高中物理动量守恒定律解题技巧分析及练习题(含答案)
- 格式:doc
- 大小:386.50 KB
- 文档页数:11
高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。
(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。
【答案】(1) 210/v m s = (2)25J (3)9W 4P = 【解析】 【详解】解:(1)根据机械能守恒定律,可得:212mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s =(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:2212111()22mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+回路电功率:2E P R=联立解得:94P W =2.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =3.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得: m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如图所示,固定的光滑圆弧面与质量为6kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2kg 的滑块A ,在小车C 的左端有一个质量为2kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10m/s 2. 求: (1)滑块A 与B 弹性碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度.【答案】(1) v =2.5m/s (2) L =0.375m 【解析】【试题分析】(1)根据机械能守恒求解块A 滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A 与B 碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C 上表面的最短长度.(1)设滑块A 滑到圆弧末端时的速度大小为1v ,由机械能守恒定律有:2A A 11m gh m v 2= 代入数据解得12gh 5m/s v ==.设A 、B 碰后瞬间的共同速度为2v ,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, ()12A A B m v m m v =+ 代入数据解得2 2.5m/s v =.(2)设小车C 的最短长度为L ,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为3v ,根据动量守恒定律有:()()A B 2A B C 3m m v m m m v +=++ 根据能量守恒定律有:()()()222311gL=22A B A B A B C m m m m v m m m v μ++-++ 联立以上两代入数据解得0.375m L =【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh == (2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =7.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.如图所示,光滑水平直导轨上有三个质量均为m 的物块A 、B 、C ,物块B 、C 静止,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.那么从A 开始压缩弹簧直至与弹簧分离的过程中,求.(1)A 、B 第一次速度相同时的速度大小; (2)A 、B 第二次速度相同时的速度大小; (3)弹簧被压缩到最短时的弹性势能大小 【答案】(1)v 0(2)v 0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.冰球运动员甲的质量为80.0kg 。
当他以5.0m/s 的速度向前运动时,与另一质量为100kg 、速度为3.0m/s 的迎面而来的运动员乙相撞。
碰后甲恰好静止。
假设碰撞时间极短,求:(1)碰后乙的速度的大小; (2)碰撞中总动能的损失。
【答案】(1)1.0m/s (2)1400J 【解析】试题分析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…① 代入数据解得:V′=1.0m/s…②(2)设碰撞过程中总机械能的损失为△E ,应有:mv 2+MV 2=MV′2+△E…③ 联立②③式,代入数据得:△E=1400J 考点:动量守恒定律;能量守恒定律2.[物理─选修3-5] (1)天然放射性元素23994Pu 经过次α衰变和 次β衰变,最后变成铅的同位素 。
(填入铅的三种同位素20682Pb 、20782Pb 、20882Pb 中的一种)(2)某同学利用如图所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1∶2.当两摆均处于自由静止状态时,其侧面刚好接触.向右上方拉动B 球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?【答案】(1)8,4,20782Pb ;(2)211P P P ≤4% 【解析】 【详解】(1)设发生了x 次α衰变和y 次β衰变, 根据质量数和电荷数守恒可知,2x -y +82=94, 239=207+4x ;由数学知识可知,x =8,y =4.若是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是20782Pb(2)设摆球A 、B 的质量分别为A m 、B m ,摆长为l ,B 球的初始高度为h 1,碰撞前B 球的速度为v B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得1(1cos 45)h l =-︒①2112B B B m v mgh =② 设碰撞前、后两摆球的总动量的大小分别为P 1、P 2.有P 1=m B v B ③联立①②③式得12(1cos45)B P m gl =-︒ ④ 同理可得2()2(1cos30)A B P m m gl =+-︒ ⑤联立④⑤式得211cos301cos 45A B BP m m P m +-︒=-︒ ⑥ 代入已知条件得221 1.03P P⎛⎫= ⎪⎝⎭⑦ 由此可以推出211P P P -≤4% ⑧ 所以,此实验在规定的范围内验证了动量守恒定律.3.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
一质量为m b= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。
木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。
高中物理动量定理解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.2019年 1月 3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一张近距离拍摄月球背面的图片。
高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽局部嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m ,导体棒的电阻R=1 Q,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.⑴求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)假设导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.9 _【答案】(1) v 2、10m/s (2)25J (3)P - W4【解析】【详解】解:⑴根据机械能守恒定律,可得:mgh - mv2 2解得导体棒刚进入凹槽时的速度大小:v 2g0m / s(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据水平守恒可知,整个过程中系统产生的热量:Q mg(h r) 25J(3)设导体棒第一次通过最低点时速度大小为V I ,凹槽速度大小为v2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv1 Mv?1 2 1 2由能重寸恒可得:一mv1 mv2 mg(h r) Q12 2导体棒第一次通过最低点时感应电动势: E BLv1 BLv2E2回路电功率:P. ........ . 9联立解得:P -W42.如图,两块相同平板P i、P2置于光滑水平面上,质量均为m = 0.1kg. P2的右端固定一轻质弹簧,物体P置于P i的最右端,质量为M = 0.2kg且可看作质点.P i与P以共同速度vo= 4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P i与P2粘连在一起,压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P i的长度L=1m , P与P i之间的动摩擦因数为科=0.2, P2上外表光滑.求:-厂। A B vWm(i)P i、P2刚碰完时的共同速度v i;(2)此过程中弹簧的最大弹性势能E P.(3)通过计算判断最终P能否从P i上滑下,并求出P的最终速度V2.【答案】(i) v i=2m/s (2)E P=0.2J (3)v2=3m/s【解析】【分析】【详解】(i) P i、P2碰撞过程,由动量守恒定律mV. 2mM解得V i v°- 2m / s,方向水平向右;2(2)对P i、P2、P系统,由动量守恒定律2mv i Mv o (2m M )V2…3斛得v2 -v0 3m/s,方向水平向右,4i o i o i o此过程中弹簧的最大弹性势能E P -?2mv i2 + -Mv2 — (2m M )v22 0.2J -2 2 2(3)对P i、F2、P系统,由动量守恒定律2mv i Mv o 2mv3 Mv?i o i o i c 1c由能重寸恒TH律得一2mv〔+ Mv 02mv3Mv2 + Mg L2 2 2 2解得P的最终速度v2 3m/s 0,即P能从P i上滑下,P的最终速度v2 3m/s3.光滑水平面上质量为ikg的小球A, 量为2kg的大小相同的小球B发生正碰I~~H J I,,,,,.Cbr,〞(i)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能. 以2.0m/s的速度与同向运动的速度为i.0m/s、质,碰撞后小球B以i.5m/s的速度运动.求:【答案】v A i.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:甘-1 2 1 2 _1 / 2 _1 」E损-彳与口『 A彳叫.B代入数据解得:E损=0.25J答:①碰后A球的速度为1.0m/s;②碰撞过程中A、B系统损失的机械能为0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的屡次碰撞.如下图,一块外表水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L= 0.08 m.现有一小物块以初速度vo = 2 m/s从左端滑上木板,木板和小物块的质量均为 1 kg,小物块与木板之间的动摩擦因数-0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触, 木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g=10 m/s2.求:可________________ 「J(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者到达共同速度时,木板与墙碰撞的总次数和所用的总时间;(3)小物块和木板到达共同速度时 ,木板右端与墙之间的距离.【答案】(1) 0.4 s 0.4 m/s (2) 1.8 s. (3) 0.06 m【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a,经历时间T后与墙第一次碰撞,碰撞时的速度为V I那么mg ma,解得a g 1m/s2①,1 , 2 LL - at ②,v1 at ③ 2联立①②③ 解得t 0.4s, v1 0.4m/s④(2)在物块与木板两者到达共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T.设在物块与木板两者到达共同速度v前木板共经历n次碰撞,那么有:v V O 2nT t a a t ⑤式中At是碰撞n次后木板从起始位置至到达共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤ 式可改写为2v V o 2nTa⑥由于木板的速率只能处于 .到v1之间,故有0 v02nTa 2v1⑦求解上式得1.5 n 2.5由于n是整数,故有n=2®由①⑤⑧ 得:t 0.2s⑨;v 0.2m/s⑩从开始到物块与木板两者到达共同速度所用的时间为:t 4T t 1.8s (11)即从物块滑上木板到两者到达共同速度时,木板与墙共发生三次碰撞,所用的时间为1. 8s.............. 一…,……、、,,一 1 2(3)物块与木板到达共同速度时,木板与墙之间的距离为s L — a t2 (12)2联立①与(12)式,并代入数据得s 0.06m即到达共同速度时木板右端与墙之间的距离为0. 06m.考点:考查了牛顿第二定律,运动学公式【名师点睛】此题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动, 一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如下图,固定的光滑圆弧面与质量为6kg的小车C的上外表平滑相接,在圆弧面上有一个质量为2kg的滑块A,在小车C的左端有一个质量为2kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上外表高h=1.25m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.滑块A、B与小车C的动摩擦因数均为斤0.5,小车C与水平地面的摩擦忽略不计,取g=10m/s2.求:(1)滑块A与B弹性碰撞后瞬间的共同速度的大小;【试题分析】(1)根据机械能守恒求解块A滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A与B碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C上外表的最短长度.(1)设滑块A滑到圆弧末端时的速度大小为v i,由机械能守恒定律有:m A gh — m A V i2代入数据解得v i ,2gh 5m/s .设A、B碰后瞬间的共同速度为V2,滑块A与B碰撞瞬间与小车C无关,滑块A与B组成的系统动量守恒, m A V i m A m B V2代入数据解得V2 2.5m/s .(2)设小车C的最短长度为L,滑块A与B最终没有从小车C上滑出,三者最终速度相同设为V3,根据动量守恒定律有:m A m B v2m A m B m C v31 2 1 2根据能重寸恒TH律有:m A m B gL= m A m B v2m A m B m C v;2 2联立以上两代入数据解得L 0.375m【点睛】此题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.(1)滑块A与滑块B碰撞结束瞬间的速度V;(2)被压缩弹簧的最大弹性势能E pmax;(3)滑块C落地点与桌面边缘的水平距离s.【答案】(1) v 1V l I J2gh (2) mg" (3)—VHh 3 3 6 3【解析】【详解】解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的1 2速度为v1,由机械能守恒定律有:m A gh —m A%解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有: m A v 1 m A m B v1 1 ----- 斛之信:vV i — 2gh 3 3 ,(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 V 2 由动量守恒定律有:m A v 1 m A m B m C v 2122由机械能寸恒TH 律有: E Pmax (m A m B )v m A m B m C v 221解得被压缩弹簧的最大弹性势能:E Pmax -mgh Pmax6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:121 21 2-m A m B v m A m B v -m e v^ 2221 -------解之得:v 3 0, v 4 -42gh3 . 滑块C 从桌面边缘飞出后做平抛运动:s v 4t12H2g t2解之得滑块C 落地点与桌面边缘的水平距离:s — JHh3R= 0.4 m 的四分之一圆弧轨道 AB 在最低点B 与光滑水平轨道BC 相切.质量m 2 = 0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另 一质量m 〔 = 0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点 B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度(1)小球a 由A 点运动到B 点的过程中,摩擦力做功 W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能 E p ; (3)小球a 通过弹簧与小球 b 相互作用的整个过程中,弹簧对小球 b 的冲量I .【答案】(1)四:(2) E P =0.2J ⑶ I=0.4N?sm A m B v m A m B v m C v 47.如下图,内壁粗糙、半径g= 10 m/s 2.求:【解析】(1)小球由静止释放到最低点B的过程中,据动能定理得小球在最低点B时: 据题意可知乐=2四乱联立可得悭f=-0网(2)小球a与小球b把弹簧压到最短时,弹性势能最大,二者速度相同,此过程中由动量守恒定律得::,1 1=4mi + m* 超 + & 由机械能守恒定律得2 2户弹簧的最大弹性势能E p=0.4J小球a与小球b通过弹簧相互作用的整个过程中, a球最终速度为由动量守恒定律啊也=mi0 + m*4由能量守恒定律: 根据动量定理有:得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为I=0.8N s8.如下图,在沙堆外表放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平土阻力为f=80N .假设爆竹的火药质量以及空气阻力可忽略不计, g取10m/s2,求爆竹能上升的最大高度.【答案】h 60m【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得1 2 ,、(mg f )h 0 Mv1 (1)2爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有mv2 Mv i (2)爆竹完后,爆竹做竖直上抛运动,故有v2 2gh(3)联立三式可得:h 600m考点:考查了动量守恒定律,动能定理的应用点评:根底题,比拟简单,此题容易错误的地方为在A下降过程中容易将重力丢掉9.在竖直平面内有一个半圆形轨道ABC,半彳空为R,如下图,A、C两点的连线水平,B点为轨道最低点.其中AB局部是光滑的,BC局部是粗糙的.有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角0 60°甲、乙两物体可以看作质点,重力加速度为g,求:(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功.【答案】⑴—mj2gR ,方向水平向右.(2)压力大小为:一mg ,方向竖直向3 31下.(3)W f= - mgR .【解析】【分析】(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.【详解】1甲物体从A点下滑到B点的过程,1 2根据机械能守恒定律得:2mgR — 2mv2,2解得:v0"2gR,甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:2mv o m 2m mv ,解得:v —J2gR ,甲物与乙物体碰撞过程,对甲,由动量定理得:I甲2mv 2mv0 2 m,2gR ,方向:水平向右;2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,2由牛顿第二定律得:F m 2mg m 2m —R (17)斛得:F —mg,根据牛顿第三定律,对轨道的压力F' F ——mg 方向:竖直向下;3o _ _ 1 _ 23对整体,从B到D过程,由动能定理得:3mgR 1 cos60 W f 0 — 3mv2一... ... ...................... 1 _解得,摩擦力对整体做的功为:W f -mgR ;6【点睛】解决此题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的根本规律是动量守恒定律 .摩擦力是阻力,运用动能定理是求变力做功常用的方法.10.如下图,一质量为m=1 5kg的滑块从倾角为 .=37.的斜面上自静止开始滑下,斜面末端水平(水平局部光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.斜面长s=10m,小车质量为M=3 5kg,滑块与斜面及小车外表的动摩擦因数科=0. 35,小车与地面光滑且足够长,取g=10m/s2.求:(1)滑块滑到斜面末端时的速度(2)当滑块与小车相对静止时,滑块在车上滑行的距离【答案】(1) 8 m/s (2) 6. 4m【解析】试题分析:(1)设滑块在斜面上的滑行加速度a,由牛顿第二定律,有mg (sin 0 -cos 0 ) =ma代入数据得:a=3. 2m/s2又:s= — at22解得t=2 . 5s到达斜面末端的速度大小v 0=at=8 m/s(2)小车与滑块到达共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,那么:mv= (m+M v代入数据得:v=2 . 4m/s滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:mgL= 1 mv o2- 1 〔m+M v2 2 2代入数据得:L=6. 4m考点:牛顿第二定律;动量守恒定律;能量守恒定律【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择适宜的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题.11.如下图,小球A质量为m,系在细线的一端,线的另一端固定在.点,.点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于.点正下方,物块与水平面间的动摩擦因数为也现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰〔碰撞时间极短〕,反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程物块获得的冲16量及物块在地面上滑行的距离.气—一1 : hI**+ 'pl Ih【答案】——16【解析】【分析】对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离.【详解】小球的质量为m,设运动到最低点与物块相撞前的速度大小为v i,取小球运动到最低点时的重力势能为零,根据机械能守,值定律有:mgh=1mv i22解得:v i= 2ghh 1 ’2设碰撞后小球反弹的速度大小为V1,同理有:mg —— mv i16 2解得:〃1 =,设碰撞后物块的速度大小为V2,取水平向右为正方向,由动量守恒定律有:mv1=-mv' 1+5mv2解得:V2= 'g h由动量定理可得,碰撞过程滑块获得的冲量为I=5mv2=l m,2gh物块在水平面上滑行所受摩擦力的大小为F=5科mg设物块在水平面上滑行的时间为t,由动能定理有:1 2Fs 0 5mv22…口h解得:s16【点睛】此题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择适宜的物理规律求解.12.如下图,粗细均匀的圆木棒A下端离地面高H,上端套着一个细环B. A和B的质量均为m, A和B间的滑动摩擦力为f,且fvmg.用手限制A和B使它们从静止开始自由下落.当A与地面碰撞后,A以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时间极短,空气阻力不计,运动过程中A始终呈竖直状态.求:假设A再次着地前B不脱离A, A的长度应满足什么条件?y.8m好〞---------q【答案](mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么即寸期木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mgwi=z:-解得:m,方向竖直向下对环:・mg 7G2 = ---------解得瓶方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变木棒在空中运动的时间为在这段时间内,环运动的位移为-- ■-要使环不碰地面,那么要求木棒长度不小于X,即12弁8叫?〞LW解得:Op +「考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。