最经典的数列求和的基本方法和技巧
- 格式:doc
- 大小:59.35 KB
- 文档页数:2
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
高中数学:求数列前n项和的七种方法和技巧我们不要关心求数列n项和的问题会不会在高考题或有关考试题中出现,当然出现的机会确是很高的。
关键的是通过学习和探讨求数列前n项和的方法去领悟学习和思考的方法。
几种求和的方法把数学变形和分析、归纳总结、化繁为简、化难为易等思想融合在一起,使思维得到一次系统的训练和提高。
头脑的开化和思维的提升才是学习的主要目的。
求数列前n项的和,通常有下列七种方法和技巧。
一、利用等差数列和等比数列的求和公式例1、求数列例2、求数列5, 55,555,5555,…,,……的前项和。
解:∵∴二、用倒序相加法推导等差数列的前n项和公式的方法是倒序相加法。
这个方法可以类推到一般,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。
例3、已知是等差数列,求和。
解:∵①即②由①+②,得:∵∴由等差数列的性质,易得:故于是三、利用错位相减法错位相减法是一种常用的数列求和方法,主要应用于等比数列与等差数列相乘的形式。
形如,其中为等差数列,为等比数列,公比为q;列出,再把所有式子同时乘以等比数列的公比,即;然后错一位,两式相减即可。
例4、求数列的前n求和(x≠0,x≠1)。
解:设①则②由①-②,得:于是四、用化差相减法适用于分式形式的通项公式,基本原理是把一项拆成两个或多个的差的形式,即,然后累加时中间的许多项可以抵消。
裂项凑错位相加特征,注意前后式子相等,如果不相等就要乘以一个系数。
常用公式:,,,(a≠0),例5、求数列的前n求和。
解:例6、求数列。
解:∵∴基本原理点拨:代数式变形凑相消特征:,由此可联想求更高次方幂的n项和。
如:至此,一般规律就出现了,通过变形整理便可求出的n 项的和,以此类推,求n次方幂的问题就能彻底解决。
从而五、利用组合数求和公式法利用这个组合数公式,求某些特殊数列的前n和颇为方便。
因为,则。
例7、求数列解:∵,∴例8、求数列。
解:∵。
∴,六、用数学归纳法例9、求数列的前n项和。
可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和公式方法总结数列求和是高中数学中的重要内容之一,也是许多学生难以消化的内容。
不同的数列有不同的求和公式,本文将总结数列求和的常见方法和公式,助力学生更好地掌握数列求和的技巧。
一、等差数列的求和公式:等差数列是最常见的数列之一,其特点是每个项之间的差值是相等的。
设首项为a₁,公差为d,末项为aₙ,则等差数列的求和公式为:Sₙ=(a₁+aₙ)×n÷2Sₙ=(a₁+aₙ)×(n+1)÷2其中,Sₙ表示前n项和。
二、等比数列的求和公式:等比数列是指数列中任意两个相邻项之间的比值相等的数列。
设首项为a₁,公比为q,末项为aₙ,则等比数列的求和公式为:Sₙ=(a₁×(qₙ-1))÷(q-1)其中,Sₙ表示前n项和。
三、二次数列的求和公式:二次数列是指每个项与前一个项之间的关系满足一次方程的数列。
设首项为a₁,公差为d,末项为aₙ,则二次数列的求和公式为:Sₙ=(2a₁+(n-1)d)×n÷2Sₙ=(2a₁+d(n-1))×n÷2其中,Sₙ表示前n项和。
四、调和数列的求和公式:调和数列是指数列的倒数数列,每个项与前一个项之间的差异与常数成反比的数列。
设首项为a₁,公差为d,末项为aₙ,则调和数列的求和公式为:Sₙ=(n×(2a₁+(n-1)d))÷2其中,Sₙ表示前n项和。
五、费波纳西数列的求和公式:费波纳西数列是指数列中每个项都是前两个相邻项之和的数列。
设首项为a₁,公差为d,末项为aₙ,则费波纳西数列的求和公式为:Sₙ=(a₁+a₂)×(aₙ+aₙ₊₁)÷2Sₙ=(a₁+a₃)×(aₙ+aₙ₋₂)÷2其中,Sₙ表示前n项和。
六、其他数列的求和公式:除了上述常见的数列类型外,还存在其他特殊的数列,其求和公式需要通过推导和递推等方法得到。
比如,输出数列、幂和数列、等差几何数列等。
数列求和的基本方法数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有重要的地位。
近年来高考中的数列题难度有降低的趋势,主要以考查等差数列和等比数列为主,解答题则主要考查求数列通项与求和为主,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
下面,具体谈谈数列求和的基本方法和技巧.一、公式法求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例1] 已知5log 1log 25-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 分析,先由已知等式求出x 的值,再利用等比数列的求和公式进行求和。
解:由212log log 5log 1log 5525=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) 法一 ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88=n ,即n =8时,501)(max =n f法二∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++501346421=+⨯≤nn 当且仅当n n 64=,即n=8时,501)(max =n f 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:1322)12(2725231-∙-+⋅⋅⋅+⨯+⨯+⨯+=n n n S ………………………①解:由题可知,{12)12(-∙-n n }的通项是等差数列{2n -1}的通项与等比数列{12-n }的通项之积①式两边都乘以2得2nn n S 2)12(.........................252321.....32∙-++⨯+⨯+⨯=……. ② (错位) ①-②得 nn n n S 2)12()2222(21)21(132∙--+⋅⋅⋅++++=-- (相减)再利用等比数列的求和公式得:n n n n S 2)12(21)21(22111∙----⋅+=-- ∴ nn n S 2)32(3∙-+=[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=………………………………........…①143222262422.......21++⋅⋅⋅+++=n n nS ………………………………② (错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (相减)1122212+---=n n n∴ 1224-+-=n n n S三、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(21)12)(12(1+--=+-=n n n n a n (3)))(11(1)(1k n n k k n n a n +-=+=(4)n n n n a n -+=++=111(5)若{n a }为等差数列,且公差为d, 0≠n a ,则)11(1111nn n n n a a d a a b -=∙=--[例5] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n=)1()23()12(n n -++⋅⋅⋅+-+- (裂项求和) =11-+n [例6] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(42121+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(4+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(4+-n = 14+n n 四、倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(倒序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例7] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (倒序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89 (相加)∴ S =44.5五、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例8] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- 以上五种数列求和的基本方法,在高考中时有出现,特别是公式法,错位相减法,裂项相消法,分组求和法更是考查的重点。
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111n n a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式: (1)1nk k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31n k k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2135(21)n n ++++-=. 例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
数列求和的基本方法和技巧数列是高中数学的重要内容,又是学习高等数学的基础。
高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
下面是小编整理的数列求和的基本方法和技巧,供参考。
更多相关信息请关注相应栏目!一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可采用两项合并求解.数列知识整合1、在掌握等差数列、等比数列的定义、*质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索*问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
数列求和的基本方法和技巧
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:d n n na a a n S n n 2
)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q
q a q na S n n n [例1] 已知3log 1log 23-=
x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.
[例2] 设S n =1+2+3+…+n ,n ∈N *,求1
)32()(++=n n S n S n f 的最大值. 二、错位相减法求和
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.
[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x
n x x x S
[例4] 求数列
⋅⋅⋅⋅⋅⋅,2
2,,26,24,2232n n 前n 项的和.
三、倒序相加法求和
这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求2222
22222222123101102938101
++++++++ 的和.
[例6] 求
89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a
a a n ,… 五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: 1. 1()n n k =+111()k n n k -+ , 2.1n k n =++1()n k n k +-, 3.1111()(2)22n n n n =-++ 4. )1
21121(21)12)(12(1+--=+-n n n n [例8] 求数列
⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.
[例9] 在数列{a n }中,1
1211++⋅⋅⋅++++=
n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.
六、合并法求和
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .
[例10] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.
[例11] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.
七、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.
[例12] 求
11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.。