实验重组质粒DNA提取及双酶切鉴定
- 格式:ppt
- 大小:376.50 KB
- 文档页数:34
一、实验名称:重组DNA技术二、实验目的:1. 了解掌握DNA重组技术理论基础;2.掌握质粒载体、外源DNA的准备、酶切、连接技术方法;3.掌握连接产物的转化方法及操作;4.掌握阳性重组体的的鉴定和筛选方法;三、实验原理:1.重组DNA技术重组DNA技术是指在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型的技术。
它主要包括以下几个步骤:①目的基因的获取:主要有化学合成、PCR、基因组文库、cDNA文库构建等。
cDNA文库是以mRNA为模板,利用反转录酶合成与mRNA互补的DNA,再复制成双链cDNA片段,与适当载体连接后转入受体菌,这些受体菌包含了所有cDNA信息,总称cDNA文库。
常用于筛选编码蛋白质的结构基因。
基因组DNA 文库是利用限制性核酸内切酶将组织或细胞染色体DNA切割后,与适当载体连接后转入受体菌,这些受体菌包含了所有基因组DNA信息,因此称为基因组DNA 文库。
②基因载体的选择与构建:常用载体有质粒、噬菌体、病毒DNA等。
分为克隆载体和表达载体。
克隆载体:用于目的基因的克隆、扩增、序列分析和体外定点突变等。
表达载体:用于在宿主细胞中表达外源目的基因,获得大量表达产物。
选择好的载体与目的基因利用限制性内切酶切割成合适片段。
③目的基因与载体的拼接:通过粘性末端连接法(同源互补粘性末端连接、非同源互补粘性末端连接)、平端连接、人工接头连接、同聚物接尾、经部分补平的不匹配末端的连接等将目的基因与载体进行连接。
④重组DNA分子导入受体细胞:将连接有目的DNA的载体导入宿主细胞,主要有以下几种方法:a、转化:将质粒或其它外源DNA导入宿主细胞(常用大肠杆菌),并使其获得新的表型的过程。
b、转染:将外源DNA导入真核细胞的过程。
c、感染:以履菌体、柯斯质粒和病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。
第1篇一、实验目的1. 学习双酶切法获取目的基因片段的原理和方法。
2. 掌握DNA琼脂糖凝胶电泳的原理和方法。
3. 熟悉核酸琼脂糖胶回收的原理和方法。
4. 熟练操作限制性核酸内切酶、DNA连接酶等分子生物学实验技术。
5. 培养实验操作规范,提高实验技能。
二、实验原理1. 双酶切法:利用两种限制性核酸内切酶分别识别并切割目的基因片段和载体质粒,产生黏性末端或平末端,以便于连接。
2. DNA琼脂糖凝胶电泳:通过琼脂糖凝胶电泳分离不同分子量的DNA片段,便于观察和分析目的基因片段。
3. 核酸琼脂糖胶回收:利用琼脂糖凝胶电泳分离的DNA片段,通过酶解、溶解、纯化等步骤获得高纯度的目的基因片段。
三、实验器材1. 仪器:DNA电泳仪、凝胶成像系统、紫外分光光度计、PCR仪、移液器、微量离心机、恒温培养箱、电热恒温器等。
2. 试剂:限制性核酸内切酶、DNA连接酶、T4 DNA连接酶、DNA标记物、琼脂糖、DNA模板、DNA载体、DNA标记染料、缓冲液、DNA提取试剂盒等。
四、实验步骤1. 提取DNA模板:按照DNA提取试剂盒说明书提取目的基因片段和载体质粒的DNA。
2. 设计酶切反应体系:根据限制性核酸内切酶的识别序列,设计酶切反应体系,包括限制性核酸内切酶、DNA模板、缓冲液、DNA标记物等。
3. 酶切反应:将酶切反应体系放入恒温培养箱中,在适宜的温度下进行酶切反应。
4. 酶切产物鉴定:通过琼脂糖凝胶电泳分离酶切产物,观察DNA条带,鉴定酶切是否成功。
5. DNA连接:将酶切后的目的基因片段和载体质粒进行连接反应,连接条件按照DNA连接酶说明书进行。
6. 连接产物鉴定:通过琼脂糖凝胶电泳分离连接产物,观察DNA条带,鉴定连接是否成功。
7. 核酸琼脂糖胶回收:将连接产物进行琼脂糖凝胶电泳分离,回收目的基因片段。
8. 目的基因片段纯化:利用核酸琼脂糖胶回收试剂盒对回收的目的基因片段进行纯化。
9. 纯化产物鉴定:通过琼脂糖凝胶电泳分离纯化产物,观察DNA条带,鉴定纯化是否成功。
重组质粒进行鉴定时,可以采用两种方法进行鉴定。
1.通过pcr方法鉴定:以重组质粒为模板,pcr产物的特异性引物或载体的通用引物进行PCR 扩增后电泳鉴定。
2..就是酶切鉴定:双酶切鉴定时只要出现质粒条带和你的插入片段的目的条带就行了。
至于出现质粒条带很亮,而目的条带暗的现象,其实很正常。
因为一般情况下,质粒的碱基数比你的目的条带的碱基数多的多(一般质粒碱基都有好几千bp,而目的条带通常就几百到一千多bp)。
当我们用EB进行染色时,EB是掺入到到dna链中,碱基数越多则掺入的eb就越多,在紫外光下显示的条带就越亮,也就是说条带亮度与你的片段的长度成正比。
最后,如果两种方法都鉴定正确了,你就可以送到公司进行测序,做最后的鉴定了。
如果你非要看到你的目的条带很明显的话,也可以采取如下方法:
1.电泳时吸取的产物量加大,加入到大孔梳子的胶当中,如可以加产物10微升或更多。
2.凝胶成像拍照时,可以适当把曝光时间提高一点。
3.如果还是不清楚,就把你的酶切产物浓缩一下。
实验二质粒DNA的提取及酶切(8学时,6小时)一、实验目的:通过本实验学习和掌握碱裂解法提取和酶切质粒的技术与方法。
二、实验原理:碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA之间在拓扑学上的差异而达到分离目的。
环状闭合的质粒DNA在限制性内切酶的作用下成为线状质粒DNA,内切酶能识别DNA分子中某一特定的核苷酸序列。
三、仪器、材料、试剂(一)仪器:1、恒温摇床2、台式离心机3、高压灭菌锅4、振荡器(二)材料:1、含PUC-18质粒的大肠杆菌2、乙二胺四乙酸(EDTA)3、三羟甲基氨基甲烷(Tris) 4.葡萄糖 5.氢氧化钠(NaOH) 6.十二烷基硫酸钠(SDS) 7、乙酸钾(KAc) 8、冰醋酸(HAc) 9、盐酸(HCl) 10、Tris饱和酚11、氯仿12、异戊醇13、乙醇14、胰RNA酶15、氨苄青霉素16、离心管(三)试剂:1、溶液І (pH8.0) 2、溶液Ⅱ3、溶液Ш4、TE缓冲液(pH8.0)5、0.5mol/LEDTA6、氯仿:异戊醇(V:V=24:1)7、Tris饱和酚:氯仿:异戊醇(V:V:V=25:24:1)8、70%乙醇9、胰RNA酶10、ECOR I酶四、实验步骤(一)质粒DNA的提取1、先在3mL LB液体培养基中加入3uL羧苄青霉素(终浓度50ug/mL),然后接入一个含puc-18质粒的大肠杆菌单菌落,37℃震荡培养过夜。
2、取过夜培养的菌液1mL加入1.5mL离心管中,4000r/min,倒出培养液,将所有菌体细胞收集在一个离心管中。
3、加入100µl溶液І于含菌体细胞的小指管中,旋涡震荡将细菌沉淀悬浮,室温放置10min。
4、加入200µl溶液Ⅱ(新鲜配置),轻轻混匀内容物,溶液逐渐变清亮后加入溶液Ш(千万不可用旋涡震荡器,裂解时间不超过5min)。
5、加入150µl溶液Ш(冰上预冷),盖紧管口,轻轻混匀数次。
绿色荧光蛋白的克隆摘要:目的:研究绿色荧光蛋白基因的基因克隆。
方法:分别提取DH-5α(pEGFP-N1)和DH-5α(pMD-18T)质粒,将两个质粒酶切并连接形成重组质粒pMD-18T-GFP,将重组质粒导入DH-5α克隆菌中进行转化,用抗生素抗性筛选后,通过限制性核酸内切酶EcoR I 和 Hind III对所建质粒进行分析鉴定。
关键词:绿色荧光蛋白 DNA重组The cloning of green fluorescent proteinAbstract:Objective: Studies indicated the cloning of the GFP gene.Methods: Extract the plasmid of the DH-5α(pEGFP-N1) and DH-5α (pMD-18T). Then cutting by enzyme and connecting the two plasmids to form pMD-18T-GFP recombined plasmid. The recombinant plasmid confirmed by restriction enzyme and PCR was transferred into E.coli DH-5αto ensure the expression of green fluorescent protein. After resistant screening with antibiotics, analyze and identify the recombined plasmid.Keywords: Green Fluorescent Protein DNA recombination随着分子生物学和基因工程技术的迅速发展和广泛应用,重组DNA技术在发展蛋白质、多肽类药物与疫苗、转基因和基因敲除动物、HGP、基因诊断和基因治疗等方面得到广泛应用。
质粒双酶切后成功的标志
质粒双酶切后成功的标志是一项重要的实验步骤,该步骤会确保质粒酶切效果良好,有助于后续的基因工程操作。
下面将详细介绍质粒双酶切成功的标志。
1.凝胶电泳分析
最常用的检测质粒双酶切成功的方法是凝胶电泳分析。
通过电泳分离DNA,可以确定DNA的长度和完整性。
在凝胶电泳中,如果双酶切割作用有效,DNA会被切成两个或多个不同大小的碎片,这些碎片会在凝胶中形成不同的带状图案。
如果没有发生双酶切割,DNA将完整地保留,形成一个单独的带状图案。
2.碱基序列分析
双酶切后的DNA片段可以被进一步分离并测序,以确保正确的酶切位点。
这被称为限制性片段长度多态性(RFLP)分析。
通过与参考序列进行比较,可以确定酶切了哪些位点,并确认是否达到了预期的酶切效果。
这种方法通常在基因工程实验中使用,以确保重组质粒和转导体的正确性。
3.荧光素酶标记
质粒DNA上添加荧光素酶标记可以直接检测双酶切效果。
荧光素酶标记是一种绿色荧光蛋白,能够很容易地与DNA结合。
通过观察荧光素酶标记的荧光强度和分布,可以判断DNA是否成功双酶切割。
4.质粒测序
质粒测序是一种非常精确的检测方法。
通过使用测序仪器测量质粒双酶切后片段的每个碱基,可以确保酶切效果正确。
这种方法通常在对基因序列进行研究时使用,以确定基因在双酶切后发生的变化。
总之,质粒双酶切后成功的标志是可以通过精确的实验方法来检测,如凝胶电泳分析、碱基序列分析、荧光素酶标记和质粒测序。
这些方法可以帮助科学家确保质粒DNA的完整性和正确性,从而保证后续的基因工程操作的精确性和有效性。
实验一载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定一、实验目的1.CaCl2法制备感受态细胞2.目的基因与载体连接(c-myc+pSV2;粘端连接)3.重组质粒转化大肠杆菌并筛选转化体(HB101;Amp r)4.质粒DNA的小量快速制备5.质粒DNA的限制性内切酶酶切6.DNA的琼脂糖凝胶电泳二、实验原理通过粘端连接法将具有相同粘性末端的DNA分子连接在一起,通过碱基配对氢键形成一个相对稳定的结构,利用连接酶发挥间断修复的功能,从而获得重组的DNA分子。
受体细胞经处理后(电击或CaCl2等处理),细胞膜通透性发生变化,从而使外源的载体分子通过感受态细胞,并使受体细胞获得新的稳定遗传的性状,该过程称为转化。
由于本实验种pSV带有抗氨苄青霉素的基因,因而转化后的细胞在含氨苄青霉素的平板上培养可以筛选出转化成功的受体细胞。
分离质粒DNA的步骤包括:培养细菌使质粒扩增、收集和裂解细菌以及分离和纯化质粒DNA。
SDS可以使细胞壁裂解,碱变性抽提质粒DNA的原理是利用染色体DNA与质粒DNA的变性复性的差异达到分离目的,当pH>12.6时,染色体DNA氢键断裂,双螺旋结构解开而变性,质粒DNA由于超螺旋共价闭合环状结构,两条互补链不会完全分离。
当采用pH 4.8的NaAc高盐缓冲液调节pH至中性时,质粒DNA恢复原有的构型,而染色体DNA则不能复性而缠绕形成网状结构。
通过离心可将染色体DNA及大分子RNA、蛋白质等去除。
三、实验器材和试剂1.器材恒温摇床、电热恒温培养箱、电热恒温水浴、台式离心机、低温离心机、涡旋振荡器、移液枪及枪头、1.5 ml离心管、制冰机、三角推棒、酒精灯、细菌培养管、电泳槽及电泳仪、凝胶成像系统等。
2.试剂1)用BamH I和Xba I处理的线状pSV质粒DNA(20 ng/ul)2)用BamH I和Xba I处理的4.8 kb c-myc DNA片段(20 ng/ul)3)已连接好c-myc目的片段的pSV重组质粒DNA(5 ng/ul)4)T4 DNA连接酶(5 U/ul)及10×连接酶缓冲液(Thermo公司)5)LB培养基以及含琼脂的LB培养基铺制的平板(含抗生素)6)0.1 mol/L CaCl2溶液7)AxyPrep质粒DNA小量试剂盒(Axygen公司产品)8)无水乙醇9)BamH I(10 ug/ul)及Xbal I(10 ug/ul)(NEB公司产品)10)10×Buffer 4(NEB公司产品)11)1×TAE(0.04 mol/L Tris-乙酸;0.001 mol/L EDTA)12)γDNA Hind III Markers(0.1 ug/ul)(Thermo公司)13)6×凝胶加样缓冲液(0.25%溴酚蓝;40%(w/v)蔗糖水溶液)14)氨苄青霉素储存液(100 mg/ml)15)CelRed核酸染料(10000×in water)(Biotium公司产品)四、实验步骤1.目的基因c-myc与pSV质粒载体的连接目的基因片段(4.8 kb),25 ng/ul 4 ul载体DNA(3.5 kb),25 ng/ul 4 ul10×buffer 1 ulT4 DNA连接酶(5 U/ul)0.5 ulddH2O 0.5 ul总体积:10 ul混匀,16℃水浴锅温浴2. CaCl2法制备感受态细胞1)取0.1 ml大肠杆菌HB101培养物,加至3 ml LB培养液中,37℃振摇约2 h,细胞长至云雾状。
实验二阳性重组质粒的抽提及双酶切鉴定实验目的:练习质粒的抽提及双酶切的实验过程,熟悉相关操作。
实验材料及设备pMD-T重组质粒;内切酶Xba I 及Pst I;10×M Buffe r;琼脂糖;电泳仪及电泳所需试剂。
实验步骤A 大肠杆菌的扩繁及质粒DNA碱裂解法抽提挑取筛选平板上的白色菌落,接种到5ml LB液体培养基(含100μg/ml Amp)中,37℃振荡培养约12小时至对数生长后期↓取培养液倒入2 ml eppendorf管中,4℃下12000 rpm离心2分钟,去上清↓沉淀中加入150 μl溶液I(50 mmol/L 葡萄糖,25 mmol/L Tris.Cl (pH8.0),10mmol/L EDTA (pH8.0)),剧烈振荡使菌体悬浮,室温下放置5分钟↓加入250 μl新配制的溶液II (0.2 mol/L NaOH, 1%SDS, 临用前配制)盖紧管口,快速温和颠倒eppendorf管数次,以混匀内容物(千万不要振荡),室温下放置5分钟↓加入180 μl预冷的溶液III(5 mol/L KAc 60ml, 冰醋酸11.5ml, H2O 28.5ml, 定容至100ml , 并高压灭菌)盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀↓冰浴10分钟,4℃下12000rpm离心10分钟↓上清液移入干净eppendorf管中,计算体积↓加入各1/2体积的Tris-饱和酚以及氯仿/异戊醇(24:1),混匀20℃下12000 rpm离心10分钟,取上清, 计算体积↓加等体积的氯仿/异戊醇(24:1),12000 rpm离心10分钟↓将上清移入干净eppendorf管中,计算体积↓加入2倍体积的无水乙醇↓混匀后置于-20℃冰箱中30分钟↓然后4℃下12000 rpm离心10分钟↓弃上清,将管口敞开倒置于纸巾上使所有液体流出,用70%乙醇、无水乙醇各洗沉淀一次↓将管倒置于纸巾上使液体流尽,室温干燥↓将沉淀溶于100 μl TE缓冲液(pH8.0,(含20μg /ml RNaseA )中,储于-20℃冰箱中备用B 双酶切反应1、在PCR管中配制下列酶切体系(1×M Buffer):重组质粒10 ul(未稀释的原液)ddH2O 6 ul10×M Buffer 2ulXba I 1ul (15 U )Pst I 1ul (15 U )总体积20ul2、反应管置37℃下,酶切反应3~4小时。
分子生物学基因工程分子生物学与基因工程实验报告分子生物学与基因工程实验报告绿色荧光蛋白(GFP)基因的克隆和表达背景知识绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
GFP由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27.0kMr,其蛋白性质十分稳定,能耐受60℃处理。
1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成.1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
绿色荧光蛋白(GFP)基因的克隆和表达一、实验目的学习掌握一种最常用的质粒DNA提取方法:碱裂解法。
该法用于从小量培养物中抽提质粒DNA,比较方便、省时,提取的质粒DNA质量较高,可用于DNA的酶切、PCR甚至测序。
学习利用核酸蛋白测定仪测算核酸的浓度和纯度。
掌握一种最常用的分离、鉴定、纯化DNA片段的比较方便、省时的技术:琼脂糖凝胶电泳的基本原理和操作方法。
学习使用限制型内切酶进行DNA酶切的原理和方法。
了解和掌握大肠杆菌感受态细胞的制备方法的原理和操作要点,以及质粒DNA转化大肠杆菌细胞的原理和方法。
重组质粒双酶切鉴定结果
质粒双酶切鉴定是一种用于确定质粒DNA序列的技术。
通过
使用限制性内切酶对质粒进行酶切,然后运用电泳分析,可以获得关于质粒DNA序列的信息。
重组质粒双酶切鉴定结果通常包括以下内容:
1. 双酶切酶的酶切模式:双酶切鉴定通常使用两种限制性内切酶来进行酶切。
酶切模式描述了每个酶切酶在质粒上切割的位置,包括切割位点及其与质粒线性DNA的相对位置。
2. 酶切产物的大小:通过电泳将酶切后的质粒DNA进行分离,可以得到一系列的DNA片段。
通过估算这些片段的大小,可
以进一步确定酶切酶的切割位点以及质粒DNA的序列。
3. 酶切图谱:酶切图谱是通过将电泳分离的酶切产物进行可视化的图像,通常以荧光标记或放射性标记的方式进行。
酶切图谱可以帮助鉴定质粒的酶切模式,确认切割位点,以及评估酶切的效果。
通过分析重组质粒双酶切鉴定结果,可以确定质粒的基本结构和序列信息。
这对于研究质粒的功能和用途,以及进行基因工程和生物技术研究都具有重要意义。
重组质粒的构建、转化、筛选和鉴定实验目的:学习在实现DNA体外重组过程中,正确选择合适的载体和限制性内切酶并能对限制性核酸内切酶对载体和目的DNA进行切割,产生利于连接的合适末端。
学习设计构建重组DNA分子的基本方法,掌握载体和外源目的DNA酶切的操作。
学习利用T4DNA连接酶把酶切后的载体片段和外源目的DNA片段连接起来,构建体外DNA 分子的技术,了解并掌握几种常用的连接方式。
掌握利用Cacl2 感受态细胞的方法。
学习掌握热击法转化E.coli的原理和方法。
掌握α互补筛选法和PCR检测法筛选重组子的方法。
并鉴定体外导入目的DNA片段的大小。
学习和掌握PCR反应的基本原理和操作技术,了解引物设计的基本要求。
实验原理:外源DNA与载体分子的连接即为DNA重组技术,这样重新组合的DNA分子叫做重组子。
重组的DNA分子式在DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲系统中,将分别经限制性内切酶酶切的载体分子和外源DNA分子连接起来。
将重组质粒导入感受态细胞中,将转化后的细胞在选择性培养基中培养,可以通过α互补筛选法筛选出重组子,并可通过酶切电泳及PCR检验的方法进行重组子的鉴定。
重组子的构建酶切时首先要了解目的基因的酶切图谱,选用的限制性内切酶不能目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源工体DNA时不能得到完整的目的基因。
其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。
常用的酶切方法有双酶切法和单酶切法两种。
本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。
在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。
单酶切法简单易行单是后期筛选工作比较复杂。
各种限制性内切酶都有去最佳反应条件,最主要的因素是反应温度和缓冲液的组成,在双酶切体系中,限制性内切酶在使用时应遵循“先低盐后高盐,先低温后高温”的原则进行反应。