抽象函数奇偶性
- 格式:ppt
- 大小:1.35 MB
- 文档页数:4
抽象函数的单调性和奇偶性应用抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数。
它是高中数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而高考中会出现这一题型,本文对抽象函数的单调性和奇偶性问题进行了整理、归类,大概有以下几种题型:一、判断单调性和奇偶性1. 判断单调性根据函数的奇偶性、单调性等有关性质,画出函数的示意图,以形助数,问题迅速获解。
例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是 A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 分析:画出满足题意的示意图,易知选B 。
例2.偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数还是减函数,并证明你的结论。
分析:如图所示,易知f x ()在()-∞,0上是增函数,证明如下:任取x x x x 121200<<⇒->->因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12。
又f x ()是偶函数,所以f x f x f x f x ()()()()-=-=1122,,从而f x f x ()()12<,故f x ()在()-∞,0上是增函数。
2. 判断奇偶性 根据已知条件,通过恰当的赋值代换,寻求f x ()与f x ()-的关系。
例3.若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,判断:函数 y f x =()是什么函数。
解:设y f x =()图象上任意一点为P (x y 00,)y f x =()与y f x =-()的图象关于原点对称,∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上,∴-=--∴=-y f x y f x 0000()()又y f x 00=()∴-=f x f x ()()00即对于函数定义域上的任意x 都有f x f x ()()-=,所以y f x =()是偶函数。
抽象函数的奇偶性证明
抽象函数的奇偶性证明:
一、定义
1. 抽象函数:是指一类函数(如函数y=f(x)),它可以抽象的表达某种数学规律或特性。
2. 奇偶性:表示函数奇偶性的定义是,如果一个函数在某点处对称,
则该函数具有奇偶性。
即如果f(x) = f(-x),就将函数f定义为奇函数。
二、证明
1. 同号x值得情况:如果x和-x同号,则x和-x的值永远是不同的,
因此函数f(x)与f(-x)一定是不同的,证明函数f(x)不具有奇偶性;
2. 异号x值得情况:假设f(x)为函数,f(-x)是函数f(x)关于原点的对称,则有f(x)=f(-x),证明函数f(x)具有奇偶性;
3. 自变量x取正值情况:由于f(x)和f(-x)可以认为是相同的,即f(x) =
f(-x),那么f(x)具有奇偶性,证明完毕。
三、小结
本文从理论上证明了抽象函数的奇偶性,归纳出当自变量x取正值时,只要f(x) = f(-x),就可以证明函数f(x)具有奇偶性。
抽象函数单调性与奇偶性抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。
常见的特殊模型:特殊模型抽象函数 正比例函数f(x)=kx (k ≠0)f(x+y)=f(x)+f(y)幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )yx (f =] 指数函数 f(x)=a x(a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+=+ 余切函数 f(x)=cotx)y (f )x (f )y (f )x (f 1)y x (f +-=+1.已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。
证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①在①中令y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。
六、奇偶性问题例1 . (1)已知函数f(x)(x ≠0的实数)对任意不等于零的实数x 、y 都有f(x ﹒y)=f(x)+f(y),试判断函数f(x)的奇偶性。
解析:函数具备奇偶性的前提是定义域关于原点对称,再考虑f(-x)与f(x)的关系:取y=-1有f(-x)=f(x)+f(-1),取x=y=-1有f(1)=2f(-1),取x=y=1有f(1)=0.所以f(-x)=f(x),即f(x)为偶函数。
(2)已知y=f (2x +1)是偶函数,则函数y=f (2x )的图象的对称轴是( D ) A.x =1B.x =2C.x =-21D.x =21 解析:f(2x+1)关于x=0对称,则f(x)关于x=1对称,故f(2x)关于2x=1对称.注:若由奇偶性的定义看复合函数,一般用一个简单函数来表示复合函数,化繁为简。
F (x )=f(2x+1)为偶函数,则f(-2x+1)=f(2x+1)→f(x)关于x=1对称。
例2:已知函数f(x)的定义域关于原点对称且满足())()(1)()()(1x f y f y f x f y x f -+=-,(2)存在正常数a ,使f(a)=1.求证:f(x)是奇函数。
证明:设t=x-y,则)()()(1)()()()(1)()()()(t f x f y f x f y f y f x f x f y f x y f t f -=-+-=-+=-=-,所以f(x)为奇函数。
例3:设)(x f 是定义在R 上的偶函数,且在)0,(-∞上是增函数,又)123()12(22+-<++a a f a a f 。
求实数a 的取值范围。
解析:又偶函数的性质知道:)(x f 在),0(+∞上减,而0122>++a a ,01232>+-a a ,所以由)123()12(22+-<++a a f a a f 得1231222+->++a a a a ,解得30<<a 。
抽象函数的对称性、奇偶性与周期性一、典例分析1.求函数值例1.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( )(A )0.5;(B )-0.5; (C )1.5; (D )-1.5.例2.已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.(1989)f = 。
2、比较函数值大小例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(19981xx f =试比较)1998(f 、)17101(f 、)15104(f 的大小.3、求函数解析式例4.设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式.4、判断函数奇偶性例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性.5、确定函数图象与x 轴交点的个数例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有多少个交点.6、在数列中的应用例8.在数列{}n a 中,)2(11,3111≥-+==--n a a a a n n n ,求数列的通项公式,并计算.1997951a a a a ++++7、在二项式中的应用例9.今天是星期三,试求今天后的第9292天是星期几?8、复数中的应用例10.(XX 市1994年高考题)设)(2321是虚数单位i i z +-=,则满足等式,z z n =且大于1的正整数n 中最小的是()(A ) 3 ; (B )4 ; (C )6 ; (D )7.9、解“立几”题例11.ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。
1.已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。
2.奇函数()f x 在定义域()1,1-内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。
3.如果()f x =2ax bx c ++(a>0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小4. 已知函数()x f 对任意实数y x ,,均有())()(y f x f y x f +=+,且当0>x 时,0)(>x f ,2)1(-=-f , 求()x f 在区间[]1,2-上的值域。
5. 已知函数()x f 对任意R y x ∈,,满足条件())()(y f x f y x f +=+2-,且当0>x 时,()2>x f ,5)3(=f ,求不等式()3222<--a a f 的解。
6.设函数()x f 的定义域是(-∞,+∞),满足条件:存在21x x ≠,使得()()21x f x f ≠,对任何y x ,,())()(y f x f y x f =+成立。
求:(1)()0f ; (2)对任意值x ,判断()x f 值的正负。
7.是否存在函数()x f ,使下列三个条件:①0)(>x f ,N x ∈;② N b a b f a f b a f ∈=+,),()()(;③4)2(=f 。
同时成立?若存在,求出()x f 的解析式,如不存在,说明理由。
8.设()x f 是定义在(0,+∞)上的单调增函数,满足()()()y f x f xy f +=,()13=f求:(1)()1f ;(2)若()x f +()28≤-x f ,求x 的取值范围。
9. 已知函数()x f 对任意实数y x ,都有)()()(y f x f xy f =,且()11=-f ,9)27(=f ,当10<≤x 时,()[)1,0∈x f 。
专题三抽象函数的单调性与奇偶性抽象函数是一种没有具体函数解析式或图像,但给出了函数满足的一部分性质或运算法则的函数。
这类函数问题能够全面考查学生对函数概念的理解及性质的应用、推理和论证能力,同时也能综合考查学生对数学符号语言的理解和接受能力。
因此,抽象函数问题倍受命题者的青睐,体现了函数与方程、数形结合、一般与特殊等重要的数学思想。
然而,由于抽象函数问题比较抽象,学生难以理解和接受,教材也没有很好地讲解处理,因此这类问题时常困惑着不少师生。
但是,这类问题对于发展学生的思维能力,进行数学思想方法的渗透,培养学生的创新思想,提高学生的数学素质,有着重要作用。
因此,本文将从解题思路及方法方面谈点看法。
首先,我们可以在中学函数部分教材中找到一些抽象型函数的特殊模型,如正比例函数、幂函数、指数函数等。
若充分利用这些模型解题,既可使学生掌握解决数学问题的规律,培养了解题能力,又使学生体会到人们对事物的认识,总是在感性认识的基础上,通过抽象概括上升为理性认识,最终揭示事物的本质,这样一种认识规律。
对于抽象函数解答题,虽然不可用特殊模型代替求解,但可借助特殊模型理解题意;同时,对于有些对应的特殊模型不是学生熟悉的基本初等函数的抽象函数解答题,要启发学生通过适当变通去寻求特殊模型,从而得到抽象函数问题的求解方法。
其次,对于用常规解法难以解决的数学问题,若利用一些特殊的数学思想方法求解,有时会收到事半功倍的效果。
比如,抽象函数奇偶性的判断一般通过合理赋值,抽象函数单调性的判断一般用定义,解关于抽象函数的不等式,一般利用用单调性脱去f。
综上所述,虽然抽象函数问题比较抽象,但是通过利用特殊模型和特殊方法,我们可以更好地解决这类问题,培养学生的数学思维能力和创新思维。
3.已知函数$f(x)$对任意实数$x,y$恒有$f(x+y)=f(x)+f(y)$且当$x>0$时,$f(x)<0$。
已知$f(1)=-2$。
抽象函数的对称性、奇偶性与周期性总结及习题一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT ,0k Z k ∈≠也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期;分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,;把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(;[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-;分段函数的奇偶性3、函数的对称性: 1中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
抽象函数的对称性、奇偶性与周期性常用结论及题型归纳一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性: (1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。