平抛运动复习题
- 格式:doc
- 大小:129.50 KB
- 文档页数:6
考点16 平抛运动考点解读一、平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关。
2.水平射程:x =v 0t =vgh2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。
3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关。
4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量为Δv =g Δt ,相同,方向恒为竖直向下,如图所示。
5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示。
(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ。
二、常见平抛运动模型的运动时间的计算方法(1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定。
(2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t 。
(3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t ,221gt y =,x y =θtan 可求得gv t θtan 20=。
②对着斜面平抛(如图)方法:分解速度 v x =v 0,v y =gt ,0tan v gt v v xy ==θ 可求得gv t θtan 0=。
(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同,vd t =。
三、类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直。
平抛运动试题(YI)一、选择题:1.如图1所示,在光滑的水平面上有一小球a以初速度v0运动,同时刻在它的正上方有小球b也以v0初速度水平抛出,并落于c点,则( )A .小球a先到达c点B .小球b先到达c点C .两球同时到达c点D .不能确定 2.一个物体从某一确定的高度以v0的初速度水平抛出,已知它落地时的速度为vt,那么它的运动时间是( )A .g v v t 0-B .g v v t 20-C .gv v t 222- D .g v v t 202-3.如图2所示,为物体做平抛运动的x-y图象.此曲线上任意一点P (x ,y )的 速度方向的反向延长线交于x 轴上的A 点,则A 点的横坐标为( ) A.0.6xB.0.5xC.0.3xD.无法确定4.下列关于平抛运动的说法正确的是( )A. 平抛运动是非匀变速运动B. 平抛运动是匀速运动C. 平抛运动是匀变速曲线运动D. 平抛运动的物体落地时的速度一定是竖直向下的5.将甲、乙、丙三个小球同时水平抛出后落在同一水平面上,已知甲和乙抛射点的高度相同,乙和丙抛射速度相同。
下列判断中正确的是( ) A. 甲和乙一定同时落地 B. 乙和丙一定同时落地 C. 甲和乙水平射程一定相同 D. 乙和丙水平射程一定相同6.对平抛运动的物体,若g 已知,再给出下列哪组条件,可确定其初速度大小( ) A .水平位移 B .下落高度C .落地时速度大小和方向D .落地位移大小和方向7. 关于物体的平抛运动,下列说法正确的是( )A. 由于物体受力的大小和方向不变, 因此平抛运动是匀变速运动;B. 由于物体速度的方向不断变化, 因此平抛运动不是匀变速运动;C. 物体的运动时间只由抛出时的初速度决定,与高度无关;D.平抛运动的水平距离由抛出点的高度和初速度共同决定.8. 把甲物体从2h 高处以速度V 水平抛出,落地点的水平距离为L,把乙物体从h 高处以速度2V 水平抛出,落地点的水平距离为S,比较L 与S,可知( )A.L=S/2 ;B. L=2S;C.L S =12; D.L S =2 . 9.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小图1B .此时小球的速度大小为2 v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同10.物体在平抛运动过程中,在相等的时间内,下列哪个量是相等的( ) A.位移 B.加速度C.平均速度D.速度的增量11从高h 处以水平速度v 0抛出一物体,物体落地速度方向与水平地面夹角最大的时候,h 与v 0的取值应为下列四组中的( )A.h =30m ,v 0=10m/s B.h =30m ,v 0=30m/s C.h =50m ,v 0=30m/s D.h =50m ,v 0=10m/s12 对于一个做平抛运动的物体,它在从抛出开始的四段连续相等的时间内,在水平方向和竖直方向的位移之比,下列说法正确的是( )A.1:2:3:4;1:4:9:16 B.1:3:5:7;1:1:1:1 C.1:1:1:1;1:3:5:7 D.1:4:9:16;1:2:3:413]如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上。
平抛专题练习一、物体的起点在斜面外,落点在斜面上1.求平抛时间1.以Vo=9.8m/s 的初速水平抛出一小球,小球垂直撞击倾角为30°的斜面,问小球在空中飞行了多少时间。
解:t=3s 2.求平抛初速度2.如图3,在倾角为37°的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。
解:3.质量为m 的小球以v 0的水平初速度从O 点抛出后,恰好击中斜角为θ的斜面上的A 点.如果A 点距斜面底边(即水平地面)的高度为h ,小球到达A 点时的速度方向恰好与斜面方向垂直,如图5-2-20,则以下正确的叙述为( )ABDA .可以确定小球到达A 点时,重力的功率;B .可以确定小球由O 到A 过程中,动能的改变C .可以确定小球从A 点反弹后落地至水平面的时间D .可以确定小球起抛点O 距斜面端点B 的水平距离 3.求平抛物体的落点4.如图5-14所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 点正上方O 点以速度v 水平抛出一个小球,它落在斜面上b 点,若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( A)A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点二、物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角。
一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解。
1.求平抛初速度及时间5.如图,倾角为θ的斜面顶端,水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L ,求抛出的初速度及时间?解:钢球下落高度:,∴飞行时间t =,水平飞行距离 ,初速度v 0==θθsin 2cos gl6.如图所示,从倾角为θ的斜面上的A 点以速度V 0平抛一个小球,小球落在斜面上的B 点.则小球从A 到B 的运动时间为 。
(gv θtan 20) 2.求平抛末速度及位移大小7.如图,从倾角为θ的斜面上的A 点,以初速度v 0,沿水平方向抛出一个小球,落在斜面上B 点。
平抛运动(附答案)1.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则()A.垒球落地时瞬时速度的大小仅由初速度决定B.垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C.垒球在空中运动的水平位移仅由初速度决定D.垒球在空中运动的时间仅由击球点离地面的高度决定2.质点从同一高度水平抛出,不计空气阻力,下列说法正确的是()A.质量越大,水平位移越大B.初速度越大,落地时竖直方向速度越大C.初速度越大,空中运动时间越长D.初速度越大,落地速度越大3.一个人水平抛出一小球,球离手时的初速度为v0,落地时的速度是v t,空气阻力忽略不计,下列哪个图象正确表示了速度矢量变化的过程()图4-2-194.(高考广东卷)某同学对着墙壁练习打网球,假定球在墙面上以25m/s的速度沿水平方向反弹,落地点到墙面的距离在10m至15m之间,忽略空气阻力,取g=10m/s2,球在墙面上反弹点的高度范围是()A.0.8m至1.8mB.0.8m至1.6mC.1.0m至1.6mD.1.0m至1.8m5.在高处水平抛出一物体,平抛的初速度为v0,当它的速度方向与水平方向成θ角时,物体的水平位移x与竖直位移y的关系是()A.x=y tanθB.x=2y tanθC.x=y cotθD.x=2y cotθ6.(黄冈第二次模拟)如图4-2-20所示,在一次演习中,离地H 高处的飞机以水平速度v 1发射一颗炮弹欲轰炸地面目标P ,反应灵敏的地面拦截系统同时以速度v 2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s ,若拦截成功,不计空气阻力,则v 1、v 2的关系应满足()A .v 1=v 2B .v 1=H s v 2C .v 1=H s v 2D .v 1=s H v 27.(江南十校模拟)如图4-2-21所示,某同学为了找出平抛运动的物体初速度之间的关系,用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是v 1、v 2、v 3,打在挡板上的位置分别是B 、C 、D ,且AB ∶BC ∶CD =1∶3∶5,则v 1、v 2、v 3之间的正确关系是()A .v 1∶v 2∶v 3=3∶2∶1B .v 1∶v 2∶v 3=5∶3∶1C .v 1∶v 2∶v 3=6∶3∶2D .v 1∶v 2∶v 3=9∶4∶18.(温州模拟)如图4-2-22所示,从倾角为θ的斜面上的M 点水平抛出一个小球,小球的初速度为v 0,最后小球落在斜面上的N 点,则(重力加速度为g )()A .可求M 、N 之间的距离B .可求小球落到N 点时速度的大小和方向C .可求小球到达N 点时的动能D .可以断定,当小球速度方向与斜面平行时,小球与斜面间的距离最大9.如图4-2-23所示,高为h =1.25m 的平台上,覆盖一层薄冰.现有一质量为60kg 的滑雪爱好者,以一定的初速度v 向平台边缘滑去,着地时速度的方向与水平地面的夹角为45°(重力加速度g 取10m/s 2).由此可知下列各项中错误的是()A .滑雪者离开平台边缘时速度的大小是5.0m/sB .滑雪者着地点到平台边缘的水平距离是2.5mC .滑雪者在空中运动的时间为0.5sD .着地时滑雪者重力做功的瞬时功率是300W10.如图4-2-24所示,O 点离地面高度为H ,以O 点为圆心,制作一四分之一光滑圆弧轨道,小球从与O 点等高的圆弧最高点滚下后水平抛出,试求:(1)小球落地点到O 点的水平距离;(2)要使这一距离最大,R 应满足什么条件?最大距离为多少?图4-2-20图4-2-21图4-2-22图4-2-23答案:(1)2R (H -R )(2)R =H 2时,最大距离为H 11.如图4-2-25所示,从H =45m 高处水平抛出的小球,除受重力外,还受到水平风力作用,假设风力大小恒为小球重力的0.2倍,g 取10m/s 2.问:(1)有水平风力与无风时相比较,小球在空中的飞行时间是否相同?如不相同,说明理由;如果相同,求出这段时间?(2)为使小球能垂直于地面着地,水平抛出的初速度v 0为多少?图4-2-25答案:(1)相同3s (2)6m/s12.(广州、肇庆、珠海部分重点中学调研)如图4-2-26所示,在距地面高为H =45m 处,有一小球A 以初速度v 0=10m/s 水平抛出,与此同时,在A 的正下方有一物块B 也以相同的初速度v 0同方向滑出,B 与地面间的动摩擦因数为μ=0.5.A 、B 均可看作质点,空气阻力不计,重力加速度g 取10m/s 2,求:(1)A 球从抛出到落地的时间和这段时间内的水平位移;(2)A 球落地时,A 、B 之间的距离.答案:(1)3s30m(2)20m 答案:1D2D3B4A5D6D7C8ABD9D图4-2-24图4-2-26。
高考物理复习专题平抛运动练习题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]一、选择题()1、一个物体以初速度v0水平抛出,经t秒时,其速度竖直方向分量和v0大小相等,t等于:A、B、C、D、()2、一个物体以初速度v0水平抛出,落地速度为v,则物体运动时间为:A、B、 C、D、()3、如图所示,以水平初速度v0=9.8m/s秒抛出的物体,飞行一段时间后,垂直地撞在倾角θ=30°的斜面上,可知物体完成这段飞行的时间是:A、 B、C、D、2s()4、正在水平匀速飞行的飞机,每隔1秒种释放一个小球,先后共释放5个,不计空气阻力,则:A、这5个小球在空中排成一条直线B、这5个小球在空中处在同一抛物上C、在空中,第1、2两球间的距离保持不变D、相邻两球的落地点间距离相等()5、如图,A点处有一光源S,小球在A处平抛恰好落到墙角处的B点,则球在墙上影子的运动是:A、匀速直线运动B、匀加速直线运动C、变加速直线运动D、无法确定()6、如图所示,在坡度一定的斜面顶点以大小相同的初速v同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为37°和53°,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为:A、3:4B、4:3C、9:16D、16:97、从同一高度h向同一方向水平抛出甲、乙两个小球,初速度分别为v1,v2,且v1>v1,则落地时间t1:t2=__________,两球落地点相距Δx=__________。
8、从某一高度平抛一个物体,忽略空气阻力,如果落地前它的速度是v0,则物体飞行时间为_________,抛出点到落地点高度为__________,射程为__________。
9、平抛一物体,抛出后第2S内的位移大小S=25m,g=10m/s2,则物体水平初速度v0=_________m/s,抛出后第2S末的速度大小为_________1m/s,方向为_________。
平抛运动复习题1、把一小球从离地面h=5m处,以v0=10m/s的初速度水平抛出,不计空气阻力(g=10 m/s2)。
求:(1)小球在空中飞行的时间。
(2)小球落地点离抛出点的水平距离。
(3)小球落地时的速度。
2、如图所示,飞机距地面高度为H,水平飞行速度v0,地面上停着一辆汽车,与飞机水平距离为X,欲使飞机投出炸弹击中汽车,H、v0、X应满足什么关系?(重力加速度为g).3、研究表明,在月球表面附近的重力加速度为地球表面重力加速度的六分之一。
若宇航员在距月球表面高为h=1.2m处将一小球(可视为质点)以一定的初速度v0水平抛出,已知其落地点到抛出点之间水平方向的距离为x=6m,取地球表面的重力加速度为g=10m/s2。
试分析:(1)小球由抛出到落地所经历的时间t为多少?(2)小球抛出时的初速度v0的大小是多少?4、在冬天,高为h=0.8m的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边缘s=16m 处以一定的初速度向平台边缘滑去,如图所示,当他滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为θ=53°,取重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6。
求:.(1)滑雪者滑离平台后在空中的运动时间t(2)滑雪者滑离平台时刻的速度大小v1(3)滑雪者着地点到平台边缘的水平距离L;(4)若平台上的冰面与雪橇间的动摩擦因数为μ=0.05,则滑雪者的初速度大小v05、平抛一物体,当抛出1秒后,速度方向与水平成450角,落地时速度与水平成600,g=10m/s2求:(1)初速度(2)落地速度(3)开始抛出距地面的高度(4)水平射程6、如图所示,半径R=0.4m的圆盘水平放置,绕竖直轴OO′匀速转动,在圆心O正上方h=0.8m 高处固定一水平轨道PQ,转轴和水平轨道交于O′点.一质量m=1kg的小车(可视为质点),在F=4N的水平恒力作用下,从O′左侧x0=2m处由静止开始沿轨道向右运动,当小车运动到O′点时,从小车上自由释放一小球,此时圆盘半径OA与x轴重合.规定经过O点水平向右为x轴正方向.小车与轨道间的动摩擦因数μ=0.2,g取10m/s2.求:(1)若小球刚好落到A点,求小车运动到O′点的速度.(2)为使小球刚好落在A点,圆盘转动的角速度应为多大.(3)为使小球能落到圆盘上,求水平拉力F作用的距离范围.7、一小球以初速度v0水平抛出,落地时速度为v t,阻力不计,求:(1)小球在空中飞行的时间;(2)抛出点离地面的高度;(3)水平射程;(4)小球的位移的大小及位移与水平方向间的夹角的正切值.8、在亚丁湾某次护航任务中,为了驱赶索马里海盗,我护航官兵从空中直升机上水平向海盗船发射了一颗警告弹,6s后官兵看到警告弹在海盗船附近爆炸,若爆炸时警告弹的运动方向与水平方向的夹角为30°,空气阻力不计,g取10m/s2,求:(1)发射警告弹时直升机的高度;(2)警告弹的初速度大小;(3)发射警告弹时直升机到海盗船的距离.9、跳台滑雪是勇敢者的运动,运动员在专用滑雪板上,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观。
ABCD平抛运动规律巩固练习1、关于平抛运动,下列说法正确的是 ( )A .不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大B .不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长C .不论抛出速度多大,抛出位置越高,其飞行时间一定越长D .不论抛出速度多大,抛出位置越高,飞得一定越远 2、关于平抛运动,下列说法正确的是( )A .是匀变曲线速运动B .是变加速曲线运动C .任意两段时间内速度变化量的方向相同D .任意相等时间内的速度变化量相等3、物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的 ( ) A .速度的增量 B .加速度 C .位移 D .平均速率4、物体做平抛运动时,描述物体在竖直方向上的速度v y (取向下为正)随时间变化的图像是( )5、质量为m 的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F 1时,物体可能做( )A .匀加速直线运动;B .匀减速直线运动;C .匀变速曲线运动;D .变加速曲线运动。
6、物体从某一确定高度以v 0初速度水平抛出,已知落地时的速度为v t ,它的运动时间是 )A .g v v t 0- B.g v v t 20- C .gv v t 2202- D 7、在高度为h 的同一位置上向水平方向同时抛出两个小球A 和B ,若A 球的初速v A 大于B 球的初速v B ,则下列说法正确的是( ) A .A 球落地时间小于B 球落地时间B .在飞行过程中的任一段时间内,A 球的水平位移总是大于B 球的水平位移C .若球在飞行中遇到一堵竖直墙,A 球击中墙的高度总是大于B 球击中墙的高度D .在空中飞行的任意时刻,A 球的速率总大于B 球的速率 8、研究平抛运动,下面哪些做法可以减小实验误差( ) A .使用密度大、体积小的钢球 B .尽量减小钢球与斜槽间的摩擦 C .实验时,让小球每次都从同一高度由静止开始滚下 D .使斜槽末端的切线保持水平9、如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30° 的斜面上,可知物体完成这段飞行的时间是( )A 、sB 、sC 、sD 、2s10、如图示,从一根内壁光滑的空心竖直钢管A 的上端边缘,沿直径方向向管内水平抛入一钢球.球与管壁多次相碰后落地(球与管壁相碰时间不计),若换一根等高但较粗的内壁光滑的钢管B ,用同样的方法抛入此钢球,则运动时间( )A .在A 管中的球运动时间长B .在B 管中的球运动时间长C .在两管中的球运动时间一样长D .无法确定11、从高度为h 处以初速度v 0水平抛出一物体,测得落地点与抛出点的水平距离为x .如果抛出点的高度降低了43h ,仍要把物体抛到x 远处,则水平初速度应为____。
专题15 抛体运动1.在空中同一位置同时将三个小球a 、b 、c 沿同一方向水平抛出,其速度大小分别为v 、2v 和3v ,某一时刻三个小球在空中的位置排布应是下列图中的: ( )【答案】A2.如图所示,某一小球以v 0=10 m/s 的速度水平抛出,在落地之前经过空中A 、B 两点,在A 点小球速度方向与水平方向的夹角为45°,在B 点小球速度方向与水平方向的夹角为60°(空气阻力忽略不计,g=10 m/s 2).以下判断中正确的: ( )A .小球经过A 、B 两点间的时间3s B .小球经过A 、B 两点间的时间t=1 sC .A 、B 两点间的高度差h=10 mD .A 、B 两点间的高度差h=15 m 【答案】C 【解析】根据平行四边形定则知,v yA =v 0=10m/s,v yB =v 03v 03则小球由A 到B 的时间间隔103(3)10110yB yAv v t s s g-===.故A B 错误.A 、B 的高度差2230010010220=yB yA v v h m m g --==,故C正确,D 错误.故选C 。
【名师点睛】解决本题的关键知道平抛运动在水平方向做匀速运动,竖直方向上是自由落体运动;结合运动学公式灵活求解。
3.如图所示的实验装置中,小球A 、B 完全相同.用小锤轻击弹性金属片,A 球沿水平方向抛出,同时B 球被松开,自由下落,实验中两球同时落地.图中虚线1、2代表离地高度不同的两个水平面,下列说法中正确的是: ( )A.A球从面1到面2的速度变化等于B球从面1到面2的速度变化B.A球从面1到面2的速率变化等于B球从面1到面2的速率变化C.A球从面1到面2的速率变化大于B球从面1到面2的速率变化D.A球从面1到面2的动能变化大于B球从面1到面2的动能变化【答案】A4.(多选)如图所示,在水平地面上O点正上方不同高度的A、B两点分别水平抛出一小球,如果两球均落在同一点C上,则两小球: ( )A. 落地的速度大小可能相等B. 落地的速度方向可能相同C. 落地的速度大小不可能相等 D。
2019届高三物理《平抛运动》复习过关测试题一、选择题(每小题7分,共63分)1.(2019·衡水调研)以初速度v 0水平抛出一物体,当物体的水平分位移与竖直分位移大小相等时,下列说法错误的是A .即时速度的大小是5v 0B .运动时间是2v 0gC .竖直分速度大小等于水平分速度大小D .运动的位移是22v 20g解析 当物体的水平分位移与竖直分位移大小相等时,v 0t =12gt 2,可得运动时间t =2v 0g ,水平分速度v x =v 0,竖直分速度v y =gt =2v 0,合速度v =v 2x +v 2y =5v 0,合位移s =x 2+y 2=22v 20g ,故选项C 错误。
答案 C2.如图4-2-18所示,水平抛出的物体,抵达斜面上端P 处时其速度方向恰好沿斜面方向,然后沿斜面无摩擦滑下,下列选项中的图象描述的是物体沿x 方向和y 方向运动的速度-时间图象,其中正确的是图4-2-18解析 0~t p 段,水平方向:v x =v 0恒定不变;竖直方向:v y =gt ;t P ~t Q 段,水平方向:v x =v 0+a 水平t ,竖直方向:v y =vP y +a 竖直t (a 竖直<g ),因此选项A 、B 、D 均错误,C 正确。
答案 C3.水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽视空气阻力,重力加速度为g ,则小球初速度的大小为A .gt 0(cos θ1-cos θ2) B.gt 0cos θ1-cos θ2C .gt 0(tan θ1-tan θ2) D.gt 0tan θ2-tan θ1解析 将t 秒末和t + t 0秒末的速度分解如图所示,则tan θ1=v y 1v 0,tan θ2=v y 2v 0,又v y 2= v y 1+ gt 0,解得v 0=gt 0tan θ2-tan θ1,故D 正确。
平抛运动一、平抛运动 1.基本规律 (1)位移关系(2)速度关系2.两个重要推论(1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v y v 0=2yAx A→x B=x A2 (2)做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt2v 0→tan θ=2tan α 总结:共9个基本物理量,知二求其他。
已知v 0与v ,求t 已知v 0与а,求t 已知v 与а,求v 0、t 已知v 与x ,求v 0、t 已知v 与y ,求v 0、t 已知v 与θ,求v 0、t 已知а与x ,求v 0、t已知а与y ,求v 0、t已知x 与y ,求v 0、t 已知x 与θ,求v 0、t 已知v 0与θ,求t1、抛体+地面【答案】BC 2、2、【答案】3、抛体+墙(靶、飞镖)(2018·河南部分重点中学联考)某同学玩飞镖游戏,先后将两只飞镖a 、b 由同一位置水平投出,已知飞镖投出时的初速度v a >v b ,不计空气阻力,则两支飞镖插在竖直靶上的状态(俯视图)可能是( )解析 两只飞镖a 、b 都做平抛运动,在水平方向上做匀速直线运动,则有x =v 0t ,它们的水平位移大小相等,由于v a >v b ,所以运动时间关系为t a <t b ,由h =12gt 2知h a <h b ,所以插在竖直靶上时a 在b 的上面,选项C 、D 错误;设飞镖插在竖直靶上前瞬间速度与水平方向的夹角为α,则tan α=gt v 0,因为v a >v b ,t a <t b ,所以有αa <αb ,选项A 正确,B 错误。
答案 A 4.(1)顺着斜面平抛(如图12)图12已知v 0与θ,求t 方法:分解位移.x =v 0t , y =12gt 2,tan θ=y x, 可求得t =2v 0tan θg. (2)对着斜面平抛(垂直打到斜面,如图13)图13已知v 0与θ,求t 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt, 可求得t =v 0g tan θ.3.在倾角为θ的斜面顶端,以初速度v0水平抛出一小球,不计空气阻力,则小球与斜面相距最远时速度的大小为( )A.v0cos θ B.v0 cos θC.v0sin θ D.v0 sin θ答案 B解析当小球速度方向与斜面平行时离斜面最远,速度的水平分量不变,故v cos θ=v0,解得:v=v0cos θ,故B正确.平抛+半圆如图15所示,半径和几何关系制约平抛运动时间t :图15h =12gt 2,R±R2-h2=v0t,联立两方程可求t.例7(2020·福建泉州市第一次质量检查)某游戏装置如图18所示,安装在竖直轨道AB 上的弹射器可上下移动,能水平射出速度大小可调节的小弹丸.圆心为O的圆弧槽BCD上开有小孔P,弹丸落到小孔时,速度只有沿OP方向才能通过小孔,游戏过关,则弹射器在轨道上( )图18A.位于B点时,只要弹丸射出速度合适就能过关B.只要高于B点,弹丸射出速度合适都能过关C.只有一个位置,且弹丸以某一速度射出才能过关D .有两个位置,只要弹丸射出速度合适都能过关 答案 C解析 根据平抛运动速度反向延长线过水平位移的中点可知,位于B 点时,不管速度多大,弹丸都不可能沿OP 方向从P 点射出,故A 错误;如图所示,根据平抛运动速度反向延长线过水平位移的中点可得:EN =12R (1+cos α),则竖直位移PN=EN ·tan α=12R (1+cos α)tan α,弹射器离B 点的高度为y =PN -R sin α=12R (tanα-sin α),所以只有一个位置,且弹丸以某一速度射出才能过关,故B 、D 错误,C 正确.抛体+自由落体/比较两个平抛的物理量(2019·陕西汉中市下学期模拟)如图7所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )图7A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为2∶1C .a 和c 在空中运动的时间之比为2∶1D .a 和c 的初速度大小之比为2∶1 答案 C 解析 根据t =2h g 可知a 和b 在空中运动的时间之比为2∶1;根据v =xt可知a 和b 的初速度大小之比为1∶2,选项A 、B 错误.根据t =2hg可知a 和c 在空中运动的时间之比为2∶1;根据v =x t可知a 和c 的初速度大小之比为2∶1,选项C 正确,D 错误. 2019·福建宁德市5月质检)某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图6所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )图6A .两次在空中运动的时间相等B .两次抛出时的速度相等C .第1次抛出时速度的水平分量小D .第2次抛出时速度的竖直分量大 答案 C解析 将篮球的运动反向处理,即为平抛运动.由题图可知,第2次运动过程中的高度较小,所以运动时间较短,故A 错误.平抛运动在竖直方向上是自由落体运动,第2次运动过程中的高度较小,故第2次抛出时速度的竖直分量较小,故D 错误.平抛运动在水平方向是匀速直线运动,水平射程相等,由x =v 0t 可知,第2次抛出时水平分速度较大,第1次抛出时水平分速度较小,故C 正确.水平分速度第2次大,竖直分速度第1次大,根据速度的合成可知,两次抛出时的速度大小关系不能确定,故B 错误.)从竖直墙的前方A 处,沿AO 方向水平发射三颗弹丸a 、b 、c ,在墙上留下的弹痕如图11所示,已知Oa =ab =bc ,则a 、b 、c 三颗弹丸(不计空气阻力)( )图11A .初速度大小之比是6∶3∶ 2B .初速度大小之比是1∶2∶ 3C .从射出至打到墙上过程速度增量之比是1∶2∶ 3D .从射出至打到墙上过程速度增量之比是6∶3∶ 2 答案 AC解析 水平发射的弹丸做平抛运动,竖直方向上是自由落体运动,水平方向上是匀速直线运动,又因为竖直方向上Oa =ab =bc ,即Oa ∶Ob ∶Oc =1∶2∶3,由h =12gt 2可知t a ∶t b ∶t c=1∶2∶3,由水平方向x =v 0t 可得v a ∶v b ∶v c =1∶12∶13=6∶3∶2,故选项A正确,B 错误;由Δv =gt ,可知从射出至打到墙上过程速度增量之比是1∶2∶3,故选项C 正确,D 错误.4.(2020·山西晋城市模拟)如图3所示,斜面体ABC 固定在水平地面上,斜面的高AB 为 2 m ,倾角为θ=37°,且D 是斜面的中点,在A 点和D 点分别以相同的初速度水平抛出一个小球,结果两个小球恰能落在地面上的同一点,则落地点到C 点的水平距离为(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,不计空气阻力)( )图3A.34 mB.23 mC.22 mD.43 m 答案 D7.(2019·河南洛阳市期末调研)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1 B.2∶1 C.3∶2 D.2∶3 答案 C解析 小球A 、B 下落高度相同,则两小球从飞出到落在C 点用时相同,均设为t ,对A 球:x =v 1t ① y =12gt 2②又tan 30°=y x③ 联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt⑤则得:v 2=33gt ⑥ 由④⑥得:v 1∶v 2=3∶2,所以C 正确.(2019·湖南永州市第二次模拟)如图14所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端c 处.今在c 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的三等分点d 处.若不计空气阻力,下列关系式正确的是( )图14A .t a =32t b B .t a =3t b C .v a =32v b D .v a =32v b答案 C解析 a 、b 两球下降的高度之比为3∶1,根据h =12gt 2可知,t =2hg,则a 、b 两球运动的时间关系为t a =3t b ,故A 、B 错误;因为a 、b 两球水平位移之比为3∶2,由v 0=x t得:v a =32v b ,故C 正确,D 错误.如图16,从O点分别以水平初速度v1、v2抛出两个小球(未画出,可视为质点),最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂直,且OA与竖直方向成α角,不计空气阻力,则两小球初速度大小之比v1∶v2为 ( )图16A.tan αB.cos αC .tan αtan αD .cos αtan α答案 C解析 设圆弧半径为R ,两小球运动时间分别为t 1、t 2.对球1:R sin α=v 1t 1,R cos α=12gt 12;对球2:R cos α=v 2t 2,R sin α=12gt 22,联立解得:v 1v 2=tan αtan α,C 正确.变式4 (多选)(2020·山东济宁市第一次模拟)如图17所示,在竖直平面内固定一半圆形轨道,O 为圆心,AB 为水平直径,有一可视为质点的小球从A 点以不同的初速度向右水平抛出,不计空气阻力,下列说法正确的是( )图17A .初速度越大,小球运动时间越长B .初速度不同,小球运动时间可能相同C .小球落到轨道的瞬间,速度方向可能沿半径方向D .小球落到轨道的瞬间,速度方向一定不沿半径方向 答案 BD临界类平抛(4)速度改变量因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt是相同的,方向恒为竖直向下,如图4所示.图41.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:自由落体运动.平抛的相遇问题运动的合成与分解关键词:分解、合成、思想、观念、曲线、直线 1、曲线运动的条件和特征下列关于运动和力的叙述中,正确的是( ) A .做曲线运动的物体,其加速度方向一定是变化的 B .物体做圆周运动,所受的合力一定是向心力 C .物体所受合力恒定,该物体速率随时间一定均匀变化 D .物体运动的速率在增加,所受合力一定做正功 答案 D解析 做曲线运动的物体,其加速度方向不一定是变化的,例如平抛运动,选项A 错误;物体做匀速圆周运动时,所受的合力一定是向心力,选项B 错误;物体所受合力恒定,该物体速率随时间不一定均匀变化,例如平抛运动,选项C 错误;根据动能定理可知,物体运动的速率在增加,所受合力一定做正功,选项D 正确.一质点做匀速直线运动。
平抛运动复习题
1、把一小球从离地面h=5m处,以v0=10m/s的初速度水平抛出,不计空气阻力(g=10 m/s2)。
求:(1)小球在空中飞行的时间。
(2)小球落地点离抛出点的水平距离。
(3)小球落地时的速度。
2、如图所示,飞机距地面高度为H,水平飞行速度v0,地面上停着一辆汽车,与飞机水平距离为X,欲使飞机投出炸弹击中汽车,H、v0、X应满足什么关系?(重力加速度为g).
3、研究表明,在月球表面附近的重力加速度为地球表面重力加速度的六分之一。
若宇航员在距月球表面高为h=处将一小球(可视为质点)以一定的初速度v0水平抛出,已知其落地点到抛出点之间水平方向的距离为x=6m,取地球表面的重力加速度为g=10m/s2。
试分析:
(1)小球由抛出到落地所经历的时间t为多少?(2)小球抛出时的初速度v0的大小是多少?
4、在冬天,高为h=的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边缘s=16m 处以一定的初速度向平台边缘滑去,如图所示,当他滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为θ=53°,取重力加速度g=10m/s2,sin53°=,cos53°=。
求:
(1)滑雪者滑离平台后在空中的运动时间t 0.
(2)滑雪者滑离平台时刻的速度大小v1
(3)滑雪者着地点到平台边缘的水平距离L;
(4)若平台上的冰面与雪橇间的动摩擦因数为μ=,则滑雪者的初速度大小v0
5、平抛一物体,当抛出1秒后,速度方向与水平成450角,落地时速度与水平成600,g=10m/s2求:(1)初速度(2)落地速度(3)开始抛出距地面的高度(4)水平射程
6、如图所示,半径R=的圆盘水平放置,绕竖直轴OO′匀速转动,在圆心O正上方h=高处固定一水平轨道PQ,转轴和水平轨道交于O′点.一质量m=1kg的小车(可视为质点),在F=4N 的水平恒力作用下,从O′左侧x0=2m处由静止开始沿轨道向右运动,当小车运动到O′点时,从小车上自由释放一小球,此时圆盘半径OA与x轴重合.规定经过O点水平向右为x轴正方
向.小车与轨道间的动摩擦因数μ=,g取10m/s2.求:
(1)若小球刚好落到A点,求小车运动到O′点的速度.
(2)为使小球刚好落在A点,圆盘转动的角速度应为多大.
(3)为使小球能落到圆盘上,求水平拉力F作用的距离范围.
7、一小球以初速度v0水平抛出,落地时速度为v t,阻力不计,求:
(1)小球在空中飞行的时间;(2)抛出点离地面的高度;(3)水平射程;
(4)小球的位移的大小及位移与水平方向间的夹角的正切值.
8、在亚丁湾某次护航任务中,为了驱赶索马里海盗,我护航官兵从空中直升机上水平向海盗船发射了一颗警告弹,6s后官兵看到警告弹在海盗船附近爆炸,若爆炸时警告弹的运动方向与水平方向的夹角为30°,空气阻力不计,g取10m/s2,求:(1)发射警告弹时直升机的高度;
(2)警告弹的初速度大小;(3)发射警告弹时直升机到海盗船的距离.
9、跳台滑雪是勇敢者的运动,运动员在专用滑雪板上,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观。
设一位运动员由a点沿水平方向跃起,到山坡b点着陆,如图所示。
测得a、b间距离L=40m,山坡
倾角θ=30°,山坡可以看成一个斜面。
试计算:
(1)运动员起跳后他在空中从a到b飞行的时间。
(2)运动员在a点的起跳速度大小。
(不计空气阻力,g取10m/s2)
10、如图,水平面AB距地面高度h=。
有一滑块从A点以v0=s的初速度在台面上做匀变速直线运动,滑块与水平台面间的动摩擦因数μ=。
滑块运动到平台边缘的B点后水平飞出。
已知A、B之间距离x=,不计空气阻力,g取10m/s2,结果保留两位有效数字。
求:(1)滑块从B点飞出时的速度大小。
(2)滑块落地点到平台边缘的水平距离。
11、如图,一个小球自平台上水平抛出,恰好无碰撞地落在邻近平台的一个倾角为α=53°的光滑斜面顶端,并沿光滑斜面下滑.已知斜面顶端与平台的高度差h=,g取10m/s2,sin53°=,cos 53°=,求:(1)小球水平抛出的初速度v0的大小;
(2)斜面顶端与平台边缘的水平距离x.
12、汽车以s的速度在水平地面上匀速行驶,汽车后壁货架上放有一货物(可视作质点),架高。
由于前方事故,突然急刹车,汽车轮胎抱死,货物从架上落下。
已知该型号汽车在所在路面行驶时刹车痕s(即刹车距离)与刹车前车速v的关系如图所示,忽略货物与架子间的摩擦及空气阻力,g取10m/s2。
求:
(1)汽车刹车过程中的加速度多大。
(2)货物在车厢底板上落点距车后壁的距离。
13、如图,在离水面高为H的岸边,有人以v0的匀速率收绳使船靠岸,当船与岸上的定滑轮水平距离为s时,船速是多少?
14、如图,射击枪水平放置,射击枪与目标靶中心位于离地
面足够高的同一水平线上,枪口与目标靶之间的距离x=100m,子弹射出的水平速度v=200m/s,子弹从枪口射出的瞬间目标靶由静止开始释放,不计空气阻力,重力加速度g取10m/s2,求:
(1)从子弹由枪口射出开始计时,经多长时间子弹击中目标靶? (2)目标靶由静止开始释放到被子弹击中,下落的距离h为多少?
15、如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R=,离水平地面的高度H=,物块平抛落地过程水平位移的大小s=。
设物块所受的最大静摩擦力等于滑动摩擦力,取g=10m/s2。
求:
(1)物块做平抛运动的初速度大小v0。
(2)物块与转台间动摩擦因数μ。
16、某战士在倾角为30°的山坡上进行投掷手榴弹训练。
他从A点以某一初速度v0=15m/s 沿水平方向投出手榴弹后落在B点。
该型号手榴弹从拉动弹弦到
爆炸需要5s的时间,空气阻力不计,(g=10m/s2)求:
(1)若要求手榴弹正好在B点爆炸,战士从拉动弹弦到投出所用的时
间;(2)点A、B的间距s。
17、河宽d=100m,水流速度v1 =3m/s,船在静水中的速度v2=4m/s。
求:
⑴欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移多大?
⑵欲使船的航行距离最短,船应怎样渡河?渡河时间多长?。