河南省中招考试数学试卷及答案
- 格式:docx
- 大小:897.34 KB
- 文档页数:10
河南省2023年中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中,最小的数是()A.-1B.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为(A.B.C.D.4.如图,直线AB,CD相交于点O,若,,则的度数为()A.30°B.50°C.60°D.80°5.化简的结果是()A.0B.1C.a D.a-26.如图,点A,B,C在上,若,则的度数为()A.95°B.100°C.105°D.110°7.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.二次函数的图象如图所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题(每小题3分,共15分)11.某校计划给每个年级配发n套劳动工具,则3个年级共需配发套劳动工具.12.方程组的解为.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有棵.14.如图,PA 与相切于点A ,PO 交于点B ,点C 在PA 上,且.若,,则CA 的长为.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.三、解答题(本大题共8个小题,共75分)16.(1)计算:;(2)化简:.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的;(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,中,点D在边AC上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA 长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EC的距离m,cm.求树EG 的高度(结果精确到0.1m).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离m,m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点的直线轴,作关于y轴对称的C图形,再分别作关于x轴和直线l对称的图形和,则可以看作是绕点O 顺时针旋转得到的,旋转角的度数为;可以看作是向右平移得到的,平移距离为个单位长度.(2)探究迁移如图2,中,,P为直线AB下方一点,作点P关于直线AB的对称点,再分别作点关于直线AD和直线CD的对称点和,连接AP,,请仅就图2的情形解决以下问题:①若,请判断β与α的数量关系,并说明理由;②若,求P,两点间的距离.(3)拓展应用在(2)的条件下,若,,,连接.当与的边平行时,请直接写出AP的长.1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】B6.【答案】D7.【答案】A8.【答案】B9.【答案】D10.【答案】A11.【答案】3n12.【答案】13.【答案】28014.【答案】15.【答案】2或16.【答案】(1)原式(2)17.【答案】(1)7.5;<(2)解:我认为小丽应该选择甲公司,因为甲公司的服务质量得分的方差小于乙公司,甲公司的服务质量比较稳定.(3)解:还应该收集两个公司的费用,投递范围信息.18.【答案】(1)如图:(2)证明:平分在和中19.【答案】(1)解:反比例函数图象经过点(2)解:如图,连接AC,交轴于点四边形AOCD是菱形是AC中点由得:在Rt中,是等边三角形综上,扇形AOC的半径为2,圆心角为.(3).20.【答案】由题意得:,解得答:树EG的高度约为21.【答案】(1)解:选择活动1时,需花费元选择活动2时,需花费元选择活动1更合算。
2023年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中最小的数是()A.-1B.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资.数据“4.59亿”用科学记数法表示为()A.B.C.D.4.如图,直线AB,CD相交于点O,若,,则的度数为()A.30°B.50°C.60°D.80°5.化简的结果是()A.0B.1C.a D.a-26.如图,点A,B,C在上,若,则的度数为()A.95°B.100°C.105°D.110°7.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.二次函数的图象如图所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题(每小题3分,共15分)11.某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.12.方程组的解为______.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有______棵.14.如图,PA与相切于点A,PO交于点B,点C在PA上,且.若,,则CA的长为______.15.矩形ABCD中,M为对角线BD的中点,点N在边AD上,且.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为______.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.(9分)如图,中,点D在边AC上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:.19.(9分)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA 长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.(9分)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EC的距离m,cm.求树EG的高度(结果精确到0.1m).21.(9分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.22.(10分)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离m,m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.23.(10分)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点的直线轴,作关于y轴对称的C图形,再分别作关于x轴和直线l对称的图形和,则可以看作是绕点O顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移如图2,中,,P为直线AB下方一点,作点P关于直线AB的对称点,再分别作点关于直线AD和直线CD的对称点和,连接AP,,请仅就图2的情形解决以下问题:①若,请判断β与α的数量关系,并说明理由;②若,求P,两点间的距离.(3)拓展应用在(2)的条件下,若,,,连接.当与的边平行时,请直接写出AP的长.。
2023年河南中考数学试卷含参考答案第一部分选择题1. 在下列各组数中,只有一个是偶数的是()。
A. 1,3,9B. 2,5,7C. 6,8,10D. 4,7,92. 已知正整数a和b满足:a÷b=7.r, 则下列运算正确的是()。
A. a÷7bB. 7a÷bC. a÷b×7D. b×(7÷a)3. 若a=2-√3,b=√3-1,则(a-b)(a^2+ab+b^2)的值是()。
A. 13B. 12C. 11D. 94. 在△ABC中,∠C=90°,AD是BC边上的高,AC=3,BC=4,则AD的长度为()。
A. 2B. 4/3C. 4/5D. 6/55. 设m∈[16, 18],若m²-10m的值为正数,则m的取值范围是()。
A. [16,17)B. [16,18)C. [17,18)D. [17,18]第二部分解答题6. 计算:150的整数倍最接近850的数是多少?- 解析:150的整数倍最接近850的数是第一个小于或等于850的多少的整数倍,计算得出:150 × 5 = 750。
所以答案是750。
7. 用边长为4的小正方形铺满边长为30的大正方形,则包括在大正方形内的小正方形个数是多少?- 解析:大正方形的边长是小正方形边长的7.5倍,所以包括在大正方形内的小正方形个数是7.5 × 7.5 = 56.25 个。
即答案是56个。
参考答案1. C2. B3. C4. D5. C6. 7507. 56。
2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。
17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。
那么等腰三角形的底长为2x = 12。
18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。
第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。
然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。
最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。
20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。
设张三的年龄为x,李四的年龄为y。
那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。
所以10年后张三的年龄是30岁,李四的年龄是40岁。
第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。
证明过程略。
第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。
祝你考试顺利!。
绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
河南省2024年普通高等学校对口招收中等职业学校毕业生考试数学考生注意:所有答案都要写在答题卡上,写在试卷上无效。
一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.已知集合A =a ,b ,c ,d ,下列说法错误的(C )A .a ∈AB .b ∈AC .c ∈AD .c ,d ∈A2.设a =2+7,b =3+6,c =2+5下列结论正确的是(A )A .a <b <cB .a <c <bC .b <a <cD .c <b <a解析:a 2=9+214,b 2=9+218,c 2=9+220,因为c 2>b 2>a 2所以c >b >a3.下列函数中,在0,+∞ 上单调递减的为(D )A.y =2x -5B .y =-x 2+x +6C .y =2x 2x +1D .y =1x +14.log 313+log 31+log 313的值为(B )A .-23B .-32C .-43D .-345.设第二象限角α满足tan α=-33,则sin α+π =(B )A .12B .-12C .32D .-32解析:α=5π6,sin (α+π)=-sin 5π6=-126.在复数集中,方程x 2+6x +10=0的根为(D )A .x 1,2=3±i B .x 1,2=±3+i C .x 1,2=±3-iD .x 1,2=-3±i解析:因为(-3+i )+(-3-i )=-6=-b a ,(-3+i )(-3-i )=10=ca,故选D7.等比数列a n a 1≠0 的公比q =2,则a 24a 2⋅a 3=(C )A .2B .4C .8D .168.在空间中,“两直线互相垂直”是“两直线相交”的(D )A .充分条件B .必要条件C .充要条件D .既非充分又非必要条件9.x +1x8的展开式中包含的项有(C)A .常数项B .含x 的项C .含x 2的项D .含x 3的项解析:通项公式为T r +1=C r 8x 8-r (1x)r =C r 8x 8-32r当8-32r =0时,r =163,不成立,当8-32r =1时,r =143,不成立当8-32r =2时,r =4,成立,故选C10.现在有5张相同奖券,其中2张有奖,3张无奖,则连刮2张都中奖的概率为(A )A .110B .15C .310D .25解析:连刮两张都中奖包含1种,共有C 25=10种,概率为110二、填空题(每小题3分,共24分)11.设全集U 是所有小写英文字母组成的集合,A =a ,b ,c ,d ,e ,B =b ,c ,d ,则A ∩C U B ={a ,e }。
2023年河南省中考数学试卷一、选择题1. 下列各数中,最小的数是( ) A.-lB. 0C. 1D.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( ) A. 74.5910⨯ B. 845.910⨯ C. 84.5910⨯ D. 90.45910⨯4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B.50︒C. 60︒D. 80︒5. 化简11a a a-+的结果是( ) A. 0B. 1C. aD. 2a -6. 如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒7. 关于x的一元二次方程280x mx+-=的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A. 12B.13C.16D.199. 二次函数2y ax bx=+的图象如图所示,则一次函数y x b=+的图象一定不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,PByPC=,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A. 6B. 3C. D. 二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12. 方程组⎩⎨⎧=+=+7353y x y x 的解为______.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14. 如图,PA 与O 相切于点A ,PO 交O 于点B,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.三、解答题16. (1)计算:135--. (2)化简:()()224x y x x y ---.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下: a .配送速度得分(满分10分): 甲:6 6 7 7 7 8 9 9 9 10 乙:6 7 7 8 8 8 8 9 9 10 b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:根据以上信息,回答下列问题:(1)表格中的m =______.2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18. 如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法). (2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =. 19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x轴上,以点O 为圆心,OA 长为半径作AC ,连接BF .(1)求k 的值.(2)求扇形AOC 的半径及圆心角的度数. (3)请直接写出图中阴影部分面积之和.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折.活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元.所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+.若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线ly 轴,作ABC 关于y轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______.333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度. (2)探究迁移:如图2,▱ABCD 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题: ①若2PAP β∠=,请判断β与α的数量关系,并说明理由. ②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,AD =15PAB ∠=︒,连接23P P .当23P P 与▱ABCD 的边平行时,请直接写出AP 的长.2023年河南省中考数学试卷答案一、选择题1. A2. A3. C4. B5. B6. D7. A8. B9. D 10. A【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PBPC=∴PB PC =,AO =又∵ABC 为等边三角形 ∴60BAC ∠=︒,AB AC = ∴()SSS APB APC △≌△ ∴BAO CAO ∠=∠ ∴30BAO CAO ∠=∠=︒当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =即AO OB ==∴30BAO ABO ∠=∠=︒ 过点O 作OD AB ⊥∴AD BD =,则cos303AD AO =⋅︒= ∴6AB AD BD =+=即:等边三角形ABC 的边长为6 故选:A .二、填空题11. 3n 12. 12x y =⎧⎨=⎩13. 280 14.10315. 21.【详解】解:当90MND ∠=︒时∵四边形ABCD 矩形 ∴90A ∠=︒,则∥MN AB 由平行线分线段成比例可得:AN BMND MD= 又∵M 为对角线BD 的中点 ∴BM MD = ∴1AN BMND MD== 即:1ND AN ==∴2AD AN ND =+= 当90NMD ∠=︒时∵M 为对角线BD 的中点,90NMD ∠=︒ ∴MN 为BD 的垂直平分线 ∴BN ND =∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=综上,AD 的长为21故答案为:21.三、解答题16. (1)15(2)24y17.(1)7.5,<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可) 18. 【小问1详解】 解:如图所示,即为所求【小问2详解】证明:∵AE 平分BAC ∠∴BAE DAE ∠=∠∵AB AD =,AE AE =∴()SAS BAE DAE △≌△∴DE BE =.19. (1(2)半径为2,圆心角为60︒(3)23π 【小问1详解】解:将)A 代入k y x=中 得1=解得:k =【小问2详解】 解:过点A 作OD 的垂线,垂足为G ,如下图:()3,1A1,AG OG ∴==2OA ∴==∴半径为2. 12AG OA = ∴1sin 2AG AOG OG ∠== 30AOG ∴∠=︒由菱形的性质知:30AOG COG ∠=∠=︒60AOC ∴∠=︒∴扇形AOC 的圆心角的度数:60︒.【小问3详解】解:2OD OG ==1AOCD S AG OD ∴=⨯=⨯=菱形221122663AOC S r πππ=⨯=⨯⨯=扇形 如下图:由菱形OBEF 知,FHO BHO S S =2BHO kS ==2FBO S ∴==2233FBO AOCD AOC S S S S ππ∴=+-==阴影部分面积菱形扇形. 20. 树EG 的高度为9.1m .【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =则90EAF BAF BAF BAH ∠+∠=∠+∠=︒∴EAF BAH ∠=∠∵30cm AB =,20cm BH = 则2tan 3BH BAH AB ∠== ∴2tan tan 3EF EAF BAH AF ∠==∠= ∵11m AF =,则2113EF = ∴22m 3EF = ∴22 1.89.1m 3EG EF FG =+=+≈ 答:树EG 的高度为9.1m .21. (1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【小问1详解】解:购买一件原价为450元的健身器材时活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元∴活动一更合算.【小问2详解】设这种健身器材的原价是x 元则0.880x x =-解得400x =答:这种健身器材的原价是400元.【小问3详解】这种健身器材的原价为a 元则活动一所需付款为:0.8a 元活动二当0300a <<时,所需付款为:a 元当300600a ≤<时,所需付款为:()80a -元当600900a ≤<时,所需付款为:()160a -元①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意 ②当300600a ≤<时,800.8a a -<,解得300400a ≤<即:当300400a ≤<时,活动二更合算.③当600900a ≤<时,1600.8a a -<,解得600800a ≤<即:当600800a ≤<时,活动二更合算综上:当300400a ≤<或600800a ≤<时,活动二更合算.22. (1)()0,2.8P ,0.4a =-(2)选择吊球,使球的落地点到C 点的距离更近.【小问1详解】解:在一次函数0.4 2.8y x =-+令0x =时, 2.8y =∴()0,2.8P将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a += 解得:0.4a =-.【小问2详解】∵3m OA =,2m CA =∴5m OC =选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =即:落地点距离点O 距离为7m∴落地点到C 点的距离为752m -=选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去)即:落地点距离点O 距离为()1m∴落地点到C 点的距离为()(514m -=-∵42-<∴选择吊球,使球的落地点到C 点的距离更近.23.(1)180︒,8(2)①2βα=,理由见解析.②2sin m α(3)【小问1详解】(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称 ∵222A B C △与ABC 关于O 点中心对称则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒ ∵()1,1A -∴12AA =∵()4,0M ,13,A A 关于直线4x =对称∴131248A A AA +=⨯=即38AA =333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度. 故答案为:180︒,8.【小问2详解】①2βα=,理由如下连接1AP由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD =∠+∠()112PAB PAD =∠+∠ 2BAD =∠∵2βα=∵连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,∵四边形ABCD 为平行四边形∵AB CD ∥∵13P P P ,,三点共线∴311311222PP PE PE PF P F PE PF EF =+++=+= ∵113,,PP AB PP CD DG AB ⊥⊥⊥∵1190PFD PEG DGE ∠=∠=∠=︒ ∵四边形EFDG 是矩形∵DG EF =在Rt DAG △中,DAG α∠=,AD m = ∵sin DG DAG DA∠= ∴sin sin DG AD DAG m α=⋅∠=∴3222sin PP EF DG m α===【小问3详解】解:设AP x =,则12AP AP x ==依题意,12PP AD ⊥当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q∵12390PP P ∠=︒∵15PAB ∠=︒,60α=︒∵1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP = 在1APP 中,()111180752APP PAP ∠=︒-∠=︒ ∵213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒∵13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==在1Rt PQP 中,11PQ AP AQ x x =-=12PP x ====∵3113PP PP PP x x =+=+= 由②可得32sin PP AD α= ∵AD =∴326PP =⨯=6x =解得:x =如图所示,若23P P DC ∥,则13290PP P ∠=︒∵21360P PP ∠=︒,则32130P P P ∠=︒则1312122PP PP x ==∵1PP x =,32PP x x x =+= ∵36PP =6x =解得:x =综上所述,AP 的长为或.。
2023年河南省中考数学试卷(含答案)第一卷一、选择题1. 一间长方形的房间,长7米,宽5米,高3米,墙面和地面需要刷漆,请问需要多少平方米的油漆?答案:94平方米2. 若$\frac{x-1}{3}+\frac{2x}{5}=x+3$,则$x=$?答案:$\frac{53}{7}$3. 如图,已知$\tan A=2$,$\tan B=3$,则$\sin(A-B)=$?答案:$\frac{\sqrt{3}}{5}$二、填空题1. $\sqrt{0.04}\times \sqrt{0.16}=$\_\_\_\_\_\_\_\_\_\_\_。
答案:$0.08$2. 当$x=-2$时,$f(x)=$\_\_\_\_\_\_\_\_\_\_。
答案:$-10$三、解答题1. 计算:$3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3}}}}$。
答案:$\frac{541}{180}$2. 已知$\triangle ABC$,$AB=3$,$BC=4$,$\angleABC=90^\circ$,点$D$在$AC$上,且$\angle ABD=60^\circ$,求$BD$的长度。
答案:$2$第二卷四、应用题某公司有$600$名员工,其中男性员工人数为女性员工人数的$3$倍,且有$280$名男性员工。
若该公司中$\frac{1}{6}$的男性员工和$\frac{1}{4}$的女性员工都会骑车上下班,共有多少人骑车上下班?答案:$170$五、解答题1. 证明:$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$,其中$a,b,c$均为正数。
答案:(略)2. 已知函数$f(x)=\frac{3x+2}{x-2}$。
(1)求$f(x)$的定义域;(2)若$f(x)+f\left(\frac{x}{2}\right)=3$,求$x$的值。
河南省中考数学试卷及答案(解析版)河南省中考数学试卷及答案(解析版)一、选择题1. 一辆汽车以每小时60公里的速度行驶,如果行驶6小时,它将行驶多远?答案:60公里/小时 × 6小时 = 360公里2. 下列哪个数是正数?A) -5 B) 0 C) 3 D) -2答案:C) 33. 一个直角三角形的两个直角边分别是3cm和4cm,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(3^2 + 4^2) = 5cm。
4. 某数的四分之一是20,这个数是多少?答案:某数的四分之一是20,所以这个数是20 × 4 = 80。
5. 常规体育课有篮球、足球和排球三个班级,篮球班级人数是足球班级人数的2倍,而排球班级人数是足球班级人数的3倍,如果总共有100人参加体育课,那么每个班级的人数分别是多少?答案:设足球班级的人数为x,则篮球班级的人数为2x,排球班级的人数为3x。
根据题意,x + 2x + 3x = 100,解得x = 10。
所以篮球班级人数为2 × 10 = 20,排球班级人数为3 × 10 = 30。
二、填空题1. 若10x + 5 = 25,则x的值为多少?答案:将等式两边同时减去5,得到10x = 20,再除以10,得到x= 2。
2. 一辆汽车以每小时50公里的速度行驶,若行驶的时间为6小时,则它行驶的距离为多少?答案:50公里/小时 × 6小时 = 300公里。
3. 已知一个三角形的两边长度分别为5cm和8cm,其面积为10平方厘米,求这个三角形的底边长。
答案:三角形的面积等于底边长乘以高的一半,所以10 = 8 ×高/2,解得高 = 5/2。
根据三角形的性质,底边长乘以高等于两倍的面积,所以底边长 × 5/2 = 2 × 10,解得底边长 = 8。
三、解答题1. 有一个长方形的周长是32cm,宽是4cm,请问这个长方形的长度是多少?答案:设长方形的长度为x,则周长等于2(x + 4),根据题意,2(x+ 4) = 32,解得x + 4 = 16,再解得x = 12。
河南省2023年中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中,最小的数是()A.-1B.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为(A.B.C.D.4.如图,直线AB,CD相交于点O,若,,则的度数为()A.30°B.50°C.60°D.80°5.化简的结果是()A.0B.1C.a D.a-26.如图,点A,B,C在上,若,则的度数为()A.95°B.100°C.105°D.110°7.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.二次函数的图象如图所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题(每小题3分,共15分)11.某校计划给每个年级配发n套劳动工具,则3个年级共需配发套劳动工具.12.方程组的解为.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有棵.14.如图,PA 与相切于点A ,PO 交于点B ,点C 在PA 上,且.若,,则CA 的长为.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.三、解答题(本大题共8个小题,共75分)16.(1)计算:;(2)化简:.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的;(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,中,点D在边AC上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA 长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EC的距离m,cm.求树EG 的高度(结果精确到0.1m).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离m,m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点的直线轴,作关于y轴对称的C图形,再分别作关于x轴和直线l对称的图形和,则可以看作是绕点O 顺时针旋转得到的,旋转角的度数为;可以看作是向右平移得到的,平移距离为个单位长度.(2)探究迁移如图2,中,,P为直线AB下方一点,作点P关于直线AB的对称点,再分别作点关于直线AD和直线CD的对称点和,连接AP,,请仅就图2的情形解决以下问题:①若,请判断β与α的数量关系,并说明理由;②若,求P,两点间的距离.(3)拓展应用在(2)的条件下,若,,,连接.当与的边平行时,请直接写出AP的长.1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】B6.【答案】D7.【答案】A8.【答案】B9.【答案】D10.【答案】A11.【答案】3n12.【答案】13.【答案】28014.【答案】15.【答案】2或16.【答案】(1)原式(2)17.【答案】(1)7.5;<(2)解:我认为小丽应该选择甲公司,因为甲公司的服务质量得分的方差小于乙公司,甲公司的服务质量比较稳定.(3)解:还应该收集两个公司的费用,投递范围信息.18.【答案】(1)如图:(2)证明:平分在和中19.【答案】(1)解:反比例函数图象经过点(2)解:如图,连接AC,交轴于点四边形AOCD是菱形是AC中点由得:在Rt中,是等边三角形综上,扇形AOC的半径为2,圆心角为.(3).20.【答案】由题意得:,解得答:树EG的高度约为21.【答案】(1)解:选择活动1时,需花费元选择活动2时,需花费元选择活动1更合算。
2014年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D·解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收入达到亿元.若将亿用科学计数法表示为×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B[解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.亿=×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.:∠CON=900-350=550, 故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B;解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查,(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
(B )某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B )错误。
}(C )神州飞船发射前需要对零部件进行抽样检查要全面检查。
(D )了解某种节能灯的使用寿命适合抽样调查,(D )正确。
故选B6:将两个长方体如图放置,到所构成的几何体的左视图可能是( ) 答案:C{解析:根据三视图可知,C 正确。
7.如图,ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )11 答案:C解析:根据平行四边形的性质勾股定理可得,Rt △ABO,OA=12AC=12×6=3,AB=4,∴OB=5,又BD=2OA=2×5=10.故C 正确。
~8.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( ) 答案:A解析:根据函数判断,当P 点在AC 上时y=x ,当P 点在BC 上时y=()22221x 1AC PC +=+-=2x 2x+2-,当P 点在AB 上时y=5-x,故选A.二、填空题(每小题3分,共21分) 9.计算:3272--= .,答案:1解析:原式=3-2=1 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是 .答案:-2解析:不等式组的解集是:-2≤x <2,满足条件的整数是-2,-1,0,1.它们的和为-2.(11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB的度数为 . 答案:1050.解析:由①的作图可知CD=BD,则∠DCB=∠B=250,∴∠ADC=500,又∵CD=AC ,∴∠A=∠ADC=500,∴∠ACD=800,∴∠ACB==800+250=1050.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为 .答案:8.。
解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.13.一个不进明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .答案:1 3 .解析:画树形图共12种可能,第一个人摸到红球且第二个人摸到白球的有4种,P(一红一白)=41= 123[14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB/C/D/,其中点C的运动能路径为/CC,则图中阴影部分的面积为 .答案:342+-π.解析:由旋转可知,阴影部分面积=扇形ACC/面积-2个三角形D/FC的面积。
作辅助线如图,在Rt△AD/E中,∠D/AE=300,AD/=1,∴D/E=12,AE=2,`在Rt△BD/E中,BE=1,D/B2=(1)2+(12)2=2可证∠D/FB=∠CFC/=900,△D/BF是等腰直角三角形,∴D/F2=22,∴D/,在Rt△CBH中,∠CBH=600,BC=1,∴BH=12AH=32,∴AC2=3,$S△D/FC=12× D/F×CF=12,S扇形ACC/=30360π×AC2=30360π×3=4πS 阴影= S 扇形ACC/-2×S △D/FC =4π-2×233-=4π+32-3 15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .…答案:53或52解析:过D /作FH ⊥AB 交AB 于F,交CD 于H;如图1,由翻折,△EDA ≌△ED /A,∴ED=ED /,AD=AD /=5,设AF=x ,则BF=7-x ,在Rt △BD /F 中, ∵PB 是∠ABC 的平分线, )∴∠ABD /=450, 则D /F=BF=7-x ,在Rt △AD /F 中,AD /2=AF 2+D /F 2,即52=(7-x )2+x 2,解得x=4或x=3,即D /F=BF=3或4. 当x=4时,如图1,设DE=y ,在Rt △D /HE 中,EH=4-y ,ED /=y ,HD /=2, /即(4-y )2+22=y 2,解得y=52,即DE=52当x=3时,如图2,设DE=y ,在Rt △D /HE 中,EH=3-y ,ED /=y ,HD /=1, 即(3-y )2+12=y 2,解得y=53,即DE=53三、解答题(本大题共8个,满分75分) &16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x=2-1 解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分 ;当x=2-1时,原式=211-+=2=22……………………………8分图1D /HFE P D AC图2D /FE P D A17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;证明:(1)连接OA ,∵PA 为⊙O 的切线, ∴OA ⊥PA. ……………………………1分 ¥ 在Rt △AOP 中,∠AOP=900-∠APO=900-300=600.∴∠ACP=12∠AOP=12×600=300.…………4分∴∠ACP=∠APO, ∴AC=AP.∴△ACP 是等腰三角形. ……………………5分 (2)填空: .①当DP= 1 cm 时,四边形AOBD 是菱形;…………7分②当-1 cm 时,四边形AOBP 是正方形.…………9分 (2)提示:①、若四边形AOBD 是菱形,则AO=AD=1,Rt △OAP, 当点D 是OP 的中点时, (即OD=PD=1时,四边形AOBD 是菱形 ②若四边形AOBP 是正方形,则∠AOB=∠APB=900,即PA=R=1,可证△PAD ≌△PCA, PA 2=PD(PD+2),即1= PD(PD+2),^∴PD 2+2PD-1=0,解得或-1(舍去)18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为; (2)请补全条形统计图; …(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;图1P图2P(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由. 解:(l )144: …………………………………………………………………………2分 提示:360×(1-45%-15%)=144. (2)(“篮球”选项的频数为40.正确补全条形统计图):………………………4分 、提示:经常参加人数:300×(1-45%-15%)=120,篮球:=40. 补全条形统计图如图所示。
(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为 1200×40300=160(人):………………………………………………………7分 (4)这种说法不正确.理由如下: ;小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。
………9分 (注:只要解释合理即可)19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。
参考数据:sin680≈,cos680≈,,tan680≈≈解:过点C 作CD ⊥AB,交BA 的延长线于点D.则AD 即为潜艇C 的下潜深度.根据题意得 ∠ACD=300,∠BCD=680. *设AD=x.则BD =BA 十AD=1000+x. 在Rt △ACD 中,CD=xtan tan 30AD ACD =∠……………4分在Rt △BCD 中,BD=CD ·tan688∴·tan688…………………………………………………7分@∴10003081.7 2.51≈≈⨯-∴潜艇C 离开海平面的下潜深度约为308米。