(完整版)七年级数学下册平方差公式
- 格式:doc
- 大小:137.01 KB
- 文档页数:6
●内容全解
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)[a+(-b)],所以在这两个多项式中,a是相同的,而b与-b 是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键
..是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
如(3-m)(3+m)中,“3”与“3”相同,作为a,而“-m”与“m”相反,任选其一作为b,那么
(4)平方差公式中的a和b可以代表一个字母,一个数字或单项式.
注意:当a或b代表单项式时,进行平方时底数一定要打括号.
2.用拼图解释平方差公式
图1-4
左图阴影面积是a2-b2,而右图的阴影部分是长方形,长为(a+b),宽(a-b),阴影面积为(a+b)(a-b),由于左右两图的阴影部分面积相同,所以a2-b2=(a+b)(a-b),再次验证了平方差公式.。
平方差公式的运用技巧平方差公式(a+b)(a-b)=a2-b2是恒等式,是初中数学中的重要公式,公式中的字母可以表示数字,也可以表示单项式、多项式等代数式.在多项式的乘法计算过程中,只要算式符合公式的结构特征,就可以运用平方差公式.在灵活运用平方差公式解答有关问题时,应注意以下三种技巧:一.正用技巧1.直接运用平方差公式例1 计算:(-3a+2b)( -2b-3a) .分析:直接套用是学习了平方差公式后最基本的模仿运用,通过模仿可以培养类比的思维能力,从而达到熟悉掌握平方差公式的目的.解:原式=(-3a)2-(2b)2=9a2-4b2.2.连续运用平方差公式例2 计算:(x+2)(x2+4)(x-2) .分析:此题若从左向右依次运算计算很繁,若根据题目的特点,先将两个一次式相乘,则发现连续两次运用平方差公式,就可以求到结果.解:原式=(x2-4) (x2+4)=x4-16.3.综合运用乘法公式例3计算:(2a+b-c+6)(2a-b+c+6).分析:此题是两个四项式相乘,按照多项式的乘法法则计算会得到十六项,然后再合并同类项,但是若能把(2a+6)、(b-c)看作整体,则可以先运用平方差公式再运用完全平方公式求解,避免合并同类项的运算.解:原式=[(2a+6) +(b-c)][(2a+6)-(b-c)]=(2a+6)2-(b-c)2=4a2+24a+36-b2+2bc-c2.二.逆用技巧灵活正确掌握好平方差公式的逆用,对于计算和化简带来很大的简便性,可以起到事半功倍的作用.1.直接逆用平方差公式例4 计算:(a+2)2-(a-2)2.分析:此题可以直接先运用完全平方公式,然后再进行整式的加减,运算比较繁,若根据题目的特点,直接逆用平方差公式,便可化繁为简,迅速求解.解:原式=[(a+2)+(a -2)][ (a+2)-(a -2)]=2a×4=8a.例5 计算:(1-221)(1-231)(1-241)…(1-220081).分析:此题若直接先算出括号内的结果,将会出现2007个分数相乘的运算,但如果每个括号内都先逆用平方差公式,那么除了首尾两数以外,其余每相邻两数均互为倒数,正好约分,可以减少运算量.解:解:原式=(1-21)(1+21)(1-31)(1+31)(1-41)(1+41)·…·⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-200811200811 =2008200920082007454334322321⋅⋅⋅⋅⋅⋅⋅⋅ =20082009200820072007200854454334322321⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅)()()()( =2008200921⋅=40162009.2.提公因式后逆用平方差公式例6计算: 6.98×512-492×6.98.分析:此题无法直接逆用平方差公式,观察到题目的特点,可以先提取提公因式6.98,再逆用平方差公式求解.解:原式=6.98×(512-492)=6.98×(51+49)×(51-49)=6.98×100×2=1396;3.分组后逆用平方差公式例7计算:12-22+32-42+…+20032-20042+20052-20062+20072.分析:此题的数据较多,中间带有省略号,直接先算乘方再求代数和运算量太大,且不易求到结果,根据题目的特点,将1后面的2006个数据两两分组,逆用平方差公式,在利用求和公式求得结果.解:原式=1+(32-22)+(52-42)+…(20032-20022)+(20052-20042)+(20072-20062) =1+(3+2)+(5+4)+…+(2003+2002)+(2005+2004)+(2007+2006)=2007220071⋅+=2015028.4.指数变形后逆用平方差公式例8证明38-46能被17整除.分析:此题若按常理应先算出38-46的结果,再看是不是17的整倍数,但这样做计算量较大,不如根据题目的特点,先逆用()mnnm aa=把38、46进行指数变形,再逆用平方差公式,可以快速求证.证明:38-46=(34)2-(43)2=(34+43)(34-43)=145×17. ∴38-46能被17整除.5. 结合积的乘方性质逆用平方差公式例9 计算:1.2222×9-1.3332×4.分析:此题无法直接逆用平方差公式,观察到题目的特点,可以先逆用()mmm baab=对原式进行变形,再逆用平方差公式,可以快速求解.解:原式=1.2222×32-1.3332×22=(1.222×3)2-(1.333×2)2=(3.666+2.666)(3.666-2.666)=6.332.6. 逆用平方差公式后约分例10 计算:(16a2-9b2)÷(4a-3b).分析:此题根据题目的特点,先逆用平方差公式后发现可约分,则可化繁为简,迅速得解.解:原式=(4a+3b)×(4a-3b)÷(4a-3b)=4a+3b.三.创造条件运用技巧一些题目看似无法运用平方差公式运算,但若能认真审题,发现其中的规律,把题目进行适当的转化,便可适用平方差公式进行计算.1. 拆数(项)后运用平方差公式例11 计算:(1)2008×1992,(2)(a+3)(a-1).分析:此题直接计算也行,但是若能恰当拆数(项)后运用平方差公式,则更计算为简单,更能快速求得结果.解:(1) 原式=(2000+8)×(2000-8)=20002-82=3999936.(2)原式=[(a+1)+2][(a+1)-2]=(a+1)2-22=a2+2a+1-4= a2+2a-3.2 .添项后运用平方差公式例12计算:(1)99982,(2)(2+1)(22+1)(24+1)(28+1)·…·(2512+1).分析:本题若直接计算很繁,但添上一个数后,便能发现运用平方差公式进行巧算,不难求得结果.解:(1)原式=99982-22+22=(9998+2)(9998-2)+4=99960000+4=99960004. (2)原式=1×(2+1)(22+1)(24+1)(28+1)·…·(2512+1)=(2-1)(2+1)(22+1)(24+1)(28+1)·…·(2512+1)=(22-1)(22+1)(24+1)(28+1)·…·(2512+1)=(2512-1)·(2512+1)=21024-1;3.结合积的乘方性质运用平方差公式例13 计算:(x-y)2(x+y)2(x2+y2)2.分析:根据题目的特点,可以先逆用()mmm baab=对原式进行变形,再两次运用平方差公式,就可以求到结果.解:原式=[(x-y)(x+y)(x2+y2)] 2=[(x2-y2)(x2+y2)] 2=(x4-y4)2=x8-2x4y4+y8.4.结合乘法分配律运用平方差公式例14 计算:(1)(a-b)(a+b+2).分析:本题若直接计算可得到六项式后再合并同类项,但若根据题目的特点,把a+b看为整体,先用乘法分配律展开,再运用平方差公式,更为简单.解:原式==(a-b)[(a+b)+2]=(a-b)(a+b)+2(a-b)=a2-b2+2a-2b.。
乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。
这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。
例 1.已知a b 2 , ab 1,求a2b2的值。
例 2.已知a b 8, ab2,求 (a b)2的值。
解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。
解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。
第3讲 平方差公式1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯.知识点公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【知识拓展1】平方差公式1.运用乘法公式计算(4+x )(x ﹣4)的结果是( ) A .x 2﹣16B .x 2+16C .16﹣x 2D .﹣x 2﹣162.已知x +y =12,x ﹣y =6,则x 2﹣y 2= . 3.下列算式中不能利用平方差公式计算的是( ) A .(x +y )(x ﹣y ) B .(x ﹣y )(﹣x ﹣y )C .(x ﹣y )(﹣x +y )D .(x +y )(y ﹣x )4.计算(x +y )(x ﹣y )+16= . 5.(8x 2+4x )(﹣8x 2+4x )= . 6.若x 2﹣y 2=16,x +y =8,则x ﹣y = . 7.若x +y =5,x ﹣y =1,则x 2﹣y 2= .知识精讲目标导航8.若a=20170,b=2015×2017﹣20162,c=(﹣)2016×()2017,比较a,b,c大小(用“<”连接):.9.(3y+2x)(2x﹣3y)=.10.化简:(a+2)(a2+4)(a4+16)(a﹣2)=.11.下列各式,不能用平方差公式计算的是()A.(a+b﹣1)(a﹣b+1)B.(﹣a﹣b)(﹣a+b)C.(a+b2)(b2﹣a)D.(2x+y)(﹣2x﹣y)12.若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算13.若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为.14.若a2﹣b2=18,a+b=6,则a﹣b=.15.若m2﹣n2=10,且m﹣n=2,则m+n=.16.计算:(3x+2)(3x﹣2)+x(x﹣2).17.化简:(2x﹣y)(y+2x)﹣y(x﹣y)﹣(2x)2.18.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为()A.1B.0C.1或﹣1D.0或﹣2【知识拓展2】平方差公式的几何背景19.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)20.探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是(用式子表示),即乘法公式中的公式.(2)运用你所得到的公式计算:①10.3×9.7;②(x+2y﹣3z)(x﹣2y﹣3z).21.如图,在边长分别为a,b的两个正方形组成的图形中,剪去一个边长为(a﹣b)的正方形,通过用两种不同的方法计算剪去的正方形的面积,可以验证的乘法公式是()A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b222.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼的方式形成新的图形,给出四种割拼方法,其中能够验证平方差公式的有()个.A.1B.2C.3D.423.为庆祝中国共产党的百年华诞,某校要进行美化校园,各班同学设计热爱祖国的板报.八年一班学生在设计板报时,在黑板中间画一个半径为R的大圆,然后挖去半径为r的四个小圆,分别作为热爱中国共产党、热爱人民、认同中华文化和继承革命传统四个学习区域.请计算当R=7.8cm,r=1.1cm时剩余部分的面积.(结果保留π)24.将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.25.如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.26.数学中,常对同一个量用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”[探究一]如图1,在边长为a的正方形纸片上剪去一个边长为b(b<a)的正方形,你能表示图中阴影部分的面积吗?阴影部分的面积是;如图2,也可以把阴影部分沿着虚线AB剪开,分成两个梯形,阴影部分的面积是;用两种不同的方法计算同一个阴影部分的面积,可以得到等式.[探究二]如图3,一条直线上有n个点,请你数一数共有多少条线段呢?方法1:一路往右数,不回头数.以A1为端点的线段有A1A2、A1A3、A1A4、A1A5、…、A1A n,共有(n﹣1)条;以A2为端点的线段有A2A3、A2A4、A2A5、…、A2A n,共有(n﹣2)条;以A3为端点的线段有A3A4、A3A5、…、A3A n,共有(n﹣3)条;…以A n﹣1为端点的线段有A n﹣1A n,共有1条;图中线段的总条数是;方法2:每一个点都能和除它以外的(n﹣1)个点形成线段,共有n个点,共可形成n(n﹣1)条线段,但所有线段都数了两遍,所以线段的总条数是;用两种不同的方法数线段,可以得到等式.[应用]运用探究一、探究二中得到的等式解决问题.计算:992﹣982+972﹣962+952﹣942+…+32﹣22+12.[迁移]某篮球队共有8名实力相当的队员,现要随机派3名队员参加联队比赛,共有种不同的选择方案.能力拓展类型一、公式法——平方差公式例1、分解因式:(1)2()4x y +-; (2)2216()25()a b a b --+; (3)22(2)(21)x x +--.【变式】将下列各式分解因式:(1)()()22259a b a b +--; (2)()22234x y x --(3)33x y xy -+; (4)32436x xy -;例2、分解因式: (1)2128x -+; (2)33a b ab -; (3)516x x -; (4)2(1)(1)a b a -+-【变式】先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.类型二、平方差公式的应用例3、2222211111111......1123420112012⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1) =(22﹣1)(22+1)(24+1)=(24﹣1)(24+1) =(28﹣1).根据上式的计算方法,请计算: (1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.分层提分题组A 基础过关练一.选择题(共4小题)1.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()A.8B.3C.﹣3D.102.下列各式中,能用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a+b)(a﹣b)C.(a+b)(a﹣d)D.(a+b)(2a﹣b)3.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n24.如图,从边长为acm的正方形纸片中剪去一个边长为(a﹣3)cm的正方形(a>3),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为()A.6a cm2B.(6a+9)cm2C.(6a﹣9)cm2D.(a2﹣6a+9)cm2二.填空题(共4小题)5.已知x+y=12,x﹣y=6,则x2﹣y2=.6.已知m﹣n=3,则m2﹣n2﹣6n的值.7.若(2m+5)(2m﹣5)=15,则m2=.8.已知m2﹣n2=24,m比n大8,则m+n=.三.解答题(共5小题)9.化简:(a﹣b)(a+b)﹣a(a+b).10.计算:(1)(a+9)(a+1);(2)20192﹣2017×2021.11.若(x﹣2)(x2+ax﹣8b)的展开式中不含x的二次项和一次项.(1)求b a的值;(2)求(a+1)(a2+1)(a4+1)…(a32+1)+1的值.12.请阅读以下材料:[材料]若x=12349×12346,y=12348×12347,试比较x,y的大小.解:设12348=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a.因为x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0,所以x<y.我们把这种方法叫做换元法.请仿照例题比较下列两数大小:x=997657×997655,y=997653×997659.13.如图,从边长为(a+4)cm的正方形纸中减去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙).(1)拼成的长方形的周长是多少?(2)拼成的长方形的面积是多少?题组B 能力提升练一.选择题(共5小题)1.化简(2+1)(22+1)(24+1)(28+1)(216+1)的结果是()A.232﹣1B.232+1C.(216+1)2D.(216﹣1)22.如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:5=32﹣22,5就是一个智慧数,则下列各数不是智慧数的是()A.2020B.2021C.2022D.20233.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中,所有的“和谐数”之和为()A.2700B.2701C.2601D.26004.下列各数中,可以写成两个连续奇数的平方差的()A.520B.502C.250D.2055.在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)二.填空题(共5小题)6.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+)×(1+)×(1+)×(1+)+=.7.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…根据规律可得:(x﹣1)(x2021+x2020+…+x+1)=.8.计算:20212﹣2020×2022=.9.若m2﹣n2=40,且m﹣n=5.则m+n=.10.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.三.解答题(共4小题)11.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,根据规律(x﹣1)(x n﹣1+x n﹣2+…+x2+x+1)=.(其中n为正整数);(1)计算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)2+(﹣2)1+1;(2)计算:22018+22016+22014+…+24+22+2.12.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)应用公式计算:.(3)应用公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.13.在化简整式(x﹣2)■(x+2)+▲中,“■”表示运算符号“﹣”“×”中的某一个,“▲”表示一个整式.(1)计算(x﹣2)﹣(x+2)+(﹣2+y);(2)若(x﹣2)(x+2)+▲=3x2+4,求出整式▲;(3)已知(x﹣2)■(x+2)+▲的计算结果是二次单项式,当▲是常数项时,直接写出■表示的符号及▲的值.14.观察下列各式(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(1)(x﹣1)(x n﹣1+x n﹣2+…+x+1)=(其中n为正整数);(2)(2﹣1)•(299+298+…+2+1)=;(3)计算:350+349+348+…+32+3+1的值.题组C 培优拔尖练一.选择题(共1小题)1.(2020秋•鼓楼区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255024B.255054C.255064D.250554二.填空题(共6小题)2.(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是(写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式(用式子表达)小题4:应用所得的公式计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)3.已知a﹣b=3,a2﹣b2=9,则a=,b=.4.如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y﹣x)m,请你帮小刚家算一算菜地的面积是平方米.当x=20m,y=30m时,面积是平方米.5.计算:(5+1)(52+1)(54+1)(58+1)(516+1)+=.6.小明在计算时,找不到计算器,去向小华借,小华看了看题说根本不用计算器,而且很快说出了答案.你知道答案是多少吗,请将答案填在横线上.7.(2021春•锦江区校级期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如,16=52﹣32,16就是一个智慧数.在正整数中,从1开始,第2021个智慧数是.三.解答题(共6小题)8.(2021春•鼓楼区期中)有些同学会想当然地认为(x﹣y)3=x3﹣y3.(1)举出反例说明该式不一定成立;(2)计算(x﹣y)3;(3)直接写出当x、y满足什么条件时,该式成立.9.(2021春•婺城区校级期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.10.(2021春•淮北期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).11.(2021春•罗湖区校级期中)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.12.(2019春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?13.(2018秋•沙坪坝区期末)一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.。
北师大版七年级下册数学教学设计平方差公式本节课是在学生学习了单项式乘法、单项式与多项式乘法及多项式乘法之后的一节课。
从知识上来讲,实际上不是新知识,而是上一节整式乘法的一个特例。
因而可以引导学生在已有整式乘法知识的基础上,归纳这一乘法结果的普遍性,让学生明确这一公式来源于整式乘法。
除了从代数角度来认识这个公式之外,还要引导学生理解这个乘法公式的几何背景,可以加深学生对这个乘法公式的直观印象,体会数形结合的数学思想方法。
学生前面已经学习了整式乘法,对多项式乘法法则的形成及几何意义有一定的了解,这对学习本节课的知识有一定的帮助。
相信,在问题的引导下,学生应该和乐意用自己已学的知识来发现新的结论,学习新的知识。
这一点是与新课程标准中让学生经历知识形成过程的要求相符的。
但是对学生来说,如何从项的角度来理解平方差公式的特征,以区别与其他多项式相乘的算式会有一定的困难,再加上要学生用图形来解释所得的乘法公式,要求有点高,估计学生会需要老师的帮助。
义务教育阶段的数学新课程标准明确指出:数学教学活动必须建立在认识发展水平和已有的知识经验的基础之上。
强调从学生已有的生活经验出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流、获得知识,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识和能力,增强学好数学的信心。
一、学生起点分析学生的知识技能基础:通过前面的学习,学生已经会运用平方差公式进行简单的运算,并且掌握了字母表示数的广泛意义,学会了一些探索规律的方法。
学生活动经验基础:本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。
学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。
二、教学任务分析本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。
学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。
本节课的教学要培养学生的推理能力,使学生通过大胆而又合情合理的推理,有条理地表达自己的思考过程。
由此,根据课标要求,我确定本节课的目的如下:1.知识与技能:(1)发展学生的符号感和推理能力;(2)了解平方差公式的几何背景。
2.数学思考、解决问题:(1)在进一步体会平方差公式的意义时,发展推理和有条理的表达能力;(2)通过拼图游戏,与同伴交流平方差公式的几何背景。
3.情感与态度:在发展推理能力和有条理的表达能力的同时,通过小组讨论学习,培养学生的团结协作精神。
三、教学设计分析本节课的设计理念是:遵循“教学、学习、研究”同步协调的原则,让学生在探究合作交流的过程中,展示思维过程,让学生的思维全过程得到充分暴露,学生在再发现、再发明的过程中,思维火花发生强烈碰撞,数学结论的发现、生成为自然的事情.本节课可以按如下教学方式展开:放手做一做—引导想一想—鼓励说一说—特例验一验—设法证一证(多项式展开、几何图形解释)—规律用一用。
第一环节 复习回顾活动内容:1.提问平方差公式的内容2.判断正误:(1)(a+5)(a-5)=52-a(2)(3x+2)(3x-2)=2223-x(3)(a-2b)(-a-2b)=224b a -(4)(100+2)(100-2)=222100-=9996(5)(2a+b)(2a-b)=224b a -提问:⑴两个二项式相乘,因式要具备什么特征时,积才会是二项式?(当因式是两个数的和与这两个数....的差相乘时,积是二项式。
) ⑵为什么具备这些特点的两个二项式相乘,积会是二项式?而它们的积又有什么特征?(这是因为具备这样特征的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。
而它们的积等于因式中这两个数的平方差。
) 活动目的:通过学习旧知,为学习新知识做铺垫。
这些都是学生常出错的题目,通过做题引导学生积极地思考并对学生的思维进行调控,帮助学生优化思维过程,进一步理解平方差公式。
实际教学效果:学生议论、讨论,各抒己见,找到了正确的做法;运算时不但要注意到字母,还要注意到系数。
第二环节 拼图游戏,验证公式活动内容:如左图,边长为a 的大正方形中有一个边长为b 的小正方形。
1.请表示图中阴影(紫色)部分的面积。
2.小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? 图1 a 2-b 2 图2 (a+b)(a-b) ab ab3.比较1,2的结果,你能验证平方差公式吗?∴ a2-b2 = (a+b)(a-b)4.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.活动目的:让学生完整地经历“猜想——验证——证明”的过程。
若从代数的角度,运用多项式乘法法则计算出结果,进一步明确平方差公式的运算本质;若从几何背景的角度,使平方差公式更具有直观性,避免对公式的死记硬背,使平方差公式的学习更有意义。
学生学习数学是与具体实践活动分不开的,重视动手操作,是发展学生思维,培养学生数学能力最有效途径之一。
新编数学教材的特点之一,是重视直观教学,增加了学生的实践活动和动手操作内容。
为此,操作活动成了课堂教学过程中的一个重要环节。
设计这个环节,不仅能使学生获得知识更容易,而且有利于提高学生的逻辑思维能力。
通过让学生了解平方差公式的几何背景,进一步了解平方差公式的意义,并初步了解平方差公式的逆运用。
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让学生体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.实际教学效果:师:“在一块边长为厘米的正方形纸板上,因为工作的需要,中间挖去为b 厘米的小正方形,请问剩下的面积有多少?”我们该怎样列代数式来表示?生:我们可以用a2-b2来表示剩下的面积。
师:还有没有别的方法?生:也可以用(a+b)(a-b)来表示剩下的面积。
师:今天我们除了找一个比较方便的方法来求面积外,更重要的是我们能从图形中了解到(a+b)(a-b)=a2-b2这个性质。
安排平方差公式产生的几何背景,使学生经历过实际问题“符号化”的过程。
本节课我从复习旧知识入手,观察面积图形了解几何图形背景等一些手段来调动学生学习的积极性,活跃课堂气氛,达到了一定的效果。
但用面积相等来证明平方差公式的准确性部分学生难以理解。
第三环节巩固深化,拓展思维活动内容:例1 运用平方差公式计算(1)()()() (2)()()()例2 运用平方差公式计算(1)(200+1)(200-1) (2)102×98(3)203×197 (4)76197120⨯ 活动目的:例1两个题都需要运用两次平方差公式,锻炼学生对平方差公式的灵活运用;例2目的是运用平方差公式进行一些有关数的简便运算。
通过找规律,利用平方差公式简化数字运算,学生可以体会符号运算对证明猜想的作用,同时使学生较容易的运用平方差公式进行数字运算。
实际教学效果:例1两个题掌握较好;例2需做如下引导:要想用平方差公式,必须把式子写成( + )( - )的形式。
引导学生积极地思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供学生交流讨论的机会,学生学会对自己的数学思想进行组织和澄清,并能清楚地、准确地表达自己的数学思想,能通过对其他人的思维和策略的考察,扩展自己的数学知识和使用数学语言的能力,学生会自觉地、主动地、积极地学习,以“问”之方式来启发学生深思,以“变”之方式诱导学生灵活善变,以“梳”之方式引导学生归纳总结. 102=100+2 98=100-2 203=200+3 97=100-3 7120=20+71 7619=19+76 练习.请每位同学自编两道能运用平方差公式计算的题目第四环节 感受问题,体验成功活动内容:例3 计算222))(()1(b a b a b a a +-+)32(2)52)(52)(2(--+-x x x x例4 填空(1)a 2-4=(a+2)( ) (2)25-x 2=(5-x)( ) (3)m 2-n 2=( )( ) 思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习1 填空1.x 2-25=( )( )2.4m 2-49=(2m-7)( )3.a 4-m 4=(a 2+m 2)( )=(a 2+m 2)( )( )练习2 判断(1)(a+b)(-a-b)=a 2-b2 (2) 计算: ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+a 21b 31b 31a 2122a 41b 31a 21b 31a 21b 31-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=原式 活动目的:加入简单的混合运算之后,逐步让学生养成识别公式特征并自觉套用的习惯。
题目中加入了逆向使用公式的题目,让学生双向应用公式的过程中提高学生公式的应用能力。
同时,有意识地通过练习慢慢渗透因式分解的思想。
例3两个题的目的,是整式的混合运算,平方差公式的运用,能使运算简便;还需要注意的是运算顺序以及结果一定要化简。
例4的目的使让学生体会平方差公式的逆用。
通过有提示的填空题形式,学会如何运用平方差公式解题。
巩固所学知识,在练习中发现问题,及时解决。
实际教学效果:此题目错解原因在于没有仔细观察,看到第二个括号里有负号就误以为是(a -b).此题目中两个二项式各项都属相反项,没有相同项,故不能用平方差公式.解题时往往只对字母平方,而忽略了系数,本题错解原因就在于此.第五环节 扩展能力活动内容:以上题目视学生情况而定。
第六环节 归纳总结,形成知识网络活动内容:让学生谈谈自己的感受活动目的:整理本节课的知识点,突出学习重点,明确新、旧知识间的联系,归纳整理重要的数学思想,让学生感觉学有所得。
实际教学效果:鼓励学生结合本节课的学习,谈自己的收获与感想。
第七环节 布置作业习题1.12四、教学设计反思本节课从复习旧知识入手,通过计算比赛,观察面积图形了解几何图形背景等一些手段来调动学生学习的积极性,活跃课堂气氛,达到了一定的效果。