2012届高三理科数学选择题填空题训练5
- 格式:doc
- 大小:169.00 KB
- 文档页数:1
湖北省2012年理科高考数学选择题和填空题答案详解(A 卷)一:选择题1.A 利用一元二次方程求根公式即可得到答案(21i =-)此题考求根公式及复数定义。
2.D 有定义即可得3.B 易求得图像中二次函数的为21y x =-+,故所围图形的面积为: 12311114(1)()33x dx x x ---+=-+=⎰ 此题考定积分的计算。
4.B 一个底面直径为2,高为4的圆柱体,被切除14的部分,剩余的34部分即为该几何体,所以其体积为3434ππ⋅=考三视图,新课标内容。
5.D ()20122012201212011120111201120122012515215252(1)52(1)1a a C C a +=-+=+-+⋅⋅⋅+-++因为52是13的倍数,所以只需1a +是13的倍数即可,故12a =此题考二项式展开公式。
6.C 设向量(,,)a b c α=,(,,)x y z β=,由柯西不等式αβαβ≤⋅得,2+++a x b y y z ≤由已知知等号刚好成立,此时向量α与β成线性关系,设=αλβ,即=,=,=a x b y c z λλλ,所以()2222222++=++a b c x y z λ,解得1=2λ,所以++1==++2a b c x y z λ 此题考柯西不等式的应用。
7.C 设原等比数列公比为q ,则①222+1+12==n n n n a a q a a ⎛⎫ ⎪⎝⎭(定值),所以①是对的,③,所以③是对的。
考等比数列与函数的结合应用。
8.A 设OA=2,则A O B -22==1-S S πππ阴影扇形,这里计算阴影部分面积是属于小学六年级的内容,这里就不具体计算了此题考几何概型的应用9.C 零点的个数即是方程2cos =0x x 的解的个数。
因为2cos =0x x ,所以=0x 或2cos =0x 。
由2cos =0x 得2=k +2x ππ ,即=x ±又因为[]0,4x ∈,所以04≤≤,解得=0,1,2,3,4k ,一共5个解。
2012年福州市高中毕业班综合练习 理科数学试卷参考答案及评分参考一、选择题(本大题共10小题,每小题5分,共50分)1.B2.A3.C4.D5.B6.D7. C8. B9.D 10. D 二、填空题(本大题共5小题,每小题4分,共20分) 11. 2 12. 12 13. (1,)+∞ 14. 5- 15. ①④三、解答题(本大题共6小题,共80分) 16.(本小题满分13分) 解:(Ⅰ)记事件“小强试用的3个岗位中恰有2个在甲部门的概率”为A ,则()21443837C C P A C ⋅==. ···································································· 6分 (Ⅱ)22000.424000.326000.228000.12400E =⨯+⨯+⨯+⨯=甲(元), ··············· 7分 20000.424000.328000.232000.12400E =⨯+⨯+⨯+⨯=乙(元). ·························· 8分()()()()()2222220024000.4240024000.3260024000.2280024000.1D X =-⨯+-⨯+-⨯+-⨯甲 40000=, ········································································································ 9分 ()()()()()2222200024000.4240024000.3280024000.2320024000.1D X =-⨯+-⨯+-⨯+-⨯乙 160000=. ····································································································· 10分 选择甲部门:因为()()X X D X D X =<甲乙甲乙,,说明甲部门各岗位的工资待遇波动比乙部门小,竞争压力没有乙部门大,比较安稳. ··························································· 13分选择乙部门:因为()()X X D X D X =<甲乙甲乙,,说明乙部门各岗位的工资待遇波动比甲部门大,岗位工资拉的比较开,工作比较有挑战性,能更好地体现工作价值. ······ 13分17.(本小题满分13分)解:依题意,可建立如图所示的空间直角坐标系A xyz -,设1AA h =,则 ()()()()112,0,0,0,6,0,2,0,,0,0,,0,6,,0,3,32h h B C D A h C h E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.2分(Ⅰ)证明:由1AA ⊥平面ABC 可知()10,0,1n =为平面ABC 的一个法向量.∴ ()12,3,0,0,1066h h DE n ⎛⎫⋅=-⋅=≠ ⎪⎝⎭. ························· 3分∴ 直线DE 与平面ABC 不平行. ···························· 4分(Ⅱ)设平面1ADC 的法向量为()2,,n x y z =,则 ()()()221,,2,0,2033,,0,6,60h h n AD x y z x z n AC x y z h y hz ⎧⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩, ··············· 5分 取6z =-,则x y h ==,故()2,,6n h h =-. ·············· 6分∴121212cos cos ,1n n n n n n θ⋅=<>==⨯=, ············································ 7分解得h =.∴ 1AA = ········································································································· 8分 (Ⅲ)在平面11BCC B 内,分别延长1CB C D 、,交于点F ,连结AF ,则直线AF 为平面1ADC 与平面ABC 的交线. ··························································································· 9分∵ 1//BD CC ,1111==33BD BB CC ,∴113BF BD FC CC ==. ∴ 12BF CB =,∴ ()()()112,0,02,6,03,3,022AF AB BF AB CB =+=+=+-=-. ························ 11分由(Ⅱ)知,h =,故(2,3,6h DE ⎛⎫=-=- ⎪⎝⎭,∴ cos ,3AF DE AF DE AF DE⋅<>===. ··············································· 12分 ∴ 直线l 与DE 所成的角的余弦值为= ········································· 13分 18.(本小题满分13分)解:(Ⅰ)设圆C 的半径为r (0r >),依题意,圆心坐标为(,2)r . ····················· 1分∵ 3MN =∴ 222322r ⎛⎫=+ ⎪⎝⎭,解得2254r =. ·········································································· 3分∴ 圆C 的方程为()22525224x y ⎛⎫-+-= ⎪⎝⎭. ···························································· 5分(Ⅱ)把0y =代入方程()22525224x y ⎛⎫-+-= ⎪⎝⎭,解得1x =,或4x =,即点()1,0M ,()4,0N . ···························································································· 6分 (1)当AB x ⊥轴时,由椭圆对称性可知ANM BNM ∠=∠. ································· 7分 (2)当AB 与x 轴不垂直时,可设直线AB 的方程为()1y k x =-.联立方程()22128y k x x y ⎧=-⎨+=⎩,消去y 得,()22222280k x k x k +-+-=. ······················· 8分 设直线AB 交椭圆Γ于()()1122,,A x y B x y 、两点,则212222k x x k +=+,212282k x x k -⋅=+. ············································································· 9分 ∵ ()()11222,2y k x y k x =-=-, ∴ ()()12121212114444AN BN k x k x y y k k x x x x --+=+=+---- ()()()()()()122112141444k x x k x x x x --+--=--.····································································· 10分∵()()()()()()221221121222281014142588022k k x x x x x x x x k k ---+--=-++=-+=++, ··································································································································· 11分 ∴ 0AN BN k k +=,ANM BNM ∠=∠. ·································································· 12分 综上所述,ANM BNM ∠=∠. ················································································ 13分19.(本小题满分13分)解:(Ⅰ)当2a =时,2()ln(1)1xf x x x =+++, ∴22123()1(1)(1)x f x x x x +'=+=+++, ·········································································· 1分 ∴ (0)3f '=,所以所求的切线的斜率为3. ····························································· 2分 又∵()00f =,所以切点为()0,0. ·········································································· 3分 故所求的切线方程为:3y x =. ··············································································· 4分(Ⅱ)∵()ln(1)1axf x x x =+++(1)x >-, ∴221(1)1()1(1)(1)a x ax x a f x x x x +-++'=+=+++. ································································· 5分 ①当0a ≥时,∵1x >-,∴()0f x '>; ···································································· 6分 ②当0a <时,由()01f x x '<⎧⎨>-⎩,得11x a -<<--;由()01f x x '>⎧⎨>-⎩,得1x a >--; ····························· 7分综上,当0a ≥时,函数()f x 在(1,)-+∞单调递增;当0a <时,函数()f x 在(1,1)a ---单调递减,在(1,)a --+∞上单调递增. ········· 8分 (Ⅲ)方法一:由(Ⅱ)可知,当1a =-时,()()ln 11xf x x x =+-+在()0,+∞上单调递增. ························································· 9分 ∴ 当0x >时,()()00f x f >=,即()ln 11xx x +>+. ······································· 10分 令1x n =(*n ∈N ),则111ln 111n n n n ⎛⎫+>= ⎪+⎝⎭+. ··················································· 11分另一方面,∵()2111n n n <+,即21111n n n-<+,∴21111n n n>-+. ································································································· 12分 ∴ 2111ln 1n n n ⎛⎫+>- ⎪⎝⎭(*n ∈N ). ········································································· 13分方法二:构造函数2()ln(1)F x x x x =+-+,(01)x ≤≤ ········································· 9分 ∴1(21)'()1211x x F x x x x +=-+=++, ··································································· 10分∴当01x <≤时,'()0F x >;∴函数()F x 在(0,1]单调递增. ·············································································· 11分 ∴函数()(0)F x F > ,即()0F x >∴(0,1]x ∀∈,2ln(1)0x x x +-+>,即2ln(1)x x x +>- ··································· 12分 令1x n =(*n ∈N ),则有2111ln 1n n n ⎛⎫+>- ⎪⎝⎭. ························································ 13分20.(本小题满分14分)解:(Ⅰ)已知α是锐角,根据三角函数的定义,得3sin 5α=,4cos 5α=,·············· 1分 又5cos 13β=,且β是锐角,所以12sin 13β=. ························································· 2分 所以4531216cos()cos cos sin sin 51351365αβαβαβ+=-=⨯-⨯=-. ··························· 4分(Ⅱ)证明:依题意得,sin MA α=,sin NB β=,sin()PC αβ=+ 因为0παβ⎛⎫∈ ⎪⎝⎭,,2,所以cos (0,1)α∈,cos (0,1)β∈,于是有sin()sin cos cos sin sin sin αβαβαβαβ+=+<+,① ·············································· 6分又∵()0,,1cos()1αβπαβ∈∴-<<++,sin sin(())sin()cos cos()sin sin()sin ααββαββαββαββ=+-=+⋅-+⋅<++,②··········································································································································· 7分同理,sin sin()sin βαβα<++,③ 由①,②,③可得,线段MA 、NB 、PC 能构成一个三角形. ································································· 8分 (III )第(Ⅱ)小题中的三角形的外接圆面积是定值,且定值为4π. 不妨设A B C '''∆的边长分别为()sin sin sin αβαβ+、、,其中角A '、B '、C '的对边分别为()sin sin sin αββα+、、.则由余弦定理,得: 222sin sin sin ()cos 2sin sin A αβαβαβ+-+'=⋅ ···································································· 9分222222sin sin sin cos cos sin 2sin cos cos sin 2sin sin αβαβαβαβαβαβ+---=⋅ 2222sin sin sin sin 2sin cos cos sin 2sin sin αββααβαβαβ⋅+-=⋅ sin sin cos cos αβαβ=⋅-cos()αβ=-+ ································································································· 11分因为0παβ⎛⎫∈ ⎪⎝⎭,,2,所以(0,)αβπ+∈,所以sin sin()A αβ'=+,······················· 12分设A B C '''∆的外接圆半径为R ,由正弦定理,得sin()21sin sin()B C R A αβαβ''+==='+,∴12R =, ······································· 13分 所以A B C '''∆的外接圆的面积为4π. ········································································ 14分 21.(1)(本小题满分7分)选修4-2:矩阵与变换 解:(Ⅰ)由条件得矩阵1002M ⎛⎫=⎪⎝⎭. ·································································· 2分 (Ⅱ)因为矩阵1002M ⎛⎫=⎪⎝⎭的特征多项式为10()(1)(2)02f λλλλλ-==---, 令()0f λ=,解得特征值为11λ=,22λ=,····························································· 4分 设属于特征值1λ的矩阵M 的一个特征向量为1x e y ⎛⎫= ⎪⎝⎭,则12x x M e y y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,解得0y =,取1x =,得110e ⎛⎫= ⎪⎝⎭, ··························································································· 5分同理,对于特征值2λ,解得0x =,取1y =,得201e ⎛⎫= ⎪⎝⎭, ····································· 6分所以110e ⎛⎫= ⎪⎝⎭是矩阵M 属于特征值11λ=的一个特征向量,201e ⎛⎫= ⎪⎝⎭是矩阵M 属于特征值22λ= 的一个特征向量. ······························································································ 7分(2)(本小题满分7分) 选修4—4:极坐标与参数方程解:(Ⅰ)∵点A 、B 的极坐标分别为(1,)3π、2(3,)3π, ∴点A 、B的直角坐标分别为1(,2、3(,2-, ······································· 2分 ∴直线AB的直角坐标方程为40y +-=. ············································ 4分(Ⅱ)由曲线C 的参数方程cos ,(sin x r y r ααα=⎧⎨=⎩为参数)化为普通方程为222x y r +=,5分 ∵直线AB 和曲线C 只有一个交点,∴半径r == ······································································ 7分 (3)(本小题满分7分) 选修4—5:不等式选讲解:(Ⅰ)∵关于xm 对于任意的[1,2]x ∈-恒成立max m ⇔> ·························································································· 1分根据柯西不等式,有222222(11[11]]6=≤+⋅+=12x =时等号成立,故m > ···················· 3分 (Ⅱ)由(Ⅰ)得20m ->,则()221111(2)(2)2(2)22(2)f m m m m m m =+=-+-++-- ∴()22f m ≥ ············································ 5分 当且仅当211(2)2(2)m m -=-,即2m > ································ 6分 所以函数()21(2)f m m m =+-2. ··············································· 7分。
数学试卷(理科)一、选择题(每题5分,共40分). 1.复数i 34ia z +=∈+R ,则实数a 的值是( ).A .43-B .43C .34D .34-2.下列有关命题的说法正确的是( ). A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“存在x ∈R ,使得210x x ++<”的否定是:“对任意x ∈R , 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.3.若某程序框图如图所示,则输出的p 的值是( ).A . 21B .26C . 30D . 554.在等差数列{}n a 中,()()3456814164336a a a a a a a ++++++=, 那么该数列的前14项和为( ).A .20B .21C .42D .845.若二项式321nx x ⎛⎫+ ⎪⎝⎭的展开式中,只有第六项系数最大,则展开式中的常数项是( ).A .150B .210C .220D .2506.设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y ab-= (a>0,b >0)的一条渐近线的一个公共点,且AF ⊥x 轴,则双曲线的离心率为( ).(第3题图)A .BC2D . 27.若()1e ,1x -∈,ln a x =,ln 12xb ⎛⎫= ⎪⎝⎭,ln exc =,则( ).A .c b a >>B .b a c >>C .a b c >>D .b c a >>8.设()y f x =在(,1]-∞上有定义,对于给定的实数K ,定义(),()(),()K f x f x Kf x K f x K≤⎧=⎨>⎩,给出函数1()24x x f x +=-,若对于任意(,1]x ∈-∞,恒有()()K f x f x =,则( ). A .K 的最大值为0 B .K 的最小值为0 C .K 的最大值为1 D .K 的最小值为1二、填空题(每题5分,共30分).9.某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________________.10.如下图是一个组合几何体的三视图,则该几何体的体积是______________.(第10题图)11.若曲线1C :cos 1sin x r y r θθ=⎧⎨=+⎩(θ为参数,0r >)与曲线2C:2x y ⎧=⎪⎨=-+⎪⎩(t 为参数)有公共点,则r 的取值范围是____________.12.如图,P A 是圆O 的切线,A 是切点,直线PO 交圆O 于B 、C 两点,D 是O C 的中点,连结A D 并延长交圆O 于点E,若PA =,∠30APB = ,则AE =________.13.如图,在△ABC 中,AN =31NC ,P 是BN 上的一点,若AP =m AB +112AC ,则实数m的值为___________.14.已知函数()f x 的定义域为[1,5-()f x 的导函数()y f x '=的图象如图所示:(第14题图)下列关于()f x 的命题: ①函数()f x 是周期函数; ②函数()f x 在[]0,2是减函数;③如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ④当12a <<时,函数()y f x a =-有4个零点;⑤函数()y f x a =-的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是_______________.二、填空题(每题5分,共30分).9._____________ 10._____________ 11._____________12._____________ 13._____________ 14._____________ 三、解答题.15.(本小题满分13分)已知函数()f x =4x ⋅cos4x 2cos4x +.(Ⅰ)若()1f x =,求2cos()3x π-的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足1cos 2a C cb +=,求()f B 的取值范围.16(本小题满分13分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分. 现从盒内任取3个球(Ⅰ)求取出的3个球中至少有一个红球的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.17.(本小题满分13分)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA = 1,PD= 2 ,E为PD上一点,PE = 2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D-AC-E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.EPD BA18.(本小题满分13分)已知曲线)0()0,0(1:222222221≥=+≥>>=+x r y x C x b a by ax C :和曲线都过点A(0,-1),且曲线1C 所在的圆锥曲线的离心率为23.(Ⅰ)求曲线1C 和曲线2C 的方程;(Ⅱ)设点B,C 分别在曲线1C ,2C 上,21,k k 分别为直线AB,AC 的斜率,当124k k =时,问直线BC 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.19.(本小题满分14分)已知数列{}n a 、{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 项和为n S .(Ⅰ)求证:数列1n b ⎧⎫⎨⎬⎩⎭为等差数列;(Ⅱ)设2n n n T S S =-,求证:1n n T T +>; (Ⅲ)求证:对任意的n N *∈都有21122n n S n ++≤≤成立.20.(本小题满分14分)已知函数()()ln 1f x x ax =+-的图象在1x =处的切线与直线210x y +-=平行. (Ⅰ)求实数a 的值; (Ⅱ)若方程()()134f x m x =-在[]2,4上有两个不相等的实数根,求实数m 的取值范围;(Ⅲ)设常数1p ≥,数列{}n a 满足()1ln n n n a a p a +=+-(n ∈+N ),1ln a p =.求证:1n n a a +≥.数学答案(理科)一、选择题1—4 BDCB 5---8 BADD二、填空题9.18 10.π12836+11. 2⎡⎫+∞⎪⎢⎪⎣⎭12.7710 13.113 14.②三、解答题15.(本小题满分13分) (Ⅰ)解:由题意得:2()coscos 444x x x f x =+111cossin()22222262x x x π=++=++……3分若()1f x =,可得1sin()262x π+=,则22cos()2cos ()1332x x ππ-=--212sin ()1262x π=+-=-………6分(Ⅱ)由1cos 2a c cb +=可得222122a b ca cb ab+-+=,即222b c a bc +-=2221cos 22b c aA bc+-∴==,得2,33A B C ππ=+=……9分2003236262B BB πππππ<<⇒<<⇒<+<13()sin()(1,)2622B f B π∴=++∈ ………13分16、(本小题满分13分) 解:(Ⅰ)12713937=-=CC P ………….. 3分(Ⅱ)记 “取出1个红色球,2个白色球”为事件B ,“取出2个红色球, 1个黑色球”为事件C ,则 122123243399C C C C 5()()()C C 42P B C P B P C +=+=+=. ………….. 6分(Ⅲ)ξ可能的取值为0123,,,. ………….. 7分 3639C 5(0)C 21P ξ===, 123639C C 45(1)C 84P ξ===,213639C C 3(2)C14P ξ===, 3339C 1(3)C84P ξ===. ………….. 11分ξ的分布列为:ξ的数学期望545310123121841484E ξ=⨯+⨯+⨯+⨯= . …13分17、(本小题满分13分) 解:(Ⅰ) PA = PD = 1 ,PD = 2 ,∴ PA 2 + AD 2 = PD 2, 即:PA ⊥ AD ---2分 又PA ⊥ CD , AD , CD 相交于点D,∴ PA ⊥ 平面ABCD -------4分 (Ⅱ)过E 作EG//PA 交AD 于G , 从而EG ⊥ 平面ABCD ,且AG = 2GD , EG = 13 PA = 13 , ------5分 连接BD 交AC 于O, 过G 作GH//OD ,交AC 于H , 连接EH . GH ⊥ AC , ∴EH ⊥ AC ,∴∠ EHG 为二面角D —AC―E 的平面角. -----6分∴tan ∠EHG =EG GH = 22 .∴二面角D —AC―E 的平面角的余弦值为36-------8分 (Ⅲ)以AB , AD , PA 为x 轴、y 轴、z 轴建立空间直角坐标系.则A (0 ,0, 0),B (1,0,0) ,C (1,1,0),P (0,0,1),E (0 , 23 ,13 ),AC = (1,1,0),AE = (0 , 23 ,13) ---9分设平面AEC 的法向量n = (x, y,z ) , 则 ⎪⎩⎪⎨⎧=⋅=⋅0AE n AC n ,即:⎩⎨⎧=+=+020z y y x , 令y = 1 , 则n = (- 1,1, - 2 ) -------------10分 假设侧棱PC 上存在一点F, 且CF =λCP , (0 ≤ λ ≤ 1), 使得:BF//平面AEC, 则BF ⋅n = 0.又因为:BF = BC + CF = (0 ,1,0)+ (-λ,-λ,λ)= (-λ,1-λ,λ),∴BF ⋅n =λ+ 1- λ- 2λ = 0 , ∴λ = 12, 所以存在PC 的中点F, 使得BF//平面AEC . ----------------13分18. (本小题满分13分)解:(Ⅰ)由已知得21b =,24a =,21r =. ……2分 所以曲线1C 的方程为2214xy +=(0x ≥). ……3分曲线2C 的方程为221x y +=(0x ≥). ……4分 (Ⅱ)将11y k x =-代入2214xy +=,得()22111480k xk x +-=.……5分设()11,A x y ,()22,B x y ,则10x =,1221841k x k =+,212122141141k y k x k -=-=+.所以2112211841,4141k k B k k ⎛⎫- ⎪++⎝⎭. ……7分 将21y k x =-代入221x y +=,得()2222120k x k x +-=. 设()33,C x y ,则232221k x k =+,2232322111k y k x k -=-=+,所以212222221,11k k C k k ⎛⎫- ⎪++⎝⎭. ……9分因为214k k =,所以21122118161,161161k k C k k ⎛⎫- ⎪++⎝⎭则直线BC 的斜率2211221111122111614116141188416141BC k k k k k k k k k k ---++==--++, ……11分所以直线BC 的方程为:21122111418141441k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,即1114y x k =-+.…12分 故BC 过定点()0,1. ……13分 19.(本小题满分14分)(Ⅰ)证明:由1n n b a =-得1n n a b =+代入11(1)n n n a a a +-=-得1(1)n n n b b b +=+整理得11n n n n b b b b ++-=,----------------------------------------------------------------1分 ∵0n b ≠否则1n a =,与12a =矛盾 从而得1111n nb b +-=, ---------------------------------------------------------------------3分∵1111b a =-= ∴数列1{}n b 是首项为1,公差为1的等差数列------------------4分(Ⅱ)∵1nn b =,则1n b n=. 111123n S n=++++∴2n n n T S S =-=111111111(1)231223nn nn+++++++-+++++=111122n n n +++++ ---------------------------------------------------6分 证法1:∵1111111()2322122n n T T n n n n n n+-=+++-++++++++=11121221n n n +-+++=11102122(21)(22)n n n n -=>++++∴1n n T T +>.-----------------------------------------------------------------8分证法2:∵2122n n +<+ ∴112122n n >++∴1111022221n n T T n n n +->+-=+++∴1n n T T +>.---------------------------------------------------------------8分(Ⅲ)用数学归纳法证明:①当1n =时2111111,1,122222nn S n +=+=++=+,不等式成立;-----------9分②假设当n k =(1k ≥,k N *∈)时,不等式成立,即 21122k k S k +≤≤+,那么当1n k =+时1121111222k kk S ++=+++++11112212kk k +≥+++++ 112111222kk k k ++>++++个1122k =++112k +=+---------------------------------------------------------12分1121111222k kk S ++=+++++11112212kk k +≤+++++ 2111222kk kk <++++个=1(1)2k ++ ∴当1n k =+时,不等式成立由①②知对任意的n N *∈,不等式成立.---------------------------------------------------14分 20.(本小题满分14分)(Ⅰ)a x x f -+=11)(', 1a 21-a -2121)1(f '=∴=-=∴由题意知a ---------3分(Ⅱ)由(1)m x x x x x f =-+∴-+=)1(ln 4,)1ln()(原方程为, 设x x x g -+=))1ln(4)(,得xx xx g +-=-+=13114)(',0)3(',0)('g 3x 2,0)('g 4x 3=>≤≤<≤≤∴g x x 时,当时当, 上是减函数。
2012年普通高等学校招生全国统一考试(课标全国卷)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.下面是关于复数z=2-1+i的四个命题:p1:|z|=2, p2:z2=2i,p3:z的共轭复数为1+i, p4:z的虚部为-1.其中的真命题为( )A.p2,p3B.p1,p2C.p2,p4D.p3,p44.设F1,F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左,右焦点,P为直线x=3a2上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.12B.23C.34D.455.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=( )A.7B.5C.-5D.-76.如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.A+B2为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4√3,则C的实轴长为( )A.√2B.2√2C.4D.89.已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)单调递减,则ω的取值范围是( )A.[12,54] B.[12,34] C.(0,12] D.(0,2]10.已知函数f(x)=1ln (x+1)-x,则y=f(x)的图象大致为( )11.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( ) A.√26B.√36C.√23D.√2212.设点P 在曲线y=12e x上,点Q 在曲线y=ln(2x)上,则|PQ|的最小值为( ) A.1-ln 2B.√2(1-ln 2)C.1+ln 2D.√2(1+ln 2)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知向量a,b 夹角为45°,且|a|=1,|2a-b|=√10,则|b|= . 14.设x,y 满足约束条件{x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z=x-2y 的取值范围为 .15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 .16.数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为 . 三、解答题(解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,acos C+√3asin C-b-c=0. (Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为√3,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,AC=BC=1AA1,D是棱AA1的中点,DC1⊥BD.2(Ⅰ)证明:DC1⊥BC;(Ⅱ)求二面角A1-BD-C1的大小.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4√2,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)已知函数f(x)满足f(x)=f '(1)e x-1-f(0)x+12x 2. (Ⅰ)求f(x)的解析式及单调区间;(Ⅱ)若f(x)≥12x 2+ax+b,求(a+1)b 的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,D,E 分别为△ABC 边AB,AC 的中点,直线DE 交△ABC 的外接圆于F,G 两点.若CF∥AB,证明: (Ⅰ)CD=BC; (Ⅱ)△BCD∽△GBD.23.(本小题满分10分) 选修4-4:坐标系与参数方程已知曲线C 1的参数方程是{x =2cosφ,y =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A,B,C,D 依逆时针次序排列,点A 的极坐标为(2,π3).(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.D 解法一:由x-y ∈A,及A={1,2,3,4,5}得x>y,当y=1时,x 可取2,3,4,5,有4个;y=2时,x 可取3,4,5,有3个;y=3时,x 可取4,5,有2个;y=4时,x 可取5,有1个.故共有1+2+3+4=10(个),选D.解法二:因为A 中元素均为正整数,所以从A 中任取两个元素作为x,y,满足x>y 的(x,y)即为集合B 中的元素,故共有C 52=10个,选D.评析 考查了分类讨论的思想,由x-y ∈A 得x>y 是解题关键.2.A 2名教师各在1个小组,给其中1名教师选2名学生,有C 42种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A 22种方案,故不同的安排方案共有C 42A 22=12种,选A.评析 本题考查了排列组合的实际应用,考查了先分组再分配的方法.3.C z=2-1+i =2(-1-i)(-1+i)(-1-i)=-1-i,所以|z|=√2,p 1为假命题;z 2=(-1-i)2=(1+i)2=2i,p 2为真命题;z =-1+i,p 3为假命题;p 4为真命题.故选C.评析 本题考查了复数的运算及复数的性质,考查了运算求解能力. 4.C 设直线x=32a 与x 轴交于点Q,由题意得∠PF 2Q=60°,|F 2P|=|F 1F 2|=2c,|F 2Q|=32a-c,∴32a-c=12×2c,e=c a =34,故选C.评析 本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.D 由a 5a 6=a 4a 7,得a 4a 7=-8,又a 4+a 7=2,∴a 4=4,a 7=-2或a 4=-2,a 7=4,∴q 3=-12或q 3=-2. 当q 3=-12时,a 1+a 10=a 4q3+a 4q 6=4-12+4×(-12)2=-7,当q 3=-2时,a 1+a 10=a 4q 3+a 4q 6=-2-2+(-2)·(-2)2=-7,故选D.评析 本题考查了等比数列的基本运算,掌握等比数列的性质可简化计算.6.C 不妨令N=3,a 1<a 2<a 3,则有k=1,A=a 1,B=a 1,x=a 1;k=2,x=a 2,A=a 2;k=3,x=a 3,A=a 3,结束.故A=a 3,B=a 1,选C.评析 本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为如图所示的三棱锥,其底面△ABC 为等腰三角形且BA=BC,AC=6,AC 边上的高为3,SB ⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析 本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.C 如图,AB 为抛物线y 2=16x 的准线, 由题意可得A(-4,2√3).设双曲线C 的方程为x 2-y 2=a 2(a>0),则有16-12=a 2,故a=2,∴双曲线的实轴长2a=4.故选C.评析 本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a. 9.A 由π2<x<π得ωπ2+π4<ωx+π4<ωπ+π4,又y=sin α在(π2,32π)上递减,所以{ωπ2+π4≥π2,ωπ+π4≤32π,解得12≤ω≤54,故选A.评析 本题考查了三角函数的单调性,考查了运用正弦函数的减区间求参数的问题. 10.B 令g(x)=ln(x+1)-x,g'(x)=1x+1-1=-xx+1, ∴当-1<x<0时,g'(x)>0,当x>0时,g'(x)<0, ∴g(x)max =g(0)=0.∴f(x)<0,排除A 、C,又由定义域可排除D,故选B.评析 本题考查了函数的图象,考查了利用导数判断单调性,求值域,考查了数形结合的数学思想.11.A 设△ABC 外接圆的圆心为O 1,则|OO 1|=√OC 2-O 1C 2=√1-13=√63. 三棱锥S-ABC 的高为2|OO 1|=2√63. 所以三棱锥S-ABC 的体积V=13×√34×2√63=√26.故选A.评析 本题考查了三棱锥和球的基本知识,考查了空间想象能力.12.B 由y=12e x 得e x =2y,所以x=ln 2y,所以y=12e x 的反函数为y=ln 2x,所以y=12e x 与y=ln 2x的图象关于直线y=x 对称,所以两条曲线上的点的距离的最小值是两条曲线上切线斜率为1的切点之间的距离,令(ln 2x)'=1x =1,解得x 1=1,令(12e x )'=1,解得x 2=ln 2,所以两点为(1,ln 2)和(ln 2,1),故d=√2(1-ln 2),选B.评析 本题考查了导数的应用,互为反函数图象的性质,考查了数形结合的思想. 二、填空题 13.答案 3√2解析 |2a -b |=√10两边平方得 4|a |2-4|a |·|b |cos 45°+|b |2=10. ∵|a |=1,∴|b |2-2√2|b |-6=0.∴|b |=3√2或|b |=-√2(舍去).评析 本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量积问题是求解的关键.14.答案 [-3,3]解析 由不等式组画出可行域(如图所示).当直线x-2y-z=0过点B(1,2)时,z min =-3;过点A(3,0)时,z max =3.∴z=x -2y 的取值范围是[-3,3].评析 本题考查了简单线性规划知识;考查了数形结合的思想方法.15.答案 38 解析 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件使用寿命超过1 000小时的概率为12×34=38.评析 本题考查了正态分布及相互独立事件的概率.16.答案 1 830解析 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+3+a 2k+1=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.三、解答题17.解析(Ⅰ)由acos C+√3asin C-b-c=0及正弦定理得sin Acos C+√3sin Asin C- sin B-sin C=0.因为B=π-A-C,所以√3sin Asin C-cos Asin C-sin C=0.由于sin C≠0,所以sin(A-π6)=12.又0<A<π,故A=π3.(Ⅱ)△ABC的面积S=12bcsin A=√3,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想.灵活运用正、余弦定理是求解关键.正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥16时,利润y=80.当日需求量n<16时,利润y=10n-80.所以y关于n的函数解析式为y={10n-80,n<16,80,n≥16(n∈N).(Ⅱ)(i)X可能的取值为60,70,80,并且P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 60 70 80P 0.1 0.2 0.7X的数学期望为EX=60×0.1+70×0.2+80×0.7=76.X的方差为DX=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.(ii)答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y 55 65 75 85P 0.1 0.2 0.16 0.54Y的数学期望为EY=55×0.1+65×0.2+75×0.16+85×0.54=76.4.Y的方差为DY=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX<DY,即购进16枝玫瑰花时利润波动相对较小.另外,虽然EX<EY,但两者相差不大.故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y 55 65 75 85P 0.1 0.2 0.16 0.54Y的数学期望为EY=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX<EY,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.评析 本题考查了利用样本频率估计总体概率以及离散型随机变量的期望与方差,掌握期望与方差的意义是解题关键,考查了运算求解能力.19.解析 (Ⅰ)由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC=DC 1.又AC=12AA 1,可得D C 12+DC 2=C C 12,所以DC 1⊥DC. 而DC 1⊥BD,DC ∩BD=D,所以DC 1⊥平面BCD.BC ⊂平面BCD,故DC 1⊥BC.(Ⅱ)由(Ⅰ)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1,所以CA,CB,CC 1两两相互垂直.以C 为坐标原点,CA⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,|CA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系C-xyz.由题意知A 1(1,0,2),B(0,1,0),D(1,0,1),C 1(0,0,2).则A 1D ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(1,-1,1),DC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).设n =(x,y,z)是平面A 1B 1BD 的法向量,则{n ·BD ⃗⃗⃗⃗⃗ =0,n ·A 1D ⃗⃗⃗⃗⃗⃗⃗ =0,即{x -y +z =0,z =0.可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,则{m ·BD ⃗⃗⃗⃗⃗ =0,m ·DC 1⃗⃗⃗⃗⃗⃗⃗ =0.可取m =(1,2,1).从而cos<n,m >=n ·m |n|·|m|=√32.故二面角A 1-BD-C 1的大小为30°.评析 本题考查了直线与平面垂直的证明及二面角的求法.属中等难度题,运算要准确.20.解析 (Ⅰ)由已知可得△BFD 为等腰直角三角形,|BD|=2p,圆F 的半径|FA|=√2p. 由抛物线定义可知A 到l 的距离d=|FA|=√2p.因为△ABD 的面积为4√2,所以12|BD|·d=4√2,即12·2p ·√2p=4√2, 解得p=-2(舍去),p=2.所以F(0,1),圆F 的方程为x 2+(y-1)2=8.(Ⅱ)因为A,B,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=12|AB|, 所以∠ABD=30°,m 的斜率为√33或-√33.当m 的斜率为√33时,由已知可设n:y=√33x+b,代入x 2=2py 得x 2-2√33px-2pb=0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb=0,解得b=-p 6.因为m 的截距b 1=p 2,|b 1||b|=3,所以坐标原点到m,n 距离的比值为3. 当m 的斜率为-√33时,由图形对称性可知,坐标原点到m,n 距离的比值为3.评析 本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析 (Ⅰ)由已知得f '(x)=f '(1)e x-1-f(0)+x,所以f '(1)=f '(1)-f(0)+1,即f(0)=1.又f(0)=f '(1)e -1,所以f '(1)=e.从而f(x)=e x -x+12x 2.由于f '(x)=e x -1+x,故当x ∈(-∞,0)时, f '(x)<0;当x ∈(0,+∞)时, f '(x)>0.从而, f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(Ⅱ)由已知条件得e x -(a+1)x ≥b.①(i)若a+1<0,则对任意常数b,当x<0,且x<1-b a+1时,可得e x -(a+1)x<b,因此①式不成立.(ii)若a+1=0,则(a+1)b=0.(iii)若a+1>0,设g(x)=e x -(a+1)x,则g'(x)=e x -(a+1).当x ∈(-∞,ln(a+1))时,g'(x)<0;当x ∈(ln(a+1),+∞)时,g'(x)>0.从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.故g(x)有最小值g(ln(a+1))=a+1-(a+1)ln(a+1).所以f(x)≥12x 2+ax+b 等价于b ≤a+1-(a+1)ln(a+1).② 因此(a+1)b ≤(a+1)2-(a+1)2ln(a+1).设h(a)=(a+1)2-(a+1)2ln(a+1),则h'(a)=(a+1)[1-2ln(a+1)].所以h(a)在(-1,e 12-1)上单调递增,在(e 12-1,+∞)上单调递减,故h(a)在a=e 12-1处取得最大值. 从而h(a)≤e 2,即(a+1)b ≤e 2.当a=e 12-1,b=e 122时,②式成立,故f(x)≥12x 2+ax+b.综合得,(a+1)b 的最大值为e 2.评析 本题考查了函数与导数的综合应用,难度较大,考查了分类讨论和函数与方程的思想方法,直线斜率以零为分界点进行分类是解题关键.22.证明 (Ⅰ)因为D,E 分别为AB,AC 的中点,所以DE ∥BC.又已知CF ∥AB,故四边形BCFD 是平行四边形,所以CF=BD=AD.而CF ∥AD,连结AF,所以ADCF 是平行四边形,故CD=AF.因为CF ∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG ∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD ∽△GBD.评析 本题考查了直线和圆的位置关系,处理好两条线段平行的关系是解题的关键.23.解析 (Ⅰ)由已知可得A (2cos π3,2sin π3), B 2cos π3+π2,2sin π3+π2, C 2cos π3+π,2sin π3+π, D 2cos π3+3π2,2sin π3+3π2, 即A(1,√3),B(-√3,1),C(-1,-√3),D(√3,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].评析 本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法.正确“互化”是解题的关键.难点是建立函数S=f(φ).24.解析 (Ⅰ)当a=-3时,f(x)={-2x +5, x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f(x)≥3得-2x+5≥3,解得x ≤1;当2<x<3时, f(x)≥3无解;当x ≥3时,由f(x)≥3得2x-5≥3,解得x ≥4;所以f(x)≥3的解集为{x|x ≤1}∪{x|x ≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x ∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a ≤x ≤2-a.由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].评析 本题考查了含绝对值不等式的解法,运用了零点法分类讨论解含绝对值不等式的方法,考查了学生的运算求解能力.。
2012年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或33.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.15.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x 10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1 11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.2012年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】把的分子分母都乘以分母的共轭复数,得,由此利用复数的代数形式的乘除运算,能求出结果.【解答】解:===1+2i.故选:C.【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或3【考点】1C:集合关系中的参数取值问题.【专题】5J:集合.【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m 可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B⊆A,再由集合的包含关系得出参数所可能的取值.3.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】11:计算题.【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x轴上,且∴c=2,a2=8∴b2=a2﹣c2=4∴椭圆的方程为故选:C.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,=S△ABD×EC=××2×2×=在三棱锥E﹣ABD中,V E﹣ABD=×2×=2在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD∴V A=×S△EBD×h=×2×h=﹣BDE∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题5.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.【考点】85:等差数列的前n项和;8E:数列的求和.【专题】11:计算题.【分析】由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和【解答】解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选:A.【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.【考点】9Y:平面向量的综合题.【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求【解答】解:∵•=0,∴CA⊥CB∵CD⊥AB∵||=1,||=2∴AB=由射影定理可得,AC2=AD•AB∴∴∴==故选:D.【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故选:A.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα=是关键,属于中档题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【考点】72:不等式比较大小.【专题】11:计算题;16:压轴题.【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.【专题】11:计算题.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;16:压轴题.【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.【解答】解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,当第二列一行确定时,第二列第2,3行只能有1种情况;所以排列方法共有:×2×1×1=12种,故选:A.【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程.【专题】13:作图题;16:压轴题.【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,可以得到回到E点时,需要碰撞14次即可.故选:B.【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣1【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于基础试题14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】11:计算题;16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,∴y max=2,此时x﹣=,∴x=.故答案为:.【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin (x﹣)(0≤x<2π)是关键,属于中档题.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.【考点】DA:二项式定理.【专题】11:计算题;16:压轴题.【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数【解答】解:由题意可得,∴n=8展开式的通项=令8﹣2r=﹣2可得r=5此时系数为=56故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()•()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】11:计算题.【分析】由cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得sinAsinC=,由a=2c及正弦定理可得sinA=2sinC,联立可求C【解答】解:由B=π﹣(A+C)可得cosB=﹣cos(A+C)∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1∴sinAsinC=①由a=2c及正弦定理可得sinA=2sinC②①②联立可得,∵0<C<π∴sinC=a=2c即a>c【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.【专题】11:计算题.【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】15:综合题.【分析】(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1,根据P(A)=0.4,P(A0)=0.16,P (A1)=2×0.6×0.4=0.48,即可求得结论;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.【解答】解:(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3 P(ξ=0)=P(A2A)=0.36×0.4=0.144P(ξ=2)=P(B)=0.352P(ξ=3)=P(A0)=0.16×0.6=0.096P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量的取值,计算相应的概率是关键.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题.【分析】(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,可得a≤,构造函数g(x)=sinx﹣(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论.【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣当x时,g′(x)>0,当时,g′(x)<0∵,∴g(x)≥0,即(0≤x),当a≤时,有①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;②当时,=1+≤1+sinx综上,a≤.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M (1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D 的坐标,从而可求D到l的距离.【解答】解:(Ⅰ)设A(x0,(x0+1)2),∵y=(x+1)2,y′=2(x+1)∴l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.∵l⊥MA,∴2(x0+1)×=﹣1∴x0=0,∴A(0,1),∴r=|MA|=;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为∴∴t2(t2﹣4t﹣6)=0∴t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1∴D(2,﹣1),∴D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.【考点】8H:数列递推式;8I:数列与函数的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为,当y=0时,可得;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为,当y=0时,可得,根据归纳假设2≤x k<x k+1<3,可以证明2≤x k+1<x k+2<3,从而结论成立.(Ⅱ)由(Ⅰ),可得,构造b n=x n﹣3,可得是以﹣为首项,5为公比的等比数列,由此可求数列{ x n}的通项公式.【解答】(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为当y=0时,∴,∴2≤x1<x2<3;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为当y=0时,∴∵2≤x k<x k+1<3,∴<x k+2∴x k+1<x k+2<3∴2≤x k+1即n=k+1时,结论成立由①②可知:2≤x n<x n+1<3;(Ⅱ)由(Ⅰ),可得设b n=x n﹣3,∴∴∴是以﹣为首项,5为公比的等比数列∴∴∴.【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.。
2012届高三理科数学试卷第Ⅰ卷 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分)1、已知集合(){}|lg 1M x y x ==-,{}|21x N x =>,则M N = ( ) A.∅ B.{}|01x x << C.{}|0x x > D.{}|1x x <2、设数列{}n a 是等差数列,1780,0a a a <⋅<,若数列{}n a 的前n 项和n S 取得最小值,则n 的值为( )A .4B .7C .8D .153、已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( )A 、0.16B 、0.32C 、0.68D 、0.844、在以下关于向量的命题中,不正确...的是( ) A .若向量a =(x ,y ),向量b =(-y ,x ), (x y ≠ 0 ),则a ⊥b B .满足0))((=-+AD AB AD AB 的平行四边形ABCD 是菱形;C .满足O A xO B yO C =+的三点A 、B 、C 共线(其中,x y R ∈);D .△ABC 中,AB 和CA 的夹角等于180°-A 。
5、关于函数()sin 2+y x ϕ=的表述正确的是( )A. 周期是2π;B. 最小值为2-;C. 当2πϕ=时为偶函数; D. 当3πϕ=时,可以由sin 2y x =的图像向左平移3π个单位得到该函数图像。
6、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩,则“103a <<” 是“()f x 在(,)-∞+∞上单调递减”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7、运行如右所示的程序框图,输入下列四个函数, 则可以输出的函数是( ) A .2()f x x = B .()cos f x x π=C .()x f x e =D .()sin f x x =8、点F 是抛物线24x y =的焦点,过点F 的直线l 交抛物线于点A 、B (A 在y 轴左侧)。
学校 班级 姓名 考场 考号 装 订 线桃李中学2011—2012学年度第一学期月考试卷高三数学卷(理)一、 选择题(本大题共10小题,每小题5分,共50分)1.函数错误!未找到引用源。
的定义域为( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
2.若错误!未找到引用源。
,则错误!未找到引用源。
的值等于( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D . 错误!未找到引用源。
3.平面向量错误!未找到引用源。
与错误!未找到引用源。
的夹角为错误!未找到引用源。
, 错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
错误!未找到引用源。
( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
4.设等差数列{}n a 的前错误!未找到引用源。
项和为n S ,若25301(2)2a a x dx =⋅+⎰, 则95S S =( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
5.已知错误!未找到引用源。
,错误!未找到引用源。
,记错误!未找到引用源。
,要得到函数错误!未找到引用源。
的图像,只需将错误!未找到引用源。
的图像( ) A .向左平移错误!未找到引用源。
个单位 B .向右平移错误!未找到引用源。
个单位 C .向左平移错误!未找到引用源。
个单位 D .向右平移错误!未找到引用源。
个单位 6.下列命题中,真命题是( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
7.下面能得出错误!未找到引用源。
为锐角三角形的条件是( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
2012年上海高考理科数学试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则 ( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( )(A )25. (B )50. (C )75. (D )100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分) (2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)ABCDAB CPE21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)2012年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1. 1-2i . 2.)3,(21- . 3.],[2325-- . 4. arctan2 . 5. -160 . 6.78 . 7. (-∞, 1] . 8.π33. 9. -1 .10.)sin(16θπ- .11.32. 12. [2, 5] . 13.45. 14.12232--c a c .二、选择题(本大题共有4题,满分20分) 15.( B )16.( C )17.( A )18.( D ) 三、解答题(本大题共有5题,满分74分)19. [解](1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯.(2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与BC 的夹角为θ,则222224cos ===⨯⋅BC AE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π [解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形, 所以∠AEF =4π.因此异面直线BC 与AE 所成的角的大小是4π20.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x .因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. 由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x .21.[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3.由|AP |=2949,得救援船速度的大小为949海里/时.由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向yAB CD P EF为北偏东arctan 307弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v . 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. 22.[解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y . 解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x .所以所求三角形的面积1为8221||||==y OA S .(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b .由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ .(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. 23.[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. 所以x =2b ,从而x =4. (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a . 由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1.(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n .记},,,1,1{2k k x x A -=,k =2, 3, …, n . 先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P.现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s与t 中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以kk q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n .[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称.注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数, 所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n<<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x 注意到12111x x x x x x n n >>>- ,所以12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, …, n .。
2012年普通高等学校招生全国统一考试(黑龙江)理科数学第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C ∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
理科选择、填空题专项训练五
命题:丁海红
一、单项选择题
1.设集合{}{}R
T
S
a
x
a
x
T
x
x
S=
+
<
<
=
>
-
=
,8
|
,3
2
|,则a的取值范围是()
(A) 1
3-
<
<
-a(B) 1
3-
≤
≤
-a
(C) 3
-
≤
a或1
-
≥
a(D) 3
-
<
a或1
-
>
a
2.已知定义域为R的函数f(x)在)
,8(+∞上为减函数,且函数y=f(x+8)为偶函数,则(
)
A. f(6)>f(7)
B. f(6)>f(9)
C. f(7)>f(9)
D. f(7)>f(10)
3.过点(0,1)且与曲线
1
1
-
+
=
x
x
y在点(3,2)处的切线垂直的直线的方程为( )
A.0
1
2=
+
-y
x B.0
1
2=
-
+y
x C.0
2
2=
-
+y
x D.0
2
2=
+
-y
x
4.为了得到函数x
x
y2
cos
2
sin+
=的图像,只需把函数x
x
y2
cos
2
sin-
=的图像( )
A.向左平移
4
π
个长度单位B.向右平移
4
π
个长度单位
C.向左平移
2
π
个长度单位D.向右平移
2
π
个长度单位
5.已知函数y=M,最小值为m,则
m
M
的值为()
(A)
1
4
(B)
1
2
(C)
2
(D)
2
6.若函数)
(x
f的导函数3
4
)
('2+
-
=x
x
x
f,则使得函数)1
(-
x
f单调递减的一个充分不必要条
件是x∈( )
A.[0,1] B.[3,5] C.[2,3] D.[2,4]
7.过双曲线()
22
22
10,0
-=>>
x y
a b
a b
的焦点作渐近线的垂线,则直线与圆:
O222
+=
x y a的
位置关系是()
A.相交B.相离C.相切D.无法确定
8.已知函数()cos()(0,0,0)
f x A x A
ωϕωϕπ
=+>><<为奇函数,该函数的部分图象如
图所示,EFG
∆是边长为2的等边三角形,则(1)
f的值为()
A.B.-C D.
9.某几何体的三视图如图所示,该几何体的
体积是()
(A)8(B)
8
3
(C)4(D)
4
3
10.在三棱锥S—ABC中,
AB⊥BC,AB=BC=2,SA=SC=2,,二面角
S—AC—B的余弦值是
3
3
-,若S、A、B、C都在
同一球面上,则该球的表面积是( )
A.6
8B.π6C.24 D 6
二、填空题
11.已知抛物线)0
(1
)0
(
2
2
2
2
2
2>
>
=
-
>
=b
a
b
y
a
x
p
px
y与双曲线有相同的焦点F,点A是两
曲线的交点,且AF x
⊥轴,则双曲线的离心率为.
12.不等式x
a
x
a)2
4(
)3
(2-
<
-对)1,0(
∈
a恒成立,则x的取值范围是________________.
13.有限集合P中元素的个数记作card()P.已知card()10
M=,A M
⊆,B M
⊆,
A B=∅
,且card()2
A=,card()3
B=.若集合X满足A X M
⊆⊆,则集合X的个
数是_____;若集合Y满足Y M
⊆,且A Y
⊄,B Y
⊄,则集合Y的个数是_____.
(用数字作答)
14. 已知函数
2
3
410(2)
()
log(1)6(2)
x x x
f x
x x
⎧-+-≤
⎪
=⎨
-->
⎪⎩
,若2
(6)(5)
f a f a
->,则实数a的取值范围是_____
15. 对于函数()2cos,[0,]
f x x xπ
=-∈与函数2
1
()ln
2
g x x x
=+有下列命题:
①无论函数()
f x的图像通过怎样的平移所得的图像对应的函数都不会是奇函数;
②函数()
f x的图像与两坐标轴及其直线xπ
=所围成的封闭图形的面积为4;
③方程()0
g x=有两个根;
④函数()
g x图像上存在一点处的切线斜率小于0;
⑤若函数()
f x在点P处的切线平行于函数()
g x在点Q处的切线,则直线PQ
的斜率为
1
2π
-
,其中正确的命题是________。
(把所有正确命题的序号都填上)
班
级
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
姓
名
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
考
号
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
得
分
_
_
_
_
_
_
_
_
_
_
_
_
_
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
密
…
…
…
…
…
…
…
…
…
…
封
…
…
…
…
…
…
…
…
…
…
线
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…。