专题:带电粒子在电场、磁场及复合场中的运动
- 格式:doc
- 大小:81.00 KB
- 文档页数:3
专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.1对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系重力忽略不计2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.不考虑重力作用,离子荷质比q/mq、m分别是离子的电量与质量在什么范围内,离子才能打在金属板上4.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:1当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;2两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;3电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,动能不断增大,而绕行半径不变.l设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.2为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.3求粒子绕行n圈所需的总时间t n设极板间距远小于R.4在2图中画出A板电势U与时间t的关系从t=0起画到粒子第四次离开B板时即可. 5在粒子绕行的整个过程中,A板电势是否可始终保持为+U为什么RAB6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=×10-27㎏、电荷量为q =+×10-19C的α粒子不计α粒子重力,由静止开始经加速电压为U=1205V的电场图中未画出加速后,从坐标点M-4,2处平行于x轴向右运动,并先后通过两个匀强磁场区域.1请你求出α粒子在磁场中的运动半径;2你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;3求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内q=+、质量还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=一带电量0.2Cm=的小球由长0.4m0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.g=10m/s2,求:1小球运动到O点时的速度大小;2悬线断裂前瞬间拉力的大小;3ON间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB,并垂直AC 边射出不计粒子的重力.求: 1两极板间电压;2三角形区域内磁感应强度;3若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:1微粒再次经过直线OO´时与O 点的距离; 2微粒在运动过程中离开直线OO ´的最大高度;3水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.M O O ´ v B EO t /s B /T5π 15π 25π 35π 10π 20π 30π10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:1粒子在磁场中做圆周运动的半径; 2粒子在磁场中运动的时间; 3圆形磁场区域的最小半径;4若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=.一带负电的粒子比荷q/m=160C/kg,在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求: 1带电粒子开始运动后第一次到达y 轴时的坐标. 2带电粒子进入磁场后经多长时间会返回电场. 3带电粒子的y 方向分运动的周期. 30OP Av12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.1求匀强电场的电场强度E.2若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.3求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:1粒子从P运动到Q所用的时间t.2电场强度E的大小.3粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子重力忽略不计,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:1筒内磁场的磁感应强度大小.2带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案1 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O点4R 处飞越x 轴如图所示图中电场与磁场均未画出故有L =2R,L =2×2R,L =3×2R 即 R =L /2n,n=1、2、3………………… ①设粒子静止于y 轴正半轴上,和原点距离为h,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE n =l 、2、3……2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+R 1一d/22,R 1=5d/4……④ R 22=2d 2+R 2一d/22,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.24、解析:1根据动能定理,得20012eU mv =解得002eU v m =2欲使电子不能穿过磁场区域而打在荧光屏上,应有mv r d eB=<而212eU mv =由此即可解得222d eB U m <HPBv45°打在荧光屏上的位置坐标为x,则由轨迹图可得2222x r r d =-- 注意到mv r eB=和212eU mv =所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为222222(22)()2d eB x emU emU d e B U eB m =--≥35、解析:1E n =nqv2∵nqU=½mv 2n∴v n =m nqU2 Rmv n 2=qv n B n B n =mv n /qR以v n 结果代入,B n =qR m m nqU 2=R 1qnmv2 3绕行第n 圈需时n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 21+21+31+……+n14如图所示,对图的要求:越来越近的等幅脉冲5不可以,因为这样粒子在A 、B 之间飞行时电场对其做功+qv,使之加速,在A 、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大; 6、解析:1粒子在电场中被加速,由动能定理得 221mv qU =α粒子在磁场中偏转,则牛顿第二定律得rv m qvB 2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--q mU B r m 2由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为3带电粒子在磁场中的运动周期qBmv r T ππ22==O M 2 -22-4 4 x /my /m -2 vB B4,2-α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间 631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qB m T t πs 47、解:1小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② 2小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ 3绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧8、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB = 在磁场中运动半径d l r AB 23431== ∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401=方向垂直纸面向里 ⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ……… 2分 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 049、解:1由题意可知,微粒所受的重力 G =mg =8×10-3N电场力大小F =Eq =8×10-3N因此重力与电场力平衡微粒先在洛伦兹力作用下做匀速圆周运动,则2v qvB m R=解得 R =mvBq=0.6m 由 2RT vπ=解得T =10πs则微粒在5πs 内转过半个圆周,再次经直线OO´时与O 点的距离 l = 2R =1.2m2微粒运动半周后向上匀速运动,运动的时间为t =5πs,轨迹如图所示,位移大小 s =vt =πm=1.88m因此,微粒离开直线OO´的最大高度 h =s +R =2.48m3若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´下方时,由图象可知,挡板MN 与O 点间的距离应满足L =+m n =0,1,2…若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´上方时,由图象可知,挡板MN 与O 点间的距离应满足 L =+ m n =0,1,2…若两式合写成 L =+ m n =0,1,2…同样给分 510、解:1由r v m qvB 2=,vrT π2=得:m qBmvr 3.0==2画出粒子的运动轨迹如图,可知T t 65=,得:s s qB m t 551023.5103535--⨯=⨯==ππ 3由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=11.1y=0.069m2t=3T== 12.12313.12314.12。
专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
带电粒子和质点在电场、磁场中的运动专题一、带电粒子在电场和磁场中运动1.带电粒子通常指电子、质子、氚核和α粒子等微观粒子,一般可不计重力.2.处理带电粒子在电场和磁场中运动问题的方法.(1)带电粒子在匀强电场和匀强磁场共存区域内运动时,往往既要受到电场力作用,又要受到洛仑兹力作用.这两个力的特点是,电场力是恒力,而洛仑兹力的大小、方向随速度变化.若二力平衡,则粒子做匀速直线运动.若二力不平衡,则带电粒子所受合外力不可能为恒力,因此带电粒子将做复杂曲线运动.解决粒子做复杂曲线运动问题时,必须用动能定理或能量关系处理.这里要抓住场力做功和能量变化的特点,即电场力做功与电势能变化的特点,以及洛仑兹力永远不做功.(2)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律运动,处理这类问题时要注意分阶段求解.[例1]空间存在相互垂直的匀强电场E和匀强磁场B,其方向如图3-7-1所示.一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是A.沿初速度方向做匀速运动B.在纸平面内沿逆时针方向做匀速圆周运动C.在纸平面内做轨迹向下弯曲的匀变速曲线运动D.初始一段在纸平面内做轨迹向上(或向下)弯曲的非匀变速曲线运动问题:1.应根据哪些物理量的关系来判定粒子的运动情况?2.分析粒子的受力及其特点.判断选择并说明理由.3.若欲使带电粒子在此合场中做匀速运动,对该粒子的电性、带电量多少、质量大小、入射初速度大小有无限制?分析:粒子在场中要受到电场力和洛仑兹力作用.其中电场力为方向竖直向下的恒力;洛仑兹力方向与速度方向垂直且在垂直磁场的纸面内,初态时其方向为竖直向上,随速度大小和方向的变化,洛仑兹力也发生变化.若初态时,电场力和洛仑兹力相等,即qE=Bqv0,则粒子所受合外力为零,粒子做匀速运动.若初态时,电场力和洛仑兹力不相等,则粒子所受合外力不为零,方向与初速度方向垂直(竖直向上或竖直向下),粒子必做曲线运动.比如粒子向下偏转,其速度方向变化,所受洛仑兹力方向改变;同时电场力做正功,粒子动能增加,速度增大,洛仑兹力大小也变化.此时粒子所受合外力大小、方向均变化,则粒子所做曲线运动为非匀变速曲线运动.解:选项A、D正确.讨论与小结:1.判断带电粒子在电场和磁场共存区域内的运动形式,要根据其所受合外力的情况和合外力方向与初速度方向的关系来确定.2.若带电粒子在该合场中做匀速运动,根据qE=Bqv0可知,只要入射粒子的初速度v0=E/B,就可以做匀速运动.与粒子的电性、带电量的多少、质量的大小无关.这一点很重要,很多电学仪器的工作原理都涉及到这方面知识,比如离子速度选择器、质谱仪、电磁流量计等.[例2]如图3-7-2所示为一电磁流量计的示意图,截面为正方形的非磁性管,其边长为d,内有导电液体流动,在垂直液体流动方向加一指向纸里的匀强磁场,磁感应强度为B.现测得液体a、b两点间的电势差为U,求管内导电液体的流量Q为多少?问题:1.液体中的离子在磁场中怎样运动;为什么液体a、b两点间存在电势差?2.简述电磁流量计的工作原理.分析:流量是指单位时间内流过某一横截面的液体的体积.导电液体是指液体内含有正、负离子.在匀强磁场中,导电液体内的正、负离子在洛仑兹力作用下分别向下、上偏转,使管中上部聚积负电荷,下部聚积正电荷.从而在管内建立起一个方向向上的匀强电场,其场强随聚积电荷的增高而加强.后面流入的离子同时受到方向相反的洛仑兹力和电场力作用.当电场增强到使离子所受二力平衡时,此后的离子不再偏移,管上、下聚积电荷不再增加a、b两点电势差达到稳定值U,可以计算出流量Q.解:设液体中离子的带电量为q,因为[例3]如图3-7-3所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变子从b点射出时的速率.问题:1.依据力和运动关系,分析电子在合场中为什么会偏转,电子所做的运动是匀变速曲线运动吗?2.因为电子所做运动为非匀变速曲线运动,无法用牛顿运动定律解决,应该考虑用什么方法解决?3.若用动能定理解决,则各场力做功有什么特点?若用能量守恒定律解决,各场的能量有什么特点?分析:电子在合场中受到电场力和洛仑兹力,初态时电子所受二力不平衡,电子将发生偏转.因为洛仑兹力的大小、方向均变化,电子所受合力为变力,做非匀变速曲线运动.若用动能定理处理问题,则需知:电场力做功与路径无关,与带电量和初、末两位置的电势差有关.洛仑兹力永远不做功.若用能量守恒定律处理问题,则需知:电子在磁场中只有动能,没有势能;电子在电场中不仅有动能,而且还有势能,因此要规定零电势面.解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从a点射出,其守恒方程为:电子从b点射出,其守恒方程为:小结:1.处理带电粒子在电场和磁场共存区域内运动的另一种方法是应用动能定量,或能量守恒定律.2.应用动能定理时要注意,洛仑兹力永远不做功;应用能量守恒定律时注意,若只有电场力做功,粒子的动能加电势能总和不变,计算时需设定零电势面,同时注意电势能的正、负.[例4]如图3-7-4所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).问题:带电粒子在电场和磁场中分别做什么运动?你能画出它的轨迹示意图吗?分析:本题与前两个例题不同,它的电场和磁场区域是分开的.带电粒子在x轴上方运动只受洛仑兹力作用,做匀速圆周运动,又因为x轴是磁场的边界,粒子入射速度方向与磁场垂直,所以粒子的轨迹为半圆.带电粒子在x轴下方运动只受电场力作用,速度方向与力在一条直线上,粒子做匀变速直线运动.即当粒子从磁场中以速度v垂直于x轴向下射出时,因电场力作用先匀减速到0,再反向加速至v,并垂直射入磁场(粒子在电场中做类平抛运动).因为只要求讨论到粒子第三次到达x轴,所以粒子运动轨迹如图3-7-5所示.解:如图所示,有L=4R设粒子进入电场做减速运动的最大路程为l,加速度为a,则由前面分析知,粒子运动的总路程为S=2rR+2l小结:本题带电粒子的运动比较复杂,要根据粒子运动形式的不同分阶段处理.这是解决同类问题常用的方法.在动笔计算之前,一定要依据力和运动关系认真分析运动规律,分阶段后再个个击破.二、带电质点在电场和磁场中运动1.带电质点是指重力不能忽略,但又可视为质点的带电体.2.处理带电质点在匀强电场和匀强磁场中运动问题的方法(1)讨论带电质点在复合场中运动问题时,要先弄清重力、电场力、洛仑兹力的特点.根据质点受力情况和初速度情况判定运动形式.(2)讨论带电质点在复合场中运动问题时,还须清楚重力、电场力做功和重力势能、电势能变化关系.注意洛仑兹力不做功的特点.若带电质点只受场力作用,则它具有的动能、重力势能和电势能总和不变.[例5]如图3-7-6所示,在匀强电场和匀强磁场共存的区域内,场强E的方向竖直向下,磁感应强度B的方向垂直纸面向里.有三个带有等量同种电荷的油滴M、N、P在该区域中运动,其中M向有做匀速直线运动,N在竖直平面内做匀速圆周运动,P向左做匀速直线运动,不计空气阻力,则三个油滴的质量关系是A.m M>m N>m PB.m P>m N>m MC.m N>m P>m MD.m P>m M>m N问题:1.物体做匀速圆周运动的条件是什么?油滴N在场中的受力情况怎样?其电性如何?2.请对油滴P、M进行受力分析,并选出正确答案.分析:油滴在合场中要同时受到重力、电场力和洛图3-7-6仑兹力作用,其中重力、电场力是恒力,洛仑兹力随速度的变化而变化.若油滴N欲做匀速圆周运动,则其所受重力和电场力必然等大、反向,所受合力表现为洛仑兹力.这样才能满足合外力大小不变,方向时刻与速度方向垂直的运动条件.油滴一定带负电.三油滴的受力分析如图3-7-7所示.因它们所受的电场力和洛仑兹力大小分别相同,所以可知油滴P的质量最大,油滴M的质量最小.解:选项B正确.小结:1.若带电质点在三场共存区域内运动,一般会同时受到重力、电场力、洛仑兹力作用,若电场和磁场又为匀强场,则重力、电场力为恒力,洛仑兹力与速度有关,可为恒力也可为变力.2.若电场和磁场均是匀强场,且带电质点仅受三场力作用.则:(1)若重力与电场力等大、反向,初速度为零,带电质点必静止不动.(2)若重力与电场力等大、反向,初速度不为零,带电质点必做匀速圆周运动,洛仑兹力提供向心力.(3)若初速度不为零,且三力合力为零,带电质点必做匀速直线运动.(4)若初速度不为零,初态洛仑兹力与重力(或电场力)等大、反向,合外力不为零,带电质点必做复杂曲线运动.[例6]如图3-7-8所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.问题:1.微粒运动到O点之前都受到哪些力的作用?在这段时间内微粒为什么能做匀速直线运动?2.微粒运动到O点之后都受到哪些力的作用?在这段时间内微粒做什么运动?说明原因.分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图3-7-9所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图3-7-9所示.可利用运动合成和分解的方法去求解.解:因为mg=4×10-4NF=Eq=3×1O-4N(Bqv)2=(Eq)2+(mg)2所以 v=10m/s所以θ=37°因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s1,沿合力方向的位移为s2,则因为s l=vt所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.[例7]如图3-7-10所示,一对竖直放置的平行金属板长为L,板间距离为d,接在电压为U的电源上,板间有一与电场方向垂直的匀强磁场,磁场方向垂直纸面向里,磁感强度为B,有一质量为m,带电量为+q的油滴,从离平行板上端h高处由静止开始自由下落,由两板正中央P点处进入电场和磁场空间,油滴在P点所受电场力和磁场力恰好平衡,最后油滴从一块极板的边缘D处离开电场和磁场空间.求:(1)h=?(2)油滴在D点时的速度大小?问题:油滴的运动可分为几个阶段?每个阶段油滴做什么运动?每个阶段应该用什么方法来求解?分析:油滴的运动可分为两个阶段:从静止始至P点,油滴做自由落体运动;油滴进入P点以后,要受到重力、电场力和洛仑兹力作用,且合力不为零,由前面的小结知,油滴将做复杂曲线运动并从D点离开.第一个阶段的运动,可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.第二个阶段的运动只能依据能量关系求解,即重力、电场力做功之和等于油滴动能变化.或油滴具有的重力势能、电势能、动能总和不变.当然这一能量关系对整个运动过程也适用.解:(1)对第一个运动过程,依据动能定理和在P点的受力情况可知:(2)对整个运动过程,依据动能定理可知:小结:由例6、例7可以看出,处理带电质点在三场中运动的问题,首先应该对质点进行受力分析,依据力和运动的关系确定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.若质点做非匀变速运动,往往需要用能量关系求解.应用能量关系求解时,要特别注意各力做功的特点以及重力、电场力做功分别与重力势能和电势能变化的关系.同步练习(A组)一、选择题1.氢原子中,质量为m,电量为e的电子绕核做匀速圆周运动,现垂直于电子的轨道平面加一磁感应强度为B的匀强磁场,若电子的轨道半径不变,电子受到的电场力是洛仑兹力的N倍,则电子绕核运动的角速度可能为[ ]二、非选择题2.如图3-7-11所示,MN、PQ是一对长为L、相距为d(L d)的平行金属板,两板加有一定电压.现有一带电量为q、质量为m的带正电粒子(不计重力).从两板中央(图中虚线所示)平行极板方向以速度v0入射到两板间,而后粒子恰能从平行板的右边缘飞出.若在两板间施加一个垂直纸面的匀强磁场,则粒子恰好沿入射方向做匀速直线运动.求(1)两板间施加的电压U:(2)两板间施加的匀强磁场的磁感应强度B;(3)若将电场撤销而只保留磁场,粒子仍以原初速大小与方向射入两板间,并打在MN板上某点A处,通过计算MA的大小,对粒子不能射出板间区域加以说明.(B组)一、选择题1.如图3-7-12所示,真空中两水平放置的平行金属板间有电场强度为E的匀强电场,垂直场强方向有磁感应强度为B的匀强磁场,OO′为两板中央垂直磁场方向与电场方向的直线,以下说法正确的是[ ]A.只要带电粒子(不计重力)速度达到某一数值,沿OO′射入板间区域就能沿OO′做匀速直线运动B.若将带电微粒沿OO′射入板间区域,微粒仍有可能沿OO′做匀速直线运动C.若将带电微粒沿OO′射入板间区域,微粒有可能做匀变速曲线运动D.若将带电微粒沿OO′射入板间区域,微粒不可能做匀变速曲线运动二、非选择题2.有一个未知的匀强磁场,用如下方法测其磁感应强度,如图3-7-13所示,把一个横截面是矩形的铜片放在磁场中,使它的上、下两个表面与磁场平行,前、后两个表面与磁场垂直.当通入从左向右的电流I时,连接在上、下两个表面上的电压表示数为U.已知铜片中单位体积内自由电子数为n,电子质量m,带电量为e,铜片厚度(前后两个表面厚度)为d,高度(上、下两个表面的距离)为h,求磁场的磁感应强度B.3.如图3-7-14所示,在y轴右方有一匀强磁场,磁感应强度为B,方向垂直于纸面向外;在x轴下方,有一匀强电场,场强为E,方向平行x轴向左,有一铅板放置在y轴处,且与纸面垂直,现有一质量为m,带电量q的粒子由静止经过加速电压U的电场加速,然后,以垂直于铅板的方向从A处直线穿过铅板,而后从x轴上的D处以与x 轴正向夹角为60°的方向进入电场和磁场叠加的区域,最后达到y轴上的C点,已知OD长为L,求:(1)粒子经过铅板时损失了多少动能?(2)粒子到达C点时的速度多大?4.如图3-7-15所示,在一根足够长的竖直绝缘杆上,套着一个质量为m、带电量为-q的小球,球与杆之间的动摩擦因数为μ.场强为E的匀强电场和磁感应强度为B的匀强磁场方向如图所示,小球由静止开始下落.求:(1)小球开始下落时的加速度;(2)小球的速度多大时,有最大加速度,它们的值是多少?(3)小球运动的最大速度为多少?(C组)非选择题1.如图3-7-16所示的三维空间中,存在磁感应强度为B的匀强磁场和电场强度为E的匀强电场,B和E的方向均与Z轴正方向一致.一质量为m、带电量为q的正离子(重力不计),从坐标原点O以速率v沿y轴正方向射入电场和磁场中.OACD为xOz平面中的一个挡板,求此离子打到此挡板上时的速度大小是多少?2.如图3-7-17甲所示,图的右侧MN为一竖直放置的荧光屏,O为它的中点,OO′与荧光屏垂直,且长度为L.在MN的左侧空间存在着方向水平向里的匀强电场,场强大小为E.乙图是从左边去看荧光屏得到的平面图,在荧光屏上以O为原点建立如图的直角坐标系.一细束质量为m、电量为q的带电粒子以相同的初速度v0从O′点沿O′O方向射入电场区域.粒子的重力和粒子间的相互作用都可忽略不计.(1)若再在MN左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O处,求这个磁场的磁感应强度B的大小和方向.(2)如果磁感应强度B的大小保持不变,但把方向变为与电场方A点横坐标的数值.参考答案。
带电粒子在复合场中运动专题带电粒子在复合场中的运动是研究电磁学的重要问题之一。
复合场是指同时存在电场和磁场的场景,这种场景在自然界中广泛存在,例如电磁波、天体等,也在工程应用中得到广泛应用,例如地球磁场、医学影像等。
带电粒子在单一场中的运动在理解带电粒子在复合场中运动之前,我们需要先了解带电粒子在单一场中的运动。
在电场中,带电粒子会受到电场力的作用,从而在电场力的作用下做直线运动。
在磁场中,带电粒子会受到洛伦兹力的作用,从而顺着磁力线做螺旋运动。
这些都是比较基础的电磁学知识,这里不再详细讨论。
带电粒子在复合场中的运动在复合场中,带电粒子受到的是电场力和洛伦兹力的共同作用,因此它的运动轨迹就变得非常复杂。
具体来说,当电场和磁场方向垂直时,带电粒子的运动轨迹是一个圆形轨迹;当电场和磁场方向不垂直时,带电粒子的运动轨迹是一个螺旋形轨迹。
对于一般情况下的复合场,我们可以通过综合考虑电场和磁场的不同方向,得到带电粒子的具体轨迹。
在实际应用中,比如医学影像中的磁共振成像、天体物理学中的宇宙射线等,都涉及到带电粒子在复合场中的运动。
应用实例:医学影像中的磁共振成像医学影像领域中的磁共振成像(Magnetic Resonance Imaging,MRI)是一种非常常见的影像技术。
其中,磁共振成像剖面中的图像显示了人体基本组织和器官的细节,从而对诊断疾病起到了重要的作用。
磁共振成像的关键是产生一种特定的复合场,从而对人体组织产生特定的影响,从而得到影像。
在磁共振成像中,主磁场是垂直于病人身体的一个长方向的静磁场,而辅助磁场则是通过各种方式产生的交变磁场和脉冲磁场。
在此复合场的作用下,人体内的氢原子会产生共振现象,从而产生极低频信号,通过信号采集和处理后,便得到了图像。
磁共振成像是一种非常成功的医学诊断技术,它的关键是对带电粒子在复合场中运动的理解和应用。
结论带电粒子在复合场中的运动问题是电磁学研究的重要问题之一,在实际应用中也经常涉及到该问题。
微专题14带电粒子在复合场中的运动【知识规律整合】1.电场与磁场的组合应用实例装置原理图规律质谱仪带电粒子由静止被加速电场加速qU =12m v2,在磁场中做匀速圆周运动q v B=mv2R,则比荷qm=2UB2R2回旋加速器交变电流的周期和带电粒子做圆周运动的周期相同,带电粒子在圆周运动过程中每次经过D形盒缝隙都会被加速。
D形盒半径为r,由q v B=mv2r得E km=q2B2r22m2.电场与磁场的叠加应用实例装置原理图规律速度选择器q v0B=qE,即v0=EB,带电粒子做匀速直线运动电磁流量计UD q=q v B,所以v=UDB,所以Q=v S=UDBπ(D2)2=πUD4B霍尔元件当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现电势差题型一复合场在现代科技中的应用角度1速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量和质量。
【例1】一个带正电的微粒(重力不计)初速度水平向右,进入如图1所示的匀强磁场和匀强电场区域时会向下偏转,欲使微粒在电磁场中恰能沿水平直线运动,应采用的方法是()图1A.增大电荷质量B.增大电荷量C.增大磁感应强度D.减小入射速度答案C解析微粒进入复合场后向下偏转,可知,受到向上的洛伦兹力小于向下的静电力,q v B<qE,可通过增大磁感应强度或增大入射速度来增大洛伦兹力,使微粒在电磁场中恰能沿水平直线运动,C正确,D错误;由上述表达式可知,增大电荷质量、增大电荷量无法改变两个力的大小关系,A、B错误。
角度2质谱仪带电粒子由静止被加速电场加速,在磁场中做匀速圆周运动。
【例2】(2022·江苏南通检测)如图2所示,一束电荷量相同的带电粒子以一定的初速度沿直线通过由相互正交的匀强磁场和匀强电场(左侧极板带正电,右侧极板带负电)组成的速度选择器,然后粒子通过平板S上的狭缝P进入另一匀强偏转磁场,最终打在A1、A2上,下列说法正确的是()图2A.粒子带负电B.速度选择器中磁场方向为垂直纸面向里C .所有打在A 1A 2上的粒子,在匀强偏转磁场中的运动时间都相同D .粒子打在A 1A 2上的位置越远离P ,粒子的质量越大 答案 D解析 带电粒子在磁场中向左偏转,根据左手定则,知该粒子带正电,故A 错误;粒子经过速度选择器时所受的静电力和洛伦兹力平衡,静电力方向向右,则洛伦兹力方向向左,根据左手定则可知速度选择器中磁场方向为垂直纸面向外,故B 错误;所有打在A 1A 2上的粒子,在匀强偏转磁场中做匀速圆周运动,运动的时间等于t =T 2,而T =2πRv ,经过速度选择器后粒子的速度都相同,在匀强偏转磁场中做匀速圆周运动的粒子,半径越大则时间越长,故C 错误;经过速度选择器进入匀强偏转磁场中的粒子速度相等,根据题意可知粒子的电荷量相同,根据q v B =m v 2r ,得r =m vqB ,粒子打在A 1A 2上的位置越远离P ,则半径越大,粒子的质量越大,故D 正确。
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。
重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。
知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
专题:带电粒子在电场、磁场及复合场中的运动
带电粒子在电场中的运动
1、带电粒子在电场中的偏转问题:
●善于用分运动的观点分析问题
●善于用动量、能量的观点站在系统的角度考虑问题
●仔细审题,特别要注意重力能否忽略
带电粒子在匀强磁场中的运动
1、带电粒子在有界磁场中的磁偏转
带电粒子在半无界磁场中的运动
例1:如图所示.直线MN 上方有磁感应强度为B 的匀强磁场,正、负电子先后从同一点O 以与MN 成300角的同样速度v 射人磁场(电子质量为m,带电量为e),则它们从磁场中的射出点相距多远?在磁场中运动的时间差是多少?
带电粒子在矩形磁场区的运动
例:如图所示,长为L 的水平极板间,垂直纸面向内的匀强磁场,磁感应强
度为B ,板间距离也为L ,板不带电.现有质量为m 、电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是: ( )
A 、使粒子的速度:v<Bql/4m
B 、使粒子的速度:v>5Bql/4m
C 、使粒子的速度: v>Bql/m
D 、使粒子速度:Bql/4m>v<5Bql/4m
带电粒子穿过圆形磁场区的运动
●粒子沿圆形磁场区的半径方向垂直磁场射入,由对称性可知出射线的反向延长线必过磁场圆的圆心 ●由几何关系可得:
偏向角与两圆半径间的关系:R r =2tan
θ 偏转时间的关系式:qB
m T t θπθ==2 例1(06年天津理综,24):在以坐标原点O 为圆心、半径为r 的圆
形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁
场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A
处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处
沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m ;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速r
度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求:磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?
例2:如图所示,一个质量为m 、电量为q 的正离子,从A 点正对着圆心O 以速度v 射入半径为R 绝缘圆筒中。
圆筒内存在垂直纸面向里的匀强磁场,磁感应强度的大小为B 。
要使带电粒子与圆筒内壁碰撞多次后仍从A 点射出,求:正离子在磁场中运动的时间t ?(设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒子的重力)
【试题分析】
由于离子与圆筒内壁碰撞时无能量损失和电荷量损失,每次碰撞后离子的速度方向都沿半径方向指向圆心,并且离子运动的轨迹是对称的,如图
4所示.设离子与圆筒内壁碰撞n 次(n≥2),则离子在圆筒内有n +1段圆弧轨迹,根据四边形内角和等于360°,可知每相邻两次碰撞点之间圆筒圆弧所对的圆心角为α=2π/(n+1),因此离子在磁场中相邻两次碰撞点的运动轨迹所对应的圆心角θ=π-α=而离子运动的周期为
T=
,所以离子在磁场中运动的时间为t=其中n=2,3,4,
5……).
R α
带电粒子在复合场中的运动
带电粒子在组合场中的运动
●在匀强电场中的类平抛偏转与有界磁场中的偏转相结合
例3、(2004,全国理综,湖南卷,24)如图所示,在Y>0的空间中存在匀强电场,场强沿Y轴负方向;在Y<0的空间中。
存在匀强磁场,磁场方向垂直纸面向外.一电量为q、质量为m的带正电的运动粒子,经过Y轴上Y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h处的P2点进入磁场,并经过Y轴上Y=-2h处的P3点,不计重力.求:
(1)电场强度的大小;
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小.
v0。