卫星通信技术(丁龙刚马虹)第7章卫星通信工程与入网
- 格式:ppt
- 大小:80.50 KB
- 文档页数:27
航天工程中的卫星通信技术航天工程是一项关键的技术领域,它涵盖了各种不同的技术和应用。
其中,卫星通信技术是航天工程中一个重要的组成部分。
本文将探讨卫星通信技术在航天工程中的应用,以及其在现代通信领域的重要性。
一、卫星通信技术的意义卫星通信技术是通过卫星系统实现的远距离通信方式。
它通过将信息传输至地球轨道上的通信卫星,再由卫星将信息传递给地面接收设备,实现了全球范围内的通信覆盖。
卫星通信技术的意义在于它能弥补地面通信设施的局限性,实现远距离、异地间的高质量通信。
二、卫星通信技术在航天工程中的应用1. 通信导航卫星通信技术在航天工程中的一个重要应用是通信导航。
通过卫星通信系统,航天器可以与地面控制中心进行实时通信,实现导航和监控功能。
这对于实现航天器的精确控制和监测非常重要,保障了航天工程的安全和可靠性。
2. 天气预报卫星通信技术在航天工程中还应用于天气预报。
卫星可以观测地球的大气层,获取大气参数的数据,并将其传输回地面进行分析和处理。
这样的应用使得航天工程能更好地了解天气状况,提前做好准备,确保航天器的安全运行。
3. 数据传输卫星通信技术在航天工程中的另一个重要应用是数据传输。
航天器在执行任务过程中会产生大量的数据,这些数据需要及时传输给地面接收站进行处理和分析。
卫星通信技术能够实现高速、稳定的数据传输,确保数据的准确性和完整性。
4. 空间探测卫星通信技术在航天工程的空间探测任务中也发挥着重要的作用。
通过卫星通信系统,航天器可以与地面控制中心保持长时间的通信连接,实时传输探测数据,帮助科学家了解宇宙的奥秘。
三、卫星通信技术的发展与挑战卫星通信技术的发展经历了多个阶段,从最早的低轨卫星通信到如今的高轨卫星通信,通信带宽和传输速度都得到了大幅提升。
然而,卫星通信技术仍面临一些挑战。
1. 频谱资源卫星通信技术需要使用频谱资源来进行通信传输,但频谱资源是有限的。
随着通信需求的不断增长,频谱资源的分配和管理将成为一个重要的问题,需要寻找新的解决方案和技术手段,以满足未来的通信需求。
通信工程中的卫星通信技术资料卫星通信技术在通信工程中起着至关重要的作用。
本文将从卫星通信基本原理、卫星通信系统组成、应用领域及未来发展等方面进行论述。
一、卫星通信基本原理卫星通信是利用人造卫星作为中继器,传递电磁波信号实现远程通信的一种技术。
其基本原理为:地面站向指定卫星发射信号,卫星接收信号后进行增幅处理,并将信号再次发射到指定的地面站,实现通信过程。
卫星通信利用卫星作为中间节点,可以实现覆盖范围广、通信质量稳定等优点。
二、卫星通信系统组成卫星通信系统主要由卫星、地面站和用户终端三部分组成。
1. 卫星:卫星在轨道上运行,承载着通信任务。
卫星分为地球静止轨道卫星和低轨道卫星两种类型。
地球静止轨道卫星(GEO)位于地球赤道上空的固定位置,具有覆盖范围广的特点;低轨道卫星(LEO)则位于地球近地轨道上,由于轨道高度较低,信号传输延迟较小。
2. 地面站:地面站是与卫星进行通信的节点,包括天线、发射接收设备、控制系统等。
地面站接收来自用户终端的信号,将信号传输至卫星,同时接收来自卫星的信号,完成信号的调制解调、处理和转发等功能。
3. 用户终端:用户终端包括手机、电视机、计算机等各种通信终端设备。
用户终端通过地面站与卫星进行通信,充当信息的发送与接收节点。
三、卫星通信技术应用领域卫星通信技术广泛应用于以下领域:1. 电视广播:卫星通信技术可以实现电视信号的传输,使得广播电视节目可以覆盖更广的地域范围。
2. 互联网接入:卫星通信技术可以实现偏远地区的互联网接入,解决了传统有线或光纤网络无法覆盖的问题。
3. 银行金融:卫星通信技术可以提供稳定可靠的通信渠道,用于金融交易和数据传输,保证了信息的安全性和及时性。
4. 农业监测与灾害预警:卫星通信技术可以实时监测农业生产情况和气象变化,为农业生产和灾害预防提供数据支持。
5. 航空航天通信:卫星通信技术被广泛应用于航空航天领域,用于飞机和航天器的通信和导航。
四、卫星通信技术的未来发展随着科技的不断进步和需求的不断增长,卫星通信技术将经历以下发展趋势:1. 高带宽通信:随着互联网和高清视频等应用的普及,对通信带宽的需求不断增加,未来卫星通信技术将朝着提供更高带宽的方向发展。
自20世纪90年代以来,卫星移动通信的迅猛发展推动了天线技术的进步。
卫星通信具有覆盖范围广、通信容量大、传输质量好、组网方便迅速、便于实现全球无缝链接等众多优点,被认为是建立全球个人通信必不可少的一种重要手段。
概念卫星通信是一种利用人造地球卫星作为中继站来转发无线电波而进行的两个或多个地球站之间的通信。
编辑本段卫星通信系统是由通信卫星和经该卫星连通的地球站两部分组成。
静止通信卫星是目前全球卫星通信系统中最常用的星体,是将通信卫星发射到赤道上空35860 公里的高度上,使卫星运转方向与地球自转方向一致,并使卫星的运转周期正好等于地球的自转周期( 24 小时),从而使卫星始终保持同步运行状态。
故静止卫星也称为同步卫星。
静止卫星天线波束最大覆盖面可以达到大于地球表面总面积的三分之一。
因此,在静止轨道上,只要等间隔地放置三颗通信卫星,其天线波束就能基本上覆盖整个地球(除两极地区外),实现全球范围的通信。
目前使用的国际通信卫星系统,就是按照上述原理建立起来的,三颗卫星分别位于大西洋、太平洋和印度洋上空。
与其它通信手段相比,卫星通信具有许多优点:一是电波覆盖面积大,通信距离远,可实现多址通信。
在卫星波束覆盖区内一跳的通信距离最远为 18000 公里。
覆盖区内的用户都可通过通信卫星实现多址联接,进行即时通信。
二是传输频带宽,通信容量大。
卫星通信一般使用 1~10 千兆赫的微波波段,有很宽的频率范围,可在两点间提供几百、几千甚至上万条话路,提供每秒几十兆比特甚至每秒一百多兆比特的中高速数据通道,还可传输好几路电视。
三是通信稳定性好、质量高。
卫星链路大部分是在大气层以上的宇宙空间,属恒参信道,传输损耗小,电波传播稳定,不受通信两点间的各种自然环境和人为因素的影响,即便是在发生磁爆或核爆的情况下,也能维持正常通信。
卫星传输的主要缺点是传输时延大。
在打卫星电话时不能立刻听到对方回话,需要间隔一段时间才能听到。
其主要原因是无线电波虽在自由空间的传播速度等于光速(每秒 30 万公里),但当它从地球站发往同步卫星,又从同步卫星发回接收地球站,这“一上一下”就需要走 8 万多公里。
卫星通信技术摘要:文章介绍了卫星通讯的基本理论、基本特点,并简要说明了卫星通信在现代通信系统中的主要应用范围,最后展望了卫星通信技术的发展前景。
关键词:卫星通信、应用一、前言卫星通信是利用人造地球卫星作为中继站来转发无线电波的通信,其最早的设想是由Arthur C.Clarke于1945年在英国的无线电杂志Wireless World上发表的一篇文章中提出的。
在国际通信、国内通信、国防通信、移动通信、广播电视等领域内,卫星通信技术正在迅速的发展,并已经成为世界电信结构中的重要组成部分。
到目前为止,全世界已建成和正在建立的卫星通信系统由数十个。
人们对卫星通信的新体制、新技术继续进行了广泛、深入的研究和试验,取得了很大的提高和发展。
二、卫星通信原理卫星通信之所以存在,是因为地球的形状是一个圆形球体。
由于用于宽带通信的无线电电波是以微波频率沿直线传播的,因而长距离通信需要利用中继传送信号。
卫星可以连接地球上相聚数千米的地点,因而十分适合作为长途通信中继器的安装点。
(一)卫星通信的概念卫星通信是指利用人造卫星做中继站转发无线电信号,在多个地球站之间进行通信。
(如下图所示)卫星通信是地面微波接力通信的继承和发扬,是微波接力的一种特殊形式。
(二)卫星通信系统的组成卫星通信系统由空间段和地面段两部分组成。
1.空间段空间段以卫星为主体,并包括地面卫星控制中心(SCC)、跟踪、遥测和指令站(TT&C)。
卫星星载的通信分系统主要是转发器,现代的星载转发器不仅能提供足够增益,而且具有处理和交换功能。
2.地面段地面段包括了支持用户访问卫星转发器,并实现户间通信的所有地面措施。
卫星地球站是地面段的主体,它提供与卫星的连接链路,其硬件设备与相关协议均适合卫星信道的传输。
三、卫星通信系统所使用的频率卫星通信系统中频段的选择直接影响到它的通信容量、质量、可靠性、设备的复杂性和成本的高低。
(一)卫星通信系统选择频率的依据一般来说,卫星通信工作频段的选择应考虑以下因素:1.电波应能穿过电离层,传播损耗和外部附加噪声应尽可能小。
【卫星通信】课程教学大纲第一部分课程基本信息【课程代码】【学分】 2.5【参考学时】40【讲授学时】34【实验学时】6【课程性质】专业指导性选修课程【课程基础】应该掌握《通信原理》、《信号与系统》、《移动通信》等课程的知识。
【适应对象】通信工程;电子信息工程。
【教学目的】卫星通信是目前最重要的通信方式之一。
通过本课程的学习,熟悉卫星通信的基本原理、卫星通信系统与地面站的组成。
初步掌握FDMA、TDMA、SDMA/SS/TDMA的主要技术问题。
初步掌握CDMA,数据卫星分组通信基本原理,了解编码技术和信号处理技术在卫星通信中的应用,了解卫星通信线计算和卫星通信系统设计。
【内容提要】主要包含卫星通信的基本原理、卫星通信系统与地面站的组成。
FDMA、TDMA、SDMA/SS/TDMA的主要技术问题。
初步掌握CDMA,数据卫星分组通信基本原理,了解编码技术和信号处理技术在卫星通信中的应用,了解卫星通信线计算和卫星通信系统设计。
第二部分主要教学内容和基本要求【主要教学内容】讲授CDMA,数据卫星分组通信基本原理,编码技术和信号处理技术在卫星通信中的应用,卫星通信线计算和卫星通信系统设计。
主要包含卫星通信的基本原理、卫星通信系统与地面站的组成。
FDMA、TDMA、SDMA/SS/TDMA 的主要技术问题。
第一章卫星通信系统概述第一节卫星通信发展第二节卫星通信综述一、卫星通信的概念二、卫星通信的特点三、卫星通信的工作频率四、卫星通信系统的组成【基本要求】一、熟练掌握卫星通信系统中卫星轨道、系统组成、频段特点;卫星通信系统的地面段和空间段。
二、掌握卫星通信的频率分配;卫星通信的特点。
三、了解卫星通信的发展。
【参考学时】2【参考资料】Timothy Pratt Charles Bostian Jeremy Allnutt 著甘良才等译.卫星通信 Satellite Communications(Third Edition) [M].北京:电子工业出版社,2008:1~11第二章卫星通信网结构第一节卫星一、卫星通信各个子系统二、设备可靠性第二节轨道理论及发射系统一、轨道理论二、卫星发射和运载工具第三节卫星通信网一、卫星移动通信系统(部分)二、卫星通信系统中的互联网业务和宽带综合业务(部分)三、典型卫星通信系统(部分)【基本要求】一、熟练掌握利用卫星大范围覆盖的我实现点到多点的传输。
卫星通信技术一、卫星通信技术的发展1.1 早期卫星通信技术卫星通信技术的发展可以追溯到20世纪早期。
在早期阶段,卫星通信技术主要依赖于大型、复杂的地面设备,这些设备需要大量的资金和维护成本。
然而,随着技术的不断进步,卫星通信技术逐渐变得更加便携和易于使用。
现代卫星通信技术已经能够实现高速数据传输、语音通信和视频会议等功能,成为现代通讯技术的重要支柱。
卫星通信技术按照卫星轨道的不同可以分为同步卫星通信技术和非同步卫星通信技术。
同步卫星通信技术是指在地球赤道上方的固定轨道上运行的卫星,它们可以在特定区域内进行通信。
而非同步卫星则运行在较低的轨道上,可以在短时间内覆盖更广阔的区域,但需要更多的卫星来保证覆盖。
卫星通信技术的原理是基于无线电波的传输。
无线电波是一种电磁波,可以通过空气传播。
在卫星通信中,地面设备将信号发送到卫星,卫星将信号放大并转发回地面设备。
这种传输方式可以实现远距离的通讯,而且可以在复杂的地理环境中进行通讯。
卫星通信技术的应用非常广泛。
在导航领域,卫星通信技术可以实现精确的定位和导航。
在气象监测领域,卫星通信技术可以实时传输气象数据,为天气预报提供准确的数据支持。
此外,卫星通信技术还可以用于远程教育和医疗等领域。
未来,随着技术的不断发展,卫星通信技术将会有更多的应用场景。
例如,随着物联网和智能家居等技术的不断发展,卫星通信技术可以用于实现更加智能化的家居和城市管理。
此外,随着人类对宇宙探索的不断深入,卫星通信技术也可以用于实现更加远距离的通讯和信息传输。
1.2 现代卫星通信技术卫星通信技术是一种利用卫星进行通信的技术,具有覆盖范围广、通信距离远、可靠性高、传输速率快等优点。
随着科技的不断进步,卫星通信技术也在不断发展,逐渐适应了各种不同的应用场景和需求。
在卫星通信技术的发展过程中,早期卫星通信技术主要采用模拟信号传输,通信质量较差,而且容易受到干扰。
随着数字信号处理技术的发展,现代卫星通信技术逐渐采用数字信号传输,通信质量得到了极大的提高,传输速率也更快。
《卫星通信》教学大纲一、课程的性质、地位与任务《卫星通信》是通信工程设计与管理专业的专业选修课,其任务是使学生初步掌握卫星通信技术的基本知识和天线的基本理论;培养学生具有通信技术基本技能和综合职业能力的,在电子信息领域适应生产、管理、销售及服务第一线工作的高级技术应用性人才。
二、教学基本要求1、掌握卫星通信的原理、通信卫星和地球站的组成;2、了解卫星通信中常用的调制技术、多址技术、编码技术和信号处理技术;3、了解卫星通信网络及典型卫星通信系统的计算;4、理解卫星通信线路的传输特性及卫星通信系统的计算,能够运用所学的知识解决一定的实际问题。
第一章卫星通信系统概述……4课时本章教学目的和要求:熟练掌握卫星通信系统中卫星轨道、系统组成、频段特点;卫星通信系统的地面段和空间段;掌握卫星通信的频率分配;卫星通信的特点;了解卫星通信的发展。
重点和难点:星通信系统中卫星轨道、系统组成、频段特点第一节卫星通信发展一、卫星通信的含义二、通信卫星的轨道三、卫星通信的发展第二节卫星通信综述一、卫星通信的特点二、卫星通信的难点三、卫星通信的应用范围第二章卫星通信网结构……8课时本章教学目的和要求:熟练掌握利用卫星大范围覆盖的我实现点到多点的传输;掌握网状网,交互业务,点到多点网络,点到点网络,VSAT网;了解卫星通信网的一般特性。
重点和难点:利用卫星大范围覆盖的我实现点到多点的传输第一节卫星一、卫星通信各个子系统二、设备可靠性第二节轨道理论及发射系统一、轨道理论二、卫星发射和运载工具第三节卫星通信网一、卫星移动通信系统(部分)二、卫星通信系统中的互联网业务和宽带综合业务(部分)三、典型卫星通信系统(部分)第三章卫星链路传输工程……6课时本章教学目的和要求:熟练掌握星-地链路特性,传播损耗的确定,多径传播及莱斯衰落,信道的噪声及各类干扰;掌握依据天线增益、发射功率和传输带宽进行链路电平的预算;了解天线的方向性和电极化问题。