影响金属材料疲劳强度大小的因素
- 格式:docx
- 大小:37.67 KB
- 文档页数:11
影响金属材料疲劳强度的八大因素Via 常州精密钢管博客影响金属材料疲劳强度的八大因素材料的疲劳强度对各种外在因素和内在因素都极为敏感。
外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。
这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。
各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。
应力集中的影响常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。
这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。
理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。
有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。
有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。
有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。
疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。
q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。
试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。
尺寸因素的影响由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。
尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。
金属材料疲劳强度引言:金属材料在使用过程中经常会受到变形和应力的作用,长期使用后容易出现疲劳现象。
疲劳强度是评估材料在疲劳加载下的抗疲劳性能的重要指标。
本文将介绍金属材料疲劳强度的概念、影响因素以及测试方法。
一、疲劳强度的概念疲劳强度是指材料在循环加载下承受的最大应力,也称为疲劳极限。
其单位为MPa或N/mm²。
疲劳强度是金属材料的重要性能指标之一,对材料的使用寿命和可靠性有着重要影响。
二、影响因素1. 材料的组织结构:晶体结构的排列方式、晶粒大小和晶界的形态对疲劳强度有着显著影响。
晶粒越细小,晶界越强固,材料的疲劳强度越高。
2. 表面质量:表面缺陷如裂纹、划痕等会成为疲劳起始点,导致疲劳破坏的发生。
因此,良好的表面质量有助于提高疲劳强度。
3. 加工硬化:金属材料经过加工后,晶粒会细化,晶界也会变得更加强固,因此加工硬化能够提高材料的疲劳强度。
4. 温度:温度对金属材料的疲劳强度有一定影响。
一般情况下,随着温度的升高,材料的疲劳强度会降低。
5. 应力水平:应力水平是指材料在循环加载下所受到的应力大小。
较低的应力水平可以提高材料的疲劳强度。
三、测试方法1. S-N曲线法:该方法是目前应用最广泛的疲劳试验方法之一。
实验中通过不同应力水平下的循环加载,记录下材料的疲劳寿命,然后绘制S-N曲线,得出疲劳强度。
2. 破坏断口分析法:该方法通过观察材料的疲劳破坏断口来判断疲劳强度。
根据断口的形貌、特征来分析疲劳破坏的机制和强度。
3. 微观结构分析法:该方法通过显微镜、扫描电镜等工具对材料的微观结构进行观察和分析,进而推断疲劳强度。
结论:金属材料的疲劳强度是评估材料抗疲劳性能的重要指标。
疲劳强度受到多种因素的影响,如材料的组织结构、表面质量、加工硬化、温度和应力水平等。
为了准确评估材料的疲劳强度,可以采用S-N 曲线法、破坏断口分析法和微观结构分析法等测试方法。
通过研究和提高材料的疲劳强度,可以延长材料的使用寿命,提高产品的可靠性。
第五章金属的疲劳本章从材料学的角度研究金属疲劳的一般规律、疲劳破坏过程及机理、疲劳力学性能及其影响因素,以便为疲劳强度设计和选用材料,改进工艺提供基础知识。
第一节金属疲劳现象及特点一、变动载荷1. 变动载荷定义:变动载荷是引起疲劳破坏的外力,指载荷大小,甚至方向均随时间变化的载荷,在单位面积上的平均值为变动应力。
2. 循环应力二、疲劳现象及特点1. 分类疲劳定义:机件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。
(1)按应力状态不同,可分为:弯曲疲劳、扭转疲劳、挤压疲劳、复合疲劳(2)按环境及接触情况不同,可分为:大气疲劳、腐蚀疲劳、高温疲劳、热疲劳、接触疲劳(3)按断裂寿命和应力高低不同,可分为:高周疲劳、低周疲劳,这是最基本的分类方法2. 特点(1)疲劳是低应力循环延时断裂,即具有寿命的断裂断裂应力水平往往低于材料抗拉强度,甚至低于屈服强度。
断裂寿命随应力不同而变化,应力高寿命短,应力低寿命长。
当应力低于某一临界值时,寿命可达无限长。
(2)疲劳是脆性断裂由于一般疲劳的应力水平比屈服强度低,所以不论是韧性材料还是脆性材料,在疲劳断裂前不会发生塑性变形及有形变预兆,它是在长期累积损伤过程中,经裂纹萌生和缓慢亚稳扩展到临界尺寸a c时才突然发生的。
因此,疲劳是一种潜在的突发性断裂。
(3)疲劳对缺陷(缺口、裂纹及组织缺陷)十分敏感由于疲劳破坏是从局部开始的,所以它对缺陷具有高度的选择性。
缺口和裂纹因应力集中增大对材料的损伤作用,组织缺陷(夹杂、疏松、白点、脱碳等)降低材料的局部强度,三者都加快了疲劳破坏的开始和发展。
三、疲劳宏观断口特征(1)疲劳源:在断口上,疲劳源一般在机件表面,常与缺口、裂纹、刀痕、蚀坑等缺陷相连,由于应力不集中会引发疲劳裂纹。
材料内部存在严重冶金缺陷时,因局部强度降低也会在机件内部产生疲劳源。
从断口形貌看,疲劳源区的光亮度最大,因为这里是整个裂纹亚稳扩展过程中断面不断摩擦挤压,所以显示光亮平滑。
金属的疲劳强度与硬度的关系引言金属的疲劳强度与硬度之间存在着密切的关系,研究这种关系对于金属材料的设计和应用具有重要意义。
疲劳强度是指材料在长时间内受到交替或重复加载时所能承受的最大应力,而硬度则是材料抵抗外力侵蚀和划伤能力的指标。
本文将探讨金属的疲劳强度与硬度之间的关系,并分析影响这种关系的因素。
第一章金属材料疲劳强度1.1疲劳现象1.2疲劳寿命1.3影响因素第二章金属材料硬度2.1硬度测试方法2.2影响硬度的因素第三章金属材料疲劳强度与硬度之间的关系3.1硬化现象对疲劳强度影响3.2变形机制对疲劳寿命影响第四章影响金属材料疲劳强度与硬度之间关系的因素4.1材料的化学成分4.2材料的晶体结构4.3材料的热处理过程第五章实验研究与案例分析5.1实验方法与过程5.2实验结果与分析第六章结论与展望6.1结论总结6.2进一步研究展望第一章金属材料疲劳强度1.1疲劳现象金属材料在长时间内受到交替或重复加载时,会出现疲劳现象。
这种现象会导致材料的强度逐渐下降,最终导致断裂。
在实际应用中,金属材料往往需要承受长时间的交替加载,因此了解和控制金属材料的疲劳强度至关重要。
1.2疲劳寿命疲劳寿命是指材料在特定加载条件下能够承受多少次交替加载后发生断裂。
它是评估金属材料抵抗疲劳断裂能力的重要指标。
不同类型和不同成分的金属材料具有不同的疲劳寿命。
1.3影响因素金属材料的疲劳强度受到多种因素的影响。
其中,材料的化学成分、晶体结构、热处理过程等因素都会对疲劳强度产生影响。
此外,外界环境条件和加载方式也会对金属材料的疲劳强度产生影响。
第二章金属材料硬度2.1硬度测试方法硬度是衡量材料抵抗外力侵蚀和划伤能力的指标。
常用的硬度测试方法包括布氏硬度、洛氏硬度和维氏硬度等。
这些测试方法通过在材料表面施加一定载荷,测量产生的表面印痕大小来评估材料的硬度。
2.2影响硬度的因素金属材料的硬度受到多种因素的影响。
其中,晶体结构、晶界特征、化学成分等都会对材料的硬度产生影响。
影响钢材疲劳强度的因素来源:互联网 | 作者: | 2007-10-29| 编辑: admin一、工作条件1.载荷频率:在一定范围内可以提高疲劳强度;2.次载锻炼:低于疲劳极限的应力称为次载。
金属在低于疲劳极限的应力下先运转一定次数之后,则可以提高疲劳极限,这种次载荷强化作用称为次载锻炼。
这种现象可能是由于应力应变循环产生的硬化及局部应力集中松弛的结果。
3.温度:温度降低,疲劳强度升高,温度升高,疲劳强度降低。
4.腐蚀介质:具有腐蚀性的环境介质因使金属表面产生蚀坑缺陷,将会降低材料疲劳强度而产生腐蚀疲劳。
腐蚀疲劳曲线无水平线段.即不存在无限寿命的疲劳极限,只有条件疲劳极限。
二.表面状态及尺寸因素的影响1.应力集中:机件表面的缺口应力集中,往往是引起疲劳破坏的主要原因。
一般用Kt表示应力集中程度,用Kf和qf说明应力集中对疲劳强度的影响程度。
2.表面状态(1)表面粗糙度:愈低,材料的疲劳极限愈高;愈高,疲劳极限愈低。
材料强度愈高,表面粗糙度对疲劳极限的影响愈显著。
表面加工方法不同,所得到的粗糙度不同。
(2)抗拉强度:愈高的材料,加工方法对其疲劳极限的影响愈大。
因此,用高强度材料制造受循环载荷作用的机件时,其表面必须经过更加仔细的加工,不允许有刀痕、擦伤或者大的缺陷,否则会使疲劳极限显著降低。
3.尺寸因素:机件尺寸对按劳强度也有较大的影响,在弯曲、扭转载荷作用下其影响更大。
一般来说,随着机件尺寸的增大,其疲劳强度下降,这种现象称为疲劳强度尺寸效应。
其大小可用尺寸效应系数表示。
三.表面强化及残余应力的影响表面强化处理具有双重作用:提高表层强度;提供表层残余压应力,抵消一部分表层拉应力。
焊接工艺技术 2009年8月29日关键字:摘要: 为了提高焊接结构疲劳性能,通过试验比较了经超声冲击的X65管线钢对接接头试样和未经此处理的原始焊态对接接头试样疲劳强度及在同样应力范围下的疲劳寿命。
试验的统计结果表明,经过超声冲击处理的试样,其疲劳强度相对未冲击试样提高37。
金属材料的疲劳极限标准1. 引言1.1 疲劳极限的定义疲劳极限是指金属材料在受到交变应力作用下所能承受的疲劳载荷的极限值。
疲劳极限与金属材料的抗疲劳性能密切相关,是评价金属材料抗疲劳性能的重要指标之一。
疲劳极限通常用应力水平表示,即在特定的应力幅值下,金属材料经过一定次数的循环载荷后出现裂纹和破坏的应力值。
疲劳极限是金属材料在实际工程中使用时需要考虑的重要参数,对于确保金属部件在长期使用过程中不会因为疲劳破坏而影响工作安全具有重要意义。
疲劳极限的测定需要进行大量的实验研究和数据分析,以确保结果的准确性和可靠性。
金属材料的疲劳极限还受到多种因素的影响,如材料的化学成分、热处理工艺、表面处理等,需要综合考虑这些因素才能准确评估金属材料的疲劳性能。
1.2 金属材料的疲劳极限金属材料的疲劳极限是指在连续循环加载下,金属材料所能承受的最大变形次数或载荷幅度。
对于金属材料来说,疲劳极限是一项至关重要的性能指标,它直接影响着材料在实际工程中的可靠性和安全性。
金属材料的疲劳极限可以通过实验测试来确定,通常采用旋转弯曲、拉伸、扭转等不同加载方式进行试验。
通过对金属材料进行疲劳测试,可以得到不同载荷条件下的疲劳曲线,从而确定材料的疲劳性能和疲劳寿命。
金属材料的疲劳极限受多种因素影响,包括材料的化学成分、晶粒结构、微观缺陷等。
对于不同类型的金属材料,其疲劳极限标准也有所不同,因此在工程设计和材料选择过程中,需要根据具体的应用要求来确定合适的金属材料及其疲劳极限要求。
疲劳极限的重要性在于可以帮助工程师评估材料的使用寿命和安全性,从而设计出更加可靠和耐久的工程结构。
研究金属材料的疲劳极限标准对于提高材料的抗疲劳性能和延长材料的使用寿命具有重要意义。
2. 正文2.1 金属材料的疲劳损伤金属材料在受到循环载荷作用时,会产生疲劳损伤。
这种损伤是由于金属内部的微观缺陷在受力的作用下逐渐扩展,最终导致材料的破坏。
疲劳损伤的形式主要有裂纹的扩展和表面损伤两种。
金属材料的强度和韧性1.定义:强度是指金属材料在外力作用下抵抗塑性变形和断裂的能力。
(1)抗拉强度:金属材料在拉伸过程中所能承受的最大拉力。
(2)抗压强度:金属材料在压缩过程中所能承受的最大压力。
(3)抗弯强度:金属材料在弯曲过程中所能承受的最大力矩。
(4)抗剪强度:金属材料在剪切过程中所能承受的最大剪力。
3.影响因素:(1)材料的化学成分:合金元素的加入可以提高金属材料的强度。
(2)材料的微观结构:晶粒大小、晶界、位错等微观缺陷会影响金属材料的强度。
(3)温度:金属材料在高温下的强度会降低。
(4)应变速率:应变速率越快,金属材料的强度越高。
1.定义:韧性是指金属材料在断裂前吸收塑性变形能量的能力。
(1)冲击韧性:金属材料在冲击载荷作用下的韧性。
(2)断裂韧性:金属材料在拉伸载荷作用下的韧性。
3.影响因素:(1)材料的化学成分:合金元素的加入可以提高金属材料的韧性。
(2)材料的微观结构:晶粒大小、晶界、位错等微观缺陷会影响金属材料的韧性。
(3)温度:金属材料在低温下的韧性会降低。
(4)应力状态:三向应力状态下,金属材料的韧性优于单向应力状态。
三、强度和韧性的关系1.强度和韧性往往存在一定的矛盾:强度高的材料,韧性往往较低;韧性好的材料,强度往往较低。
2.衡量强度和韧性的指标:韧脆转变温度(DBTT),即材料由韧性断裂转变为脆性断裂的温度。
3.如何在保证强度的同时提高韧性:(1)合金化:通过加入适当的合金元素,提高金属材料的强度和韧性。
(2)热处理:通过改变材料的微观结构,提高金属材料的强度和韧性。
(3)微观缺陷控制:通过控制晶粒大小、晶界和位错等微观缺陷,提高金属材料的强度和韧性。
四、应用实例1.航空领域:高性能铝合金、钛合金等材料在航空器结构件中的应用,要求材料具有高强度和良好韧性。
2.汽车领域:钢铁、铝合金等材料在汽车零部件中的应用,要求材料具有适当的强度和韧性。
3.建筑领域:不锈钢、钢筋等材料在建筑结构中的应用,要求材料具有高强度和良好韧性。
金属疲劳例子1. 简介金属疲劳是指金属材料在循环加载下发生持续应力和应变积累导致的破坏现象。
一般来说,金属材料在受到外力作用下都会发生弹性变形,不过当外力反复作用时,即使远远小于金属材料的屈服强度也会导致金属疲劳破坏。
金属疲劳是一种常见的失效形式,特别在机械、航空航天等领域中具有重要的研究价值。
本文主要通过几个金属疲劳的例子来介绍金属疲劳现象、影响因素和预防措施。
2. 金属疲劳的例子2.1 飞机起落架飞机起落架是一个经常受到循环加载的金属构件,其中承受的应力特别大。
由于飞机在起飞性能和安全性要求高,所以起落架的安全性尤为关键。
起落架由多个金属构件组成,例如压铸、锻造等,这些构件经常受到机身的振动和冲击。
金属疲劳在飞机起落架中是一个重要的失效形式。
在某次事故调查中发现,飞机起落架由于长时间的飞行和着陆循环,金属疲劳最终导致了起落架断裂的事故。
为了预防金属疲劳导致的起落架断裂,飞机制造商采用了多种措施。
首先是科学设计,根据飞机的使用情况和受力分析,合理计算起落架的寿命。
其次是周期性的检查和维护,通过定期的检查和维护可以发现金属疲劳的迹象并及时修复或更换受损部分。
另外,飞机制造商还使用了一些技术手段,例如表面处理、改善金属的疲劳性能等。
2.2 汽车曲轴汽车曲轴是发动机中的关键部件之一,也是一个经受循环加载的金属构件。
曲轴通过连杆与活塞相连,将活塞的上下往复运动转化为发动机的旋转运动。
由于发动机运转时,曲轴需要不断承受爆燃冲击力和离心力等循环载荷,使得曲轴容易发生金属疲劳。
在某次事故调查中发现,汽车曲轴发生疲劳断裂最终导致了引擎故障和车辆失控。
为了提高汽车曲轴的疲劳寿命以及减少金属疲劳导致的断裂,曲轴的设计和制造过程中采取了一系列措施。
首先是材料选择,使用高强度、高韧性的材料来增加曲轴的承载能力和抗疲劳性能。
其次是优化曲轴的结构,通过合理的形状和几何参数的选择,减小应力集中区域,从而降低金属疲劳的风险。
金属疲劳强度影响因素影响金属疲劳强度的因素有多种,下面主要给大家介绍常见的一些疲劳强度影响因素。
1、屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。
对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。
2、表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度的影响很大。
弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。
材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。
材料表面粗糙度对疲劳极限的影响。
随着表面粗糙度的增加,疲劳极限下降。
在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。
因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。
对材料表面进行磨削、强压、抛丸和滚压等。
都可以提高弹簧的疲劳强度。
3、尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。
因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。
4、冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。
存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。
采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。
5、腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。
例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。
腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。
所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。
金属材料的疲劳性能金属材料是工程中应用最广泛的一类材料,因其优良的力学性能、良好的加工性和广泛的适用性而受到青睐。
然而,在实际应用中,金属材料往往需要承受周期性的载荷,这种条件下的失效主要表现为疲劳破坏。
因此,了解金属材料的疲劳性能,对提高产品的可靠性与安全性具有至关重要的意义。
疲劳的基本概念疲劳是指材料在反复或交变载荷作用下,经过一定的循环次数后,出现的逐渐积累损伤并导致破坏的现象。
疲劳破坏通常是由微小的裂纹开始,在多次循环加载下逐步扩展,最终导致材料的断裂。
疲劳破坏与静态强度无直接关系,且其发生往往是在较低于材料屈服强度和抗拉强度的荷载下进行,表明这是一种特殊的破坏模式。
疲劳寿命疲劳寿命一般用于描述材料在特定载荷和环境条件下能承受多少次循环而不发生破坏。
通常我们用以下两个指标来表征疲劳寿命:循环次数(Nf):这是指在出现疲劳破坏之前材料所能承受的加载循环次数。
疲劳极限(σf):对于大多数金属材料,存在一个应力水平(称为疲劳极限),低于这个水平时材料即使经过无限次循环也不会发生疲劳破坏。
值得注意的是,并非所有金属都具有明显的疲劳极限,如铝合金等常见金属,其 fatigue limit 不易确定。
疲劳性能影响因素影响金属材料疲劳性能的因素包括但不限于以下几个方面:材料成分金属材料中的化学成分对其疲劳性能有明显影响。
例如,合金元素如镍、钼、铬等可以显著提高钢材的抗疲劳性能。
适当增加合金元素的比例,使得金属晶体结构更加稳定,从而提高了其疲劳强度。
此外,非金属杂质(如硫、磷等)的存在,则会降低材料的疲劳性能。
材料组织材料的微观组织结构直接决定了其机械性能。
在热处理过程中,通过控制冷却速度和温度,可以改变金属材料的相组成与晶粒尺寸,从而优化组织,提高疲劳性能。
例如,细化晶粒可以显著提高金属件的抗疲劳能力。
调质处理后的钢材,相较于退火状态下,会表现出更高的抗疲劳能力。
应力集中在实际使用中,构件往往因为几何形状的不均匀性(如凹坑、切口、焊缝等)而产生应力集中现象。
金属材料的疲劳性能金属材料是工程领域中常用的材料之一,其疲劳性能对于工程结构的安全性和可靠性具有重要影响。
疲劳是指材料在交变载荷作用下,经过一定次数的循环加载和卸载后,产生裂纹并最终破坏的现象。
本文将介绍金属材料的疲劳机理、影响因素以及改善疲劳性能的方法。
一、疲劳机理金属材料的疲劳机理主要包括以下几个方面:1. 微观裂纹形成和扩展:在交变载荷作用下,金属材料内部会产生微观裂纹,这些裂纹会随着循环加载和卸载的重复作用逐渐扩展,最终导致材料破坏。
2. 塑性变形和应力集中:在循环加载和卸载的过程中,金属材料会发生塑性变形,这会导致应力集中,从而加速裂纹的形成和扩展。
3. 金属材料的内部缺陷:金属材料内部存在各种缺陷,如夹杂物、气孔等,这些缺陷会成为裂纹的起始点,加速裂纹的扩展。
二、影响因素金属材料的疲劳性能受到多种因素的影响,主要包括以下几个方面:1. 材料的力学性能:材料的强度、韧性、硬度等力学性能对疲劳性能有重要影响。
强度高的材料能够承受更大的载荷,韧性好的材料能够吸收更多的能量,硬度高的材料能够抵抗塑性变形。
2. 循环载荷的幅值和频率:循环载荷的幅值和频率对疲劳性能有直接影响。
幅值越大、频率越高,材料的疲劳寿命越短。
3. 温度和环境条件:温度和环境条件对金属材料的疲劳性能也有一定影响。
高温环境下,金属材料的疲劳寿命会降低。
4. 表面处理和应力状态:表面处理和应力状态对金属材料的疲劳性能有重要影响。
表面处理可以改善材料的表面质量,减少裂纹的形成和扩展;应力状态的合理控制可以减少应力集中,延缓裂纹的扩展。
三、改善疲劳性能的方法为了改善金属材料的疲劳性能,可以采取以下几种方法:1. 优化材料的组织结构:通过合理的热处理、合金设计等方法,优化金属材料的组织结构,提高其强度和韧性,从而提高疲劳寿命。
2. 表面处理:采用表面处理技术,如喷丸、镀层等,可以改善金属材料的表面质量,减少裂纹的形成和扩展。
3. 控制应力状态:通过合理的设计和加工工艺,控制金属材料的应力状态,减少应力集中,延缓裂纹的扩展。
金属材料疲劳研究综述摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。
本文主要讲述了国外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。
关键词:金属材料疲劳裂纹疲劳寿命一.引言金属疲劳的概念,最早是由 J. V. Poncelet 于 1830 年在巴黎大学讲演时采用的。
当时,"疲劳〞一词被用来描述在周期拉压加载下材料强度的衰退。
引述美国试验与材料协会( ASTM) 在"疲劳试验及数据统计分析之有关术语的标准定义〞( EZ06-72) 中所作的定义: 在*点或*些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久构造变化的开展过程,称为"疲劳〞。
金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。
在材料构造受到屡次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和构造的破坏现象,就叫做金属的疲劳破坏。
据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是非常有必要的。
由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。
早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。
由于但是条件的限制,还不能查明疲劳破坏的原因。
在第二次世界大战期间,美国的5000艘货船共发生1000屡次破坏事故,有238艘完全报废,其局部要归咎于金属的疲劳。
2002年 5 月,华航一架波音747-200 型客机在由中正机场飞往机场途中空中解体,19 名机组人员及 206名乘客全部遇难。
金属疲劳强度的名词解释金属疲劳强度是指金属材料在长期交变载荷下发生破裂的能力。
当金属受到反复周期性的应力作用时,如果应力幅值超过了金属的疲劳强度,经过一段时间后就会发生疲劳破裂。
这种疲劳破坏是金属材料工程实践中最常见的一种失效形式,对于许多结构和工程中的金属构件来说都是至关重要的。
1. 疲劳过程与机制金属材料在长期交变载荷下所经历的疲劳过程可以分为四个阶段:裂纹发展前期、主裂纹的萌生、裂纹的扩展和最终破裂。
首先,在应力循环的早期阶段,微小的表面裂纹在材料表面形成,这是由于局部应力集中造成的。
接着,这些微小裂纹会在受到反复的应力作用下逐渐扩展,形成主裂纹。
一旦主裂纹形成,裂纹扩展的速度会急剧增加。
当裂纹长度达到一定程度时,疲劳破裂就会发生。
2. 影响金属疲劳强度的因素金属疲劳强度受到多个因素的影响。
首先是应力幅值,即应力循环的最大值和最小值之间的差异。
较高的应力幅值会导致更快的裂纹扩展速度,从而降低疲劳寿命。
其次是应力水平,即平均应力的大小。
较高的应力水平也会减少疲劳寿命。
此外,还有材料的化学成分,包括含碳量、合金元素的添加等。
不同的合金元素对金属的疲劳寿命产生不同的影响。
另外,温度、表面质量、加载频率、环境介质等也是影响金属疲劳强度的因素。
3. 疲劳寿命预测与试验方法疲劳寿命是指金属材料在一定应力水平下能够承受多少次应力循环后发生破裂。
疲劳寿命的预测对于工程实践至关重要。
预测方法主要分为两类:经验公式法和基于材料本身的细观力学模型。
经验公式法通过大量试验数据对应力幅值、应力水平和其他因素进行关联,从而给出疲劳寿命的预测。
而基于材料本身的细观力学模型则基于材料的微观结构和物理性质,通过数学模型对疲劳寿命进行预测。
在工程实践中,通常采用试验方法来确定金属材料的疲劳强度和疲劳寿命。
4. 疲劳强度改善措施为了提高金属材料的疲劳强度和寿命,在设计和制造过程中可以采取一系列的改善措施。
首先,合理设计和优化结构是提高疲劳强度的重要手段。
钢材疲劳强度的影响因素1. 引言钢材作为一种常见的结构材料,广泛应用于建筑、桥梁、汽车、航空等领域。
在使用过程中,钢材往往需要承受循环加载的作用,这会导致钢材的疲劳破坏。
疲劳破坏是由于材料在循环加载下产生的微小裂纹逐渐扩展,最终导致失效。
钢材的疲劳强度是指在循环加载下,材料能够承受的最大应力水平。
了解钢材疲劳强度的影响因素,对于设计和使用钢材结构具有重要的意义。
本文将综合论述影响钢材疲劳强度的主要因素,包括材料的组织结构、表面状态、加载条件和环境介质等。
通过深入研究这些影响因素,可以为改进钢材的疲劳强度提供理论依据和工程指导。
2. 影响因素2.1 材料的组织结构钢材的组织结构是影响其疲劳强度的重要因素之一。
一般来说,细晶粒的钢材具有较高的疲劳强度,而粗晶粒的钢材则具有较低的疲劳强度。
细晶粒的钢材由于晶界较多,能够阻碍裂纹的扩展,从而提高了疲劳强度。
此外,钢材的非金属夹杂物和缺陷也会对疲劳强度产生影响。
夹杂物和缺陷会导致应力集中,从而加速裂纹的扩展,降低了钢材的疲劳强度。
因此,在生产和加工过程中,需要通过适当的热处理和控制工艺参数,减少夹杂物和缺陷的形成。
2.2 表面状态钢材的表面状态对疲劳强度也有重要影响。
不良的表面加工和缺乏保护层会导致表面裂纹和腐蚀,从而降低钢材的疲劳强度。
因此,在使用钢材之前,需要采取适当的表面处理措施,例如喷涂防腐漆、镀锌等,以提高钢材的表面质量。
此外,表面的残余应力也会对疲劳强度产生影响。
残余应力可以通过冷加工、热处理等工艺产生,如果残余应力较大且处于表面附近,会导致应力集中和裂纹的扩展。
因此,对于需要承受循环加载的钢材结构,需要进行合适的残余应力处理,以减小其对疲劳强度的影响。
2.3 加载条件钢材的加载条件是影响其疲劳强度的重要因素之一。
加载条件包括加载幅值、加载频率和加载形式。
加载幅值是指循环加载中应力的最大值和最小值之间的差值。
一般来说,加载幅值越大,钢材的疲劳强度越低。
影响金属材料疲劳强度的八大因素材料的疲劳强度对各种外在因素和内在因素都极为敏感。
外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。
这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。
各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。
1.应力集中的影响常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。
这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。
理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。
有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。
有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。
有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。
疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。
q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。
试验表明,q 并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同2.尺寸因素的影响由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。
尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。
疲劳定义:金属机件或构件在变动应力应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。
疲劳的特点:(1)疲劳是低应力循环延时断裂,即具有寿命的断裂,ζ↓,Nf↑.(2)疲劳是脆性断裂,是一种潜在的突发性断裂。
(3)疲劳对缺陷十分敏感。
疲劳的断口特征:(三个区):疲劳源,疲劳区,瞬断区,疲劳宏观特征:贝纹线(沙滩状花样),微观特征:疲劳韧带疲劳裂纹在表面形成的原因:(1)表面晶粒受周围介质约束小(2)表面晶粒不完全被其他晶粒包围,塑性变形约束小(3)表面晶粒易受损伤(4)弯曲,扭转载荷作用在表面应力最大。
疲劳强度影响因素⑴表面强化:①化学热处理:a渗碳,氮;b 表面淬火②表面塑变:a 喷丸; b 表面滚压表面强度增加(抵抗表面滑移,ζ-1提高),表面产生残余压应力(降低拉应力峰,ζ-1提高)⑵残余压应力的有利影响与外加应力的应力状态有关:机件承受弯曲疲劳时,残余压应力效果比扭转疲劳大;承受拉压疲劳时,影响小,这是不同应力状态下,机件表面应力梯度不同所致。
⑶只要提高材料的滑移抗力,如果用固溶强化,细晶强化等手段,均可以阻止疲劳裂纹的萌生,提高疲劳强度——只适用于高周疲劳。
高周疲劳特点:断裂寿命较长,N f>105周次;断裂应力水平较低,ζ<ζs,低应力疲劳。
应力腐蚀⑴产生条件:应力;化学介质;金属材料⑵应力腐蚀断口特征.宏观:灰黑色—亚稳扩展区,亮色—瞬间断口区微观:显微断裂呈枯树枝状,表面可见到“泥状花样”的腐蚀产物及腐蚀坑。
⑶防止应力腐蚀方法:a,合理选择金属材料 b,减少或清除机件中的残余拉应力 c,改善化学介质 d,采用电化学保护为什么bcc易于产生低温脆性,而fcc不易产生?加入Ni,Mn合金元素对韧性的影响?答:(1)ζs=ζi+k y d-1/2,bcc对温度变化更为敏感,与温度下降时,ζi 急剧增加,故ζs急剧增加,从而易于产生低温脆性(2)bcc与迟屈服现象有关,迟屈服即对低碳钢施加一高速载荷到高于ζs材料并不立即产生屈服,而需要经过一段孕育期才开始塑性变形。
影响金属材料疲劳强度大小的因素由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生,因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。
为了提高机件的疲劳抗力,防止疲劳断裂事故的发生,在进行机械零件设计和加工时,应选择合理的结构()抗拉试验:一般说来,只有结构用、拉伸用和深拉伸用镀锌板有抗拉性能要求。
()弯曲试验:是衡量薄板工艺性能的主要项目。
但各国标准对各种镀锌板的要求并不一致。
一般要求镀锌板弯曲后,外侧表面不得有锌层脱离,板基不得有龟裂及断裂。
.化学成份对镀锌基板的化学成份的要求,各国标准规定不同。
如日本就不要求,美国则要求。
一般不作成品检验。
.板形衡量板形好坏有两个指标,即平直度和镰刀弯。
板的平直度和镰刀弯的最大允许值标准有一定规定。
下面列出有关镀锌板的国外主要标准,以作参考[,]:镀锌钢板电镀锌钢板及钢带热浸镀锌薄钢板的一般要求商业级热镀锌薄钢板咬合成型级热镀锌薄钢板深冲级热镀锌薄钢板屋面和墙板用热浸镀锌薄钢板沟渠用热浸镀锌薄钢板结构级热镀锌薄钢板适当地提高含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢和钢,含碳量虽高达~%,由于它们的含铬量也相应地提高了,所以仍保证了耐腐蚀的要求。
总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在~%之间,耐酸钢则以含碳~%的居多。
含碳量大于%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。
此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。
如何通过锰和氮代替铬镍不锈钢中镍原理铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍%以下的热强钢的大量发展与应用,以及化学工业日益发展对不锈钢的需要量越来越大,而镍的矿藏量较少且又集中分布在少数地区,因此在世界范围内出现了镍在供和需方面的矛盾。
所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等)中,特别是镍的资源比较缺乏的国家,广泛地开展了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍。
锰对于奥氏体的作用与镍相似。
但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。
在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从到.%变化,也不使钢在空气与酸中的耐腐蚀性能发生明显的改变。
这是因为锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽钢。
()()()()()()点均匀地分布在连续的金属基体中。
金属基体发挥良好用粉末冶金的方法制成的、具有高摩擦系数和高耐磨性的金属与非金属组成的材料,也称烧结摩擦材料。
这种材料通常由基体金属(铜、铁或其合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)部分组成。
其组织特点是:具有特殊性能的各种质点均匀地分布在连续的金属基体中。
金属基体发挥良好的导热性并承受机械应力,均匀分布的质点保证所需的摩擦性能。
与传统的石棉树脂或金属摩擦材料相比,它的优点是摩擦系数高,摩擦系数随温度、压力和速度的变化而产生的变化小,耐高温、抗咬合性好,磨损小,寿命长等。
粉末冶金摩擦材料按基体成分可分为铜基和铁基两大类。
铁基的比铜基的有稍高的硬度、强度、摩擦系数,允许承受的工作比压和表面瞬时温度也较高;而铜基的比铁基的有较好的导热性、耐腐蚀性和小的磨损。
为了增加粉末冶金摩擦材料的强度,通常将其粘结在钢背上而成为双金属结构。
铜基摩擦材料大多用于离合器中,尤其在湿式离合器中更显示其独特的优点。
铁基摩擦材料多用于制动器中。
这两种材料已广泛用于飞机、坦克、汽车、船舶、拖拉机、工程机械和机床等的离合器或制动器中。
粉末冶金工艺成型技术粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。
但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。
粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:...的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。
不锈钢酸洗钝化的方法与工艺应用范围.酸洗钝化处理方法比较方法适用范围优缺点浸渍法用于可放入酸洗槽或钝化槽的零部件,但不适于大设备酸洗液可较长时间使用,生产效率较高、成本低;大容积设备充满酸液浸渍耗液太大涂刷法适用于大型设备内处表面及局部处理物工操作、劳动条件差、酸液无法回收膏剂法用于安装或检修现场,尤其用于焊接部处理手工操作、劳动条件差、生产成本高喷淋法用于安装现场,大型容器内壁用液量低、费用少、速度快,但需配置喷枪及扦环系统循环法用于大型设备,如换热器、管壳处理施工方便,酸液可回用,俚需配管与泵连接循环系统电化学法既可用于零部件,又可用电刷法对现场设备表面处理技术较复杂,需直流电源或恒电位仪酸洗钝化处理配方举例.一般处理%或%%(质量分数)与调至糊状。
涂覆表面~,用冷凝水冲洗至,对单台设备也可采用喷洒双氧水的化学钝化法。
()以上海大明铁工厂专利为例。
酸洗钝化膏:%~%(作钝化剂);%~%(作腐蚀剂);硬月酸镁.%~.%(作增稠剂)硝酸镁%~%(作填料,提高粘附力与渗透性);[]多聚磷酸钠.%~.%(作缓蚀剂);水(调节粘度)。
电化学法处理以厦门大学专利[]为例,其处理方法是:将待处理的不锈钢工件作阳极,控制恒电位进行阳极化处理,或者将不锈钢工件先作阴极,控制恒电位进行阴极化处理,再将不锈钢工件作阳极,控制恒电位进行阳极化处理,并继续改变其恒电位进行钝化处理,电解质溶液均采用。
经这样处理后,不锈钢钝化膜性质得到改善,耐蚀性能大大提高。
点蚀临界电位 ()提高约(在%中),抗均匀腐蚀性能提高三个数量级(在℃的%~%中)。
我国钢号表示含义的分类说明、碳素结构钢和低合金高强度结构牌号表示方法以上用钢通常分为通用钢和专用钢两大类。
牌号表示方法,由钢的屈服点或屈服②镇静钢(、分别≤%)一般不标符号。
例如:平均含碳量为%的镇静钢,其牌号表示为“”。
③较高含锰量的优质碳素结构钢,在表示平均含碳量的阿拉伯数字后加锰元素符号。
例如:平均含碳量为%,含锰量为%~%的钢,其牌号表示为“”。
④高级优质碳素结构钢(、分别≤%),在牌号后加符号“”。
例如:平均含碳量为%的高级优质碳素结构钢,其牌号表示为“”。
⑤特级优质碳素结构钢(≤%、≤%),在牌号后加符号“”。
例如:平均含碳量为%的特级优质碳素结构钢,其牌号表示为“”。
优质碳素弹簧钢牌号的表示方法与优质碳素结构钢牌号表示方法相同(、、、钢在和两个标准中同时分别存在)。
、合金结构钢和合金弹簧钢牌号表示方法①合金结构钢牌号采用阿拉伯数字和标准的化学元素符号表示。
用两位阿拉伯数字表示平均含碳量(以万分之几计),放在牌号头部。
合金元素含量表示方法为:平均含量小于%时,牌号中仅标明元素,一般不标明含量;平均合金含量为%~%、%~%、%~%、%~%、……时,在合金元素后相应写成、、、……。
例如:碳、铬、锰、硅的平均含量分别为%、%、%、%的合金结构钢,当、含量分别≤%时,其牌号表示为“”。
高级优质合金结构钢(、含量分别≤%),在牌号尾部加符号“”表示。
例如:数字表示平均含碳量(以千分之几计)。
.普通含锰量碳素工具钢,在工具钢符号“”后为阿拉伯数字。
例如:平均含碳量为%的碳素工具钢,其牌号表示为“”。
.较高含锰量的碳素工具钢,在工具钢符号“”和阿拉伯数字后加锰元素符号。
例如:“”。
.高级优质碳素工具钢,在牌号尾部加“”。
例如:“”。
②合金工具钢和高速工具钢合金工具钢、高速工具钢牌号表示方法与合金结构钢牌号表示方法相同。
采用标准规定的合金元素符号和阿拉伯数字表示,但一般不标明平均含碳量数字,例如:平均含碳量为%,含铬、钼,钒含量分别为%、%、%的合金工具钢,其牌号表示为“”;平均含碳量为%,含钨、钼、铬、钒含量分别为%、%、%、%的高速工具钢,其牌号表示为“”。
若平均含碳量小于%时,可采用一位阿拉伯数字表示含碳量(以千分之几计)。
例如:平均含碳量为%,含锰量为%,含硅量为%的合金工具钢,其牌号表示为“”。
低铬(平均含铬量<%)合金工具钢,在含铬量(以千分之几计)前加数字“”。
例如:平均含铬量为%的合金工具钢,其牌号表示为“”。
、塑料模具钢牌号表示方法塑料模具钢牌号除在头部加符号“”外,其余表示方法与优质碳素结构钢和合金类。
限为%,平均含铬量为%,含镍量为%的超低碳不锈钢,其牌号表示为“”;含碳量上限为%,平均含铬量为%,含镍量为%的极低碳不锈钢,其牌号表示为“”。
国内现行不锈耐热钢标准是参照标准修订的,但不锈耐热钢牌号表示方法与日本等国个标准不同。
我们是用合金元素和平均含量表示,日本是用表示用途的字母和阿拉伯数字表示。
例如不锈钢牌号、、, (钢)(用途)(不锈钢)。
例如耐热钢牌号、、、。
牌号中不同数字表示各种不同类型的不锈耐热钢。
日本表示不锈耐热钢各类不同产品,是在牌号后加上相应的字母,例如不锈钢棒,热轧不锈钢板;耐热钢棒,耐热钢板。
英、美等西方国家,不锈耐热钢牌号表示方法与日本基本一致,主要是用阿拉伯数字表示,而且表示的数字是相同的,即牌号是相同的。
因为日本的不锈耐热钢是采用美国的。
、焊接用钢牌号表示方法焊接用钢包括焊接用碳素钢、焊接用合金钢和焊接用不锈钢等,其牌号表示方法是在各类焊接用钢牌号头部加符号“”。
例如:“”、“”、“”。
高级优质焊接用钢,在牌号尾部加符号“”。
例如:“”、“”。
、电工用硅钢钢号由数字、字母和数字组成。
无取向和取向硅钢的字母符号分别为””和””厚度放在前头,字母符号放在中间,铁损数值放在后头,例如。
取向硅钢中,高磁感的字母符号””与””放在一起,例如字母之后的数字表示铁损值()的倍。
.......易于成形加工,代价低廉;造成不锈钢生锈的原因和处理方法不锈钢为什么也生锈? 当不锈钢管表面出现褐色锈斑(点)的时候,人们大感惊奇:认为“不锈钢是不生锈的,生锈就不是不锈钢了,可能是钢质出现了问题”。
其实,这是对不锈钢缺乏了解的一种片面的错误看法。
不锈钢在一定的条件下也会生锈的。
不锈钢具有抵抗大气氧化的能力即不锈性,同时也具有在含酸、碱、盐的介质中乃腐蚀的能力即耐蚀性。
但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质类型而改变的。