电磁感应单元知识总结
- 格式:doc
- 大小:78.00 KB
- 文档页数:4
电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。
电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。
下面我们将对电磁感应的相关知识点进行总结。
1. 法拉第电磁感应定律。
法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。
定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。
2. 感应电动势的方向。
根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。
当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。
这一规律在电磁感应现象的分析和应用中具有重要的指导意义。
3. 感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即。
ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。
这一规律在电磁感应现象的定量分析中起着重要的作用。
4. 涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场。
这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。
涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。
5. 涡旋电流。
涡旋电场的存在导致了涡旋电流的产生。
涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。
涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。
通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。
电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。
希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。
电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。
(2)公式:①二坠。
(3)单位:1Wb=1T・m2。
(4)物理意义:相当于穿过某一面积的磁感线的条数。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。
②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。
② 大拇指指向导体运动的方向。
③ 其余四指指向感应电流的方向。
(2) 适用范围:适用于部分导体切割磁感线。
三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。
(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
A ①(2) 公式:E=njt ,其中n 为线圈匝数。
E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。
3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。
初中物理电磁感应知识点总结归纳电磁感应是物理学中的一个重要概念,它描述了磁场对电路中电流和电荷的影响。
在初中物理学习中,我们接触到了一些基本的电磁感应知识点,本文将对这些知识点进行总结归纳。
一、法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律,它被简洁地表述为:“导体中的电动势与磁通量的变化率成正比”。
具体表达式为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。
负号表示感应电动势的方向与磁通量变化的方向相反。
根据法拉第电磁感应定律,我们可以得出以下几个重要结论:1. 磁通量的改变会引起感应电动势。
当磁通量Φ随时间变化时,电磁感应现象就会发生。
2. 电磁感应现象只发生在闭合电路中。
只有在电路是一个闭合回路的情况下,才会有感应电动势的产生。
3. 磁通量的改变率越大,感应电动势的大小越大。
磁通量变化越快,感应电动势就越大。
二、楞次定律楞次定律是电磁感应的另一个重要规律,它描述了感应电动势产生的方向。
楞次定律的表述为:“感应电动势的方向总是使得产生它的磁场变化所引起的电流的磁场方向与磁通量变化所引起的磁场方向相互作用,尽量抵消”。
通俗来说,楞次定律可以总结为以下两个规律:1. 当磁通量增大时,感应电动势的方向使得产生电流的磁场方向与磁通量变化所引起的磁场方向相反。
2. 当磁通量减小时,感应电动势的方向使得产生电流的磁场方向与磁通量变化所引起的磁场方向相同。
楞次定律可以帮助我们判断感应电流的方向,从而进一步理解电磁感应现象。
三、感应电动势与导体运动的关系当导体相对于磁场运动时,也会产生电磁感应现象。
导体运动所产生的感应电动势与导体运动方向、磁场方向等因素有关。
1. 假设导体以速度v垂直地穿过一个磁感应强度为B的磁场,那么感应电动势的大小为ε = Bvl,其中l表示导体的长度。
2. 如果导体运动的方向与磁场方向垂直,并且导体两端连接一个外电路,那么在导体中就会产生感应电流,导体受到的磁场力会使它产生运动。
一、选择题1.水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,如图所示,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程( )A .产生的总内能相等B .通过ab 棒的电量相等C .电流所做的功相等D .安培力对ab 棒所做的功相等A解析:A A .两种情况下,产生的内能相等,都等于金属棒的初动能,故A 正确;B .根据感应电荷量公式 BLx q R RΦ== x 是ab 棒滑行的位移大小,B 、R 、导体棒长度L 相同,x 越大,感应电荷量越大,因此导轨光滑时,感应电荷量大,故B 错误;C .电流所做的功等于回路中产生的焦耳热,根据功能关系可知导轨光滑时,金属棒克服安培力做功多,产生的焦耳热多,电流做功大,故C 错误;D .当导轨光滑时,金属棒克服安培力做功,动能全部转化为焦耳热,产生的内能等于金属棒的初动能;当导轨粗糙时,金属棒在导轨上滑动,一方面要克服摩擦力做功,摩擦生热,把部分动能转化为内能,另一方面要克服安培力做功,金属棒的部分动能转化为焦耳热,摩擦力做功产生的内能与克服安培力做功转化为内能的和等于金属棒的初动能。
所以,导轨粗糙时,安培力做的功少,导轨光滑时,安培力做的功多,故D 错误。
故选A 。
2.如图所示,导轨间的磁场方向垂直于纸面向里,当导体棒MN 在导轨上沿水平方向在磁场中滑动时,正对电磁铁A 的圆形金属环B ,则( )A .若导体棒向左匀速运动时,B 被A 排斥B .若导体棒向左加速运动时,B 被A 排斥C .若导体棒向右加速运动时,B 被A 吸引D .因导体棒运动方向未知,故不能确定B 被A 吸引或排斥B解析:BA .导体棒向左匀速运动时,切割磁感线产生的感应电动势恒定,感应电流不变。
电磁铁A 的磁性不变,所以金属环B 的磁通量不变,因此A 和B 间无相互作用力。
BC .导体棒向左加速或向右加速时,导体棒切割磁感线产生的电动势越来越大,电流越来越大,电磁铁A 的磁性越来越强,金属环B 的磁通量变大,根据楞次定律,A 和B 间有排斥力。
电磁感应知识点总结电磁感应是指通过磁场或电场的作用产生电流或电动势的现象。
它是电磁学的重要内容,应用广泛。
下面将从电磁感应的基本原理、应用和影响等方面进行总结。
一、电磁感应的基本原理1. 法拉第电磁感应定律:当磁场的变化穿过闭合回路时,回路中会产生感应电流。
这个定律描述了磁场变化对电流的影响。
2. 楞次定律:感应电流的方向会使得其磁场的改变抵消原来磁场变化的效果。
此定律描述了感应电流对磁场的反作用。
3. 磁通量:磁力线通过单位面积的数量。
磁通量的变化是电磁感应的直接原因。
二、电磁感应的应用1. 发电机:利用电磁感应原理将机械能转化为电能,广泛应用于发电行业。
2. 变压器:利用电磁感应原理实现电压的升降。
3. 感应电炉:利用电磁感应原理将电能转化为热能,用于熔炼金属等工业领域。
4. 电磁感应传感器:利用电磁感应原理测量物理量,如温度、压力等。
5. 电磁制动器和离合器:利用电磁感应原理实现制动和离合的功能。
三、电磁感应的影响1. 电磁辐射:由于电磁感应产生的电流会产生电磁辐射,对人体健康和电子设备产生一定的影响。
2. 电磁波干扰:电磁感应产生的电磁场有可能干扰无线通信、雷达等设备的正常工作。
3. 电磁感应对电路的影响:电磁感应会在电路中引入干扰电压和电流,影响电路的稳定性和性能。
电磁感应作为电磁学的重要内容,其基本原理和应用在现实生活中有着广泛的应用。
了解电磁感应的原理和应用,有助于我们更好地理解和应用电磁学知识,推动科学技术的发展。
同时,我们也需要关注电磁辐射和电磁干扰等问题,合理利用电磁感应技术,保护环境和人类健康。
一、选择题1.下列说法正确的是( )A .磁铁是磁场的唯一来源B .磁感线是从磁体的北极出发而到南极终止C .静止的电荷只能产生电场,运动的电荷才能产生磁场D .两条磁感线空隙处不存在磁场C解析:CA .电流的周围也存在磁场,磁铁不是磁场的唯一来源,故A 错误;B .磁感线是闭合曲线,再磁体外部从N 极出发进入S 极,内部有S 极到N 极,是闭合曲线,故B 错误;C .静止的电荷能产生电场,静止的电荷不能产生电流,从而不能产生磁场,而运动的电荷等效为产生电流才能产生磁场,故C 正确;D .磁感线的相对疏密表示磁性的相对强弱,即磁力线疏的地方磁性较弱,磁力线密的地方磁性较强;两磁感线空隙处存在磁场,故D 错误;故选C 。
2.三根完全相同的长直导线互相平行,通以大小和方向都相同的电流,它们的截面处于一个正方形abcd 的三个顶点a 、b 、c 处,如图所示,已知每根通电长直导线在其周围产生的磁感应强度与距该导线的距离成反比,通电导线b 在d 处产生的磁场其磁感应强度大小为B ,则三根通电导线产生的磁场在d 处的总磁感应强度大小为( )A .2BB .3BC .2.1BD .3.8B B解析:B根据几何关系得 2cd ad bd == 已知通电导线b 在d 处所产生磁场的磁感应强度大小为B ,由题中给出每根通电导线在其周围产生的磁场的磁感应强度大小与距该导线的距离成反比,则a 与c 在d 处产生的磁感应强度大小为2a c B B B =方向如图根据矢量的平行四边形定则,可知a 与c 在d 处产生的合磁感应强度的方向与b 在d 处产生的磁感应强度方向相同,a 与c 在d 处产生的合磁感应强度的大小为 2222(2)(2)2a C B B B B B B '+=+==则d 点的磁感应强度3d B B B B '=+=故选B 。
3.下列有关物理学史的说法正确的是( )A .伽利略发现了行星运动的规律B .库仑提出了库仑定律,并最早用实验测得元电荷e 的数值C .奥斯特首先发现了电流的磁效应D .牛顿发现了万有引力定律,并计算出太阳与地球之间的引力大小C解析:CA .开普勒发现了行星运动的规律,提出了行星运动的三大定律,故A 错误;B .库仑提出了库仑定律,密立根最早用实验测得元电荷e 的数值,故B 错误;C .奥斯特首先发现了电流的磁效应,故C 正确;D .牛顿发现了万有引力定律,但不知道引力常量G ,故无法计算出太阳与地球之间的引力大小,故D 错误;故选C 。
电磁感应知识总结盘州市第七中学王富瑾一、磁通量1、定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量。
2、物理意义:穿过某一面积的磁感线的净条数。
3、定义式:Φ=BS。
S为有效面积,即垂直于磁场方向上的投影面积S国际单位:Wb(韦伯)4、标矢性:标量。
但有正负。
磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
5、同一线圈平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的磁感线条数一样多时,磁通量为零。
二、磁通量的变化量1、定义式:△Φ=Φ2-Φ12、当磁感应强度B不变,改变线圈平面面积时,公式可变形为:△Φ=Φ2-Φ1=B(S2-S1)=B△S3、当线圈平面面积不变,改变磁感应强度B时,公式可变形为:△Φ=Φ2-Φ1=(B2-B1)S=△BS4、当磁感应强度B改变,线圈平面面积也改变时△Φ=Φ2-Φ1= B2S2- B1S1三、电磁感应现象1、当穿过闭合电路的磁通量发生变化时,电路中产生感应电流的现象产生。
2、物理学史:英国物理学家法拉第发现了电磁感应现象。
3、感应电流的条件:穿过闭合回路的磁通量发生变化。
4、实质:磁通量发生变化产生了感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
①只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
②产生感应电动势的那部分导体相当于电源。
5、感生电流与动生电流:①感生电流:穿过闭合导体回路的磁通量发生变化。
②动生电流:闭合电路的一部分导体切割磁感线。
5、常见的产生感应电流的三种情况四、楞次定律1、物理学史:楞次提出判断感应电流方向的定律——楞次定律。
2、内容:楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
3、适用范围:电磁感应现象的所有情形。
4、对楞次定律的理解①谁阻碍谁:感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么:阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
高三物理3-3知识点总结在高三物理的学习中,第三单元的第三课时是非常重要的一节课,本文将对该课时的知识点进行总结。
本课时主要涉及电磁感应和电磁场这两个方面的内容。
一、电磁感应1. 法拉第电磁感应定律根据法拉第电磁感应定律,当一个导体中的磁通量发生变化时,导体中就会产生感应电动势。
这个电动势的大小与磁通量的变化率成正比。
2. 洛伦兹力和楞次定律洛伦兹力是指导体中由于感应电流所受到的力,其大小与感应电流的方向、导体长度以及磁感应强度有关。
根据楞次定律,感应电流的方向会使产生它的原因尽可能减弱感应电流的变化。
3. 感应电流的方向根据左手法则,我们可以确定感应电流的方向。
当导体运动的速度和磁场的方向垂直时,我们用左手法则,大拇指指向速度方向,四指弯曲的方向即为感应电流的方向。
二、电磁场1. 电磁场的概念电磁场是指由电场和磁场共同构成的一个空间区域。
电场是由电荷产生的力场,磁场是由电流产生的力场。
电磁场在空间中的传播速度等于光速。
2. 电磁波的性质电磁波是电磁场的一种传播形式,是由电场和磁场通过振动相互作用而产生的波动现象。
电磁波包括无线电波、可见光、X射线等。
电磁波的频率和波长存在一定的关系,即波速等于频率乘以波长。
3. 麦克斯韦方程组麦克斯韦方程组是电磁场理论的基础,包括电场的高斯定理、电场的法拉第定律、磁场的高斯定理和安培环路定理。
这组方程描述了电场和磁场的产生和演化规律。
综上所述,高三物理3-3课时主要涉及电磁感应和电磁场的内容。
通过学习,我们了解了法拉第电磁感应定律和洛伦兹力,并学会了使用左手法则确定感应电流的方向。
我们还学习了电磁场的概念和电磁波的性质,了解了电磁场的传播速度和电磁波的频率与波长的关系。
最后,我们学习了麦克斯韦方程组,这是电磁场理论的基础,能够描述电场和磁场的产生和演化规律。
通过对高三物理3-3课时的知识点总结,希望能够对同学们在物理学习中有所帮助,巩固所学知识,为接下来的学习打下坚实的基础。
第十六章 电磁感应单元知识总结
【知识结构图示】
【物理思想方法】
用功能的观点分析电磁感应现象.灵活运用能量守恒定律将力学中的牛顿运动定律、动量关系、功能关系及电学中的电功率、闭合电路欧姆定律等知识联系起来是解决综合题的关键.
鉴于能量观点在现代物理学中的重要地位,也必定是将来高考的一个重点,要给予足够的重视.
例 两金属棒ab 和cd 长均为L ,电阻均为R ,质量分别为M 和m ,M >m ,用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连接成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧,两金属棒都处在水平位置.如图17-总-1所示,整个装置处在与回路平面相互垂直的匀强磁场中,磁感应强度为B ,若金属棒ab 正好匀速向下运动,求运动的速度.
解析 方法一:设磁场方向垂直纸面向里,ab 中的感应电动势BLv
E 1
=,方向由a →b ;
cd 中的感应电动势BLv
E 2
=,方向由d →c .回路中的电流方向由a →b →d →c ←a ,大小为:
R
BLv R
2E E I 2
1=
+=
,ab 受安培力方向向上,cd 受安培力方向向下,大小均为f ,
R
v L B BIL f 2
2
=
=.
当ab 匀速下滑时,对ab 有:T +f +Mg ①,对cd 有:T =f +mg ②,式中T 为棒所受到
的导线的拉力.
解①②得:2f =(M -m )g 即:
m)g -(M 22
2=R
v
L B
∴2
2
L
B 2gR )m M (v
-=
方法二:将ab 、cd 看做一个系统,其内部无摩擦力做功,对整个系统来说重力对其做正功,功率为gv m M P )(-=重.
由能量守恒,重力做功转化为系统的电能. ∴
R
v
L B 2R
2)
BLv 2(2
222
=
∴2
2
L
B 2gR )m M (v
-=
答案 2
2
L
B 2gR )m M (v
-=
点拔 分析金属棒匀速运动的条件、规律,就是安培力与重力平衡,抓住这一关键,其他问题就迎刃而解;另外能量守恒与转化的应用,使本题解答更为简洁.
【难题巧解点拨】
高考考点除自感现象为A 级外,其余均为B 级.高考命题集中在:(1)产生感应电流的条件,运用楞次定律和右手定则判定感应电动势和感应电流的方向;(2)运用法拉第电磁感应定律E =n ΔΦ/Δt 和E =BLvsin θ计算感应电动势;(3)电磁感应现象与硫场、电路、力学、能量等知识相联系的综合题的分析与计算;(4)电磁感应图像问题.
1.历届高考试题选讲
例1如图17-总-2所示,长为L 、电阻r =0.3Ω,质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的平行光滑金属导轨上,两导轨间距也是L ,棒与导轨接触良好,导轨电阻不计,导轨左侧接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串联在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现在以向右恒定的外力F 使金属棒右移.当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中一个电表正好满偏,而另一个电表未满偏.
问:
(1)此满偏电表是什么电表? (2)拉动金属棒的外力F 多大?
(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在轨道上.求从撤去外力到金属棒停止运动的过程中通过电阻的电量.
解析 (1)若电流表满偏,则I =3A ,U =IR =1.5V >1.0V .故满偏的是电压表.
(2)由功能关系:外力做功的功率等于电流做功的功率.即r)
(R I Fv 2
+=而I =U /R
∴ 1.6(N)
v
R
)r R (U
F
2
2
=+=
(3)由动量定理F Δt =m Δv 即IBL Δt =m Δv 即mv =BLq 又E =BLv ,E =I (R +r ) 所以有0.25(C)
)
r R (I mv
q
2
=+=
答案 (1)电压表 (2)1.6N (3)0.25C
点拔 本题考查了电路知识、动量定理、电磁感应定律等内容.考查了运用数学知识解决物理问题的能力.
例2如图17-总-3所示,在水平放置的光滑绝缘杆ab 上挂有两个金属环M 和N ,两环套在一通电密绕长螺线管的中部,螺线管中部区域的管外磁场可忽略.当变阻器的滑动触头向左移动时,两环将怎样运动( )
A .两环一起向左移动
B .两环一起向右移动
C .两环互相靠近
D .两环彼此离开
解析 当滑动变阻器触头向左移动时,电流增大,螺线管内外的磁场增强,穿过M 、N 两金属环的水平向右的磁通量增加,根据楞次定律,两环M 、N 中各有相同的感应电流.因为同方向的电流相互吸引,故两环互相靠近.
答案 C
点拔 本题考查了通电螺线管的磁场,产生感应电流的条件、楞次定律和电流间相互作用的规律.
2.高考试题展望
例3 把总电阻R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感
应强度为B 的匀强磁场中,如图17-总-4甲所示,一长度为2a ,电阻等于R ,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的电接触,当金属棒以恒定的速度v 向右移动经过环心O 时,
求:
(1)棒上电流的大小和方向及棒两端的电压MN U ;
(2)在圆环和金属棒上消耗的总热功率.
解析 把切割磁感线的金属棒看成一个具有内阻力R ,电动势为E 的电源,两个半圆环看成两个并联电阻,画出等效电路如图17-总-4乙所示.
等效电动势:E =B l v =2Bav
外电路的总电阻:2R R R R R R 2
1
21=
+=
外
棒上的电流大小为:R
3Bav 42
R 3Bav 2R
E I
=
=
=
总
电流方向从N 流向M .
根据分压原理,棒两端的电压:Bav
3
2R
R
E
R U MN
=
+=
外外
圆环和金属棒上消耗的总功率:R 3v
a B 8IE P 2
2
2
=
=
答案(1)
R
3Bav 4,N →M ,
Bav
3
2 (2)R
3v
a B 82
2
2
点拔 本题是电磁感应中的电路问题,在解这类问题时,首先必须进行电路结构分析,并画出等效电路图,从而将电磁感应问题转化为电路问题.。