。
请问,物品飘行的速度是多少?解答:设物品飘行的速度为v公里/小时。
根据相遇问题的性质,物品飘行的速度加上船的速度等于物品相对于地面的速度,即v + 12 = 8。
解方程可得v = -4公里/小时。
由于速度不能为负数,所以物品实际上是在相对于地面的背向运动。
因此,物品飘行的速度为4公里/小时,与船运动方向相反。
案例三:车船相遇问题假设一辆车以每小时60公里的速度向前行驶,而一艘船在静水中以每小时15公里的速度向前行驶。
若两者相距60公里处相遇,船向后行使15公里后返回原点,此后车驶回其出发点,问车船再次相遇时,船已经行驶了多少时间?解答:设车和船再次相遇时,船已经行驶的时间为t小时。
根据相遇问题的性质,车行驶的距离与船行驶的距离之和等于初始相遇时两者的距离,即60t + (15 - 15t) = 60。
解方程可得t = 1小时。
因此,车船再次相遇时,船已经行驶了1小时。
结论:相遇问题是一类常见的数学应用题,通过分析和解答相遇问题,可以提高我们的数学思维和解题能力。
本文通过追及问题、船速问题和车船相遇问题三个案例,介绍了相遇问题的应用和求解方法。
相遇问题应用题
1,甲乙两人同时从相距39千米的两地相向而行,甲步行每小时行3千米,乙骑自行车每小时行10千米。
多少小时后他们在途中相遇?甲、乙分别走了多少千米?
2,甲乙两车同时从AB两地相对开出,甲车每小时行92千米,乙车每小时行108千米,两车在距中点48千米的地方相遇。
AB两地相距多少千米?
3,货车和客车同时从甲乙两地相向而行,经过6小时相遇,相遇后客车再经过5小时到达乙地。
已知货车每小时行50千米,求甲乙两地的距离?
4,AB两地相距612千米,两辆汽车同时从A地开去B地,快车每小时行68千米,慢车每小时行54千米,当快车到达B地时,慢车离B地还有多远?
5,AB两地相距400千米,甲乙两车同时从两地相对开出,甲车每小时行35千米,乙车每小时行45千米。
一只鸽子以每小时50千米的速度和甲同时出发,向乙车飞去,遇到乙车后又向甲车飞去,遇到甲车又向乙车飞去这样一直飞下去。
鸽子飞多少千米时,两车正好相遇?
6,AB两地相距21千米,上午8时甲乙分别从AB两地出发,相向而行,甲到达B地后立即返回,乙到达A地后也立即返回。
上午11时两人第二次相遇。
此时,甲走的路程比乙走的路程多9千米。
甲每小时走多少千米?
7,甲乙两地相距600千米,小汽车和客车相对开出,小汽车速度是每小时行68千米,客车每小时行54千米,多少小时后两车相遇?
8,鸡兔共有头20个,有腿56条,鸡兔各有多少只?
9,小明12分钟走了全程的1/5,24分钟走了全程的一半,问他一共走了全程的几分之几?
还剩全程的几分之几没有走?
10,鸡兔共有32个头,有腿88条,鸡兔各有多少只?。
相遇问题应用题专项练习30题(有答案)1、甲城到乙城的公路长470千米。
快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的倍,经过3小时相遇。
两地相距多少千米4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。
两地相距多少千米5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时两车各行了多少千米8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时哪辆车行的路程多多多少9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
乙车行完全程要多少小时10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米甲船比乙船每小时多航行多少千米12、甲地到乙地的公路长436千米。
两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。
甲车开出2小时后,乙车才出发,再经过几小时两车相遇13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。
1相遇和追及1. 甲、乙两车分别从相距57千米的A 、B 两地同时出发,相向而行,甲车的速度为11千米/时,乙车的速度为8千米/时,请问甲乙两车将在( )小时后相遇.A. 5B. 4C. 3D. 2【答案】C【解答】根据相遇问题中,相遇时间=路程和÷速度和,所以甲乙两车的相遇时间为:()571183÷+=小时,答案选C .【难度】中等2. 帮帮和小业两家相距2400米,帮帮以60米/分的速度走向小业家,5分钟后,小业以40米/分的速度走向帮帮家,则小业出发( )分钟后能和帮帮相遇.A. 21B. 20C. 19D. 18【答案】A【解答】帮帮先走5分钟,走了605300⨯=米,剩下的距离为24003002100-=米,为两人的路程和,因此相遇时间为()2100604021÷+=分钟,故选A .【难度】4星3. 甲、乙两车分别从相距36千米的A 、B 两地同时出发,相向而行,甲车的速度为7千米/时,乙车的速度为5千米/时,请问甲乙两车将在( )小时后相遇.A. 5B. 4C. 3D. 2【答案】C【解答】根据相遇问题中,相遇时间=路程和÷速度和,所以甲乙两车的相遇时间为:()36753÷+=小时,答案选C .【难度】中等24. 帮帮和小业从自家同时出发,相向而行,帮帮和小业两家相距1600米,10分钟后两人相遇.已知帮帮的速度是每分钟60米,那么小业的速度是每分钟( )米.A. 160B. 100C. 60D. 40【答案】B【解答】帮帮和小业的路程和是1600米,相遇时间是10分钟,所以速度和是160010160÷=米/分,帮帮的速度是60米/分,那么小业的速度是16060100-=米/分,故选B .【难度】中等5. 甲、乙两车从A 、B 两地同时出发,相向而行,10小时相遇,已知甲车的速度是50千米/时,乙车的速度是甲车的2倍,则A 、B 两地之间的距离为( )千米.A. 500B. 1000C. 1500D. 2000【答案】C【解答】甲车的速度为50千米/时,乙车的速度为502100⨯=千米/时,两车10小时相遇,因此A 、B 两地之间的距离为()50100101500+⨯=,故选C .【难度】中等6. 甲、乙两地相距600千米,快车和慢车分别从甲、乙两地同时出发,相向而行,快车每小时行60千米,慢车每小时行30千米,试问:如果慢车先出发2小时,( )小时后两车相遇.A. 4B. 6C. 8D. 10【答案】B【解答】慢车先出发2小时,走了30260⨯=千米,此时两车相距60060540-=千米,根据相遇时间=路程和÷速度和,所以两车的相遇时间为540(6030)6÷+=小时,故选B .【难度】中等7. 聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明3明快42米,经过20分钟后两人相遇,聪聪家和明明家的距离是( ).A. 820B. 1640C. 1680D. 无法确定【答案】B【解答】解:由题意知聪聪的速度是:204262+=(米/分),两家的距离明明走过的路程聪聪走过的路程2020622040012401640=⨯+⨯=+=(米);故选:B.【难度】简单8. 妈妈从家出发到学校去接小红,妈妈每分钟走75米.小红从学校出发,小红每分钟走60米.经过20分钟妈妈和小红相遇.从小红家到学校有( )米.A. 1500B. 1200C. 2700D. 300【答案】C【解答】解:20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,家到学校的路程为:7560202700+⨯=()(米). 故选:C.【难度】简单9. 甲和乙从相距5000米的A 、B 两地同时出发,相向而行.如果甲每分钟走150米,乙每分钟走350米,那么两人从出发到相遇需要( )分钟.A. 7B. 8C. 9D. 10【答案】D【解答】甲每分钟走150米,乙每分钟走350米,一共要走5000米的路程,所以甲、乙相遇的时间为路程和÷速度和,即 ()500015035010÷+=分钟,故选D .【难度】中等10. 甲、乙两车同时从相距2156千米的两地相向而行,经过7小时两车相遇.甲车每小时行154千米,乙车每小时行()千米.A. 136B. 145C. 154D. 163【答案】C【解答】两车从相距2156千米的两地同时出发,7小时相遇,则可知甲乙两车的速度和为21567308-=千÷=千米/时,其中甲车的速度为154千米/时,所以乙车速度为308154154米/时,故选C.【难度】中等4。
相遇问题应用题
相遇问题应用题课题:相遇问题应用题
教学内容:课本第54页例3以及相应的“做一做”。
教学要求:进一步提高学生分析应用题的能力,学会列综合算式解答相向运动求路程的应用题。
教学过程:
一、复习。
口答:
①. 一辆汽车从甲地开往乙地,平均每小时行30千米,5小时到达。
可以求什么?怎样求?为什么这样求?
②. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,需要5小时。
可以求什么?怎样求?为什么这样求?
③. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,每小时行30千米。
可以求什么?怎样求?为什么这样求?
问:从以上三道题中可看出什么数量关系?
速度×时间=路程
二、新授。
1、导入新课。
刚才我们复习了一个物体运动的行程应用题,今天我们要来学习两个物体运动的行程应用题。
两个物体运动的行程应用题比较复杂,比如出发地点、行车方向、出发时间是相同还是不相同,运动的结果又怎样呢?这些都是我们研究
的内容。
出示准备题:
张华家距李诚家390米,两人同时从家里出发,向对方走去,张华每分走60米,李诚每分走70米。
390米
60米
60米
70米
70米
张华
李诚
问:题目中“同时”是什么意思?(出发时间一样)
出示下表,学生独立完成。
走的时间
张华走的路程
李诚走的路程
两人所走的路程和
现在两人的距离
1分
60米
70米
130米
260米
2分
120米
140米
260米
130米
3分
180米
210米
390米
0米
问:出发3分后,两人之间的距离又是多少?两人所走的路程的和与两家的距离有什么关系?(利用教具演示) 教师指出:像上面这样,运动方向是相向的、出发地点为两地的,出发时间的同时的,运动结果是相遇的,我们就把它称为相遇问题。
现在我们就来学习相遇问题的应用题的解答方法。
(板书课题:相向运动求路程的应用题)
2、教学例5:
小强和小丽同时从自己家里走向学校。
小强每分走65米,小丽每分走70米,经过4分,两人在学校门口相遇。
他们两家相距多少米?
①. 引导学生分析题意,说出已知什么,要求是什么?
教师利用教具演示,画出意图让学生观察、思考:
小强走的是哪一段?
小丽走的是哪一段?
他们到校所走的路程与两家相距的米数有什么关系?
要求两家相距多少米,先要求什么?(先求出两人到校时各走了多少米?)
怎样分步解答?(让学生口述每一步算的是什么,说出算式,教师板书。
)
65×4=260(米)
70×4=280(米)
260+280=540(米)
怎样列综合式?(学生口述,并算出结果,教师板书。
)
65×4+70×4
=260+280
=540(米)
答:(略)
②. 再引导观察示意图,启发另一种解法。
问:他们两人每走1分,他们之间的距离靠近了多少米?[ 65+70=135(米)]到校时经过了几分?(4分)要求两家相距多少米,还可以怎样算?怎样分步解答?(学生口述,教师板书:
65+70=135(米)
135×4=540(米)
综合式:
(65+70)×4
=135×4
=540(米)
③. 引导学生比较两种解法。
65×4+70×4 (65+70)×4
想一想:第一种解法是先求什么,后求什么?第二种解法是先求什么,后求什么?
议一议:这两种解法的综合算式不同,为什么得数一样?它们之间有什么联系?
哪一种算法比较简便?
④. 小结相向运动求路程应用题的特点和解题方法:速度和×相遇时间=相遇路程
三、巩固练习。
1.指导看书第58、59页,后练习第59页的做一做。
2.看算式把条件或问题补充完整。
①. 小明和小华同时从大桥的两端相向走来,小明每分走50米,小华每分走60米,经过5分两人相遇。
?算式:(50+60)×5
②. 甲乙两位同学骑自行车从东西两站
甲同学每小时行20千米,乙同学每小时行25千米,,
东西两站相距多少千米?算式:(20+25)×3
3.课本练习十四第1、2、3题。