认识三角形(提高)巩固练习
- 格式:doc
- 大小:432.43 KB
- 文档页数:5
认识三角形一、知识点梳理1、三角形的有关概念(1)三角形的定义:由不在上的三条线段首尾相连所组成的图形。
(2)三角形的基本构造:①组成三角形的三条线段叫做三角形的②两条边相接的点叫做三角形的③相邻两边组成的角叫做三角形的2、三角形的三边关系:(1)三角形任意两边之和第三边(2)三角形任意两边之差第三3、三角形的角平分线、中线、高(1)、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做(2)、在三角形中,的线段,叫做这个三角形的中线。
(3)、从三角形的一个顶点向它的对边所在直线作垂线,之间的线段叫做三角形的高。
4:三角形按角分类⎧⎪⎨⎪⎩锐角三角形直角三角形钝角三角形5、三角形内角和与外角和定理(1)三角形三个内角的和等于180(2)直角三角形两锐角互余.(3)三角形一个外角大于和它不相邻的任何一个内角。
(4)三角形一个外角等于和它不相邻的两个内角的和。
(5)三角形三个外角的和等于360。
6:认识直角三角形:直角三角形的表示方法、性质:直角三角形两锐角互余。
二、经典例题例1、下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。
( )(1)1 ;4 ;5 (2)3 ;3 ;5w(3)3x ;5x ;7x(x为正数) (4)三条线段长度之比为4:7:6..例2、 小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm ,5cm(1) 他该如何选择第三根铁丝?你能帮助小明确定它的长度或范围吗? (2) 如果要求第三根铁丝的长度是整数,那么小明有几种选择?例3、 如图所示,在小河的同侧有A,B,C 三个村庄,图中的线段表示道路,某邮递员从A 村送信到B 村,总是走经过C 村的道路,不走经过D 村的道路,这是为什么呢? 请利用你所学的数学知识加以证明。
拓展:1、若设,,a b c 是△ABC 的三边,则a b c a b c +++--= 2、已知,,a b c 是△ABC 的三边,2,5a b ==,且三角形的周长是偶数,(1)求c 的值;(2)判断△ABC 的形状。
(完整)四年级上册数学三角形的认识练习
题
四年级上册数学三角形的认识练题
1. 以下哪个图形是三角形?
- A. ⬛️正方形
- B. ⬛️长方形
- C. ⬛️三角形
- D. ⬛️正五边形
2. 内角之和与一个三角形内角相等的直角形叫做什么?
- A. 基本图形
- B. 正方形
- C. 正直角形
- D. 二边相等的直角形
3. 一个直角三角形的两条边相等,叫做什么?
- A. 锐角三角形
- B. 直角三角形
- C. 钝角三角形
- D. 等腰三角形
4. 以下哪个图形是等腰三角形?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
5. 以下哪个图形是等边三角形?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
6. 以下哪个图形是直角三角形?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
7. 以下哪个图形是钝角三角形?
- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
8. 在以下哪个图形中,直角的两边长度相等?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
9. 在以下哪个图形中,一个内角大于90度?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
10. 以下哪个图形的每一个内角都是锐角?
- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
请注意,以上只是数学三角形的认识练习题,答案可能因具体情况而异。
中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。
BDCGEFABCAP例1.将长为15cm 的木棒截成长度为整数的三段,使它构成三角形的三边,则不同的截法有几种?例2.如图,点P 为△ABC 内一点,试说明AB+AC >PB+PC 的理由.例3.如图,求∠A+∠B+∠C+∠D+∠E 的度数.例4. 如图所示,在△ABC 中,BD 、CD 分别平分∠ABC 和∠ACB,(1)若∠A=60°,试求∠D 的度数; (2)设∠A=x °,请用含x 的式子表示∠D.例5.在△ABC 中,∠A=50°,高AE,CF 所在的直线交于O 点,求∠BOC 的度数. (提示:三角形的高不一定在三角形的内部,注意分情况讨论.)ACDBCABPDE第2题图第1题图第5题图4 A B D7C2第7题图x练习:1.图中三角形的个数是_______.2.如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=MB ,用r 的式子表示阴影部分的面积是__ ___.3.用一根长为a m 的线围成一个等边三角形,测知这个等边三角形的面积为b m 2.现于这个等边三角形内任取一点P ,则点P 到等边三角形三边距离之和为 .4.用1O 根长度相同的木棍拼成一个三角形(不剩余木棍也不折断木棍),则只能拼成( ). A .直角三角形 B 等腰三角形 C .等腰直角三角形 D .等边三角形5.如图,长方形ABCD 中,△ABP 的面积为20平方厘米,△CDQ 的面积为35平方厘米,则阴影四边形的面积等于 平方厘米.6.已知等腰三角形的底边为10cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长4cm,那么这个三角形的腰长为 cm.7.如图,四边形ABCD,则的x 取值范围是 .如图所示,在△ABC 中,∠BAC=50°,∠C=60°,AD ⊥BC 于点D,BE 是∠ABC 的平分线,AD 、BE 相交于点P,求∠BPD 的度数.OAMBCN9. 如图,∠ABD=∠DBE=∠EBC,∠ACD=∠DCE=∠ECB,若∠BEC=145°,求∠D 和∠A 的度数.10.如图,已知射线OM 与射线ON 互相垂直,B 、A 分别为OW 、ON 上一动点,∠ABM 、∠BAN 的平分线交于C.问:B 、A 在OM 、ON 上运动过程中,∠C 的度数是否改变?若不改变,求出其值;若改变,说明理由.训练九答案与提示:例题:例1.不同的截法共有7种,分别为 (5,3,7),(5,4,6),(5,5,5),(6,3,6),(6,2,7),(7,1,7),(7,4,4), 例2.延长BP 交AC 于D,例3.180°(利用三角形的外角等于与它不相邻两内角和,把五个角移至△AFG 内) 例4.AD ∠+︒=∠2190 例5.130°或50°练习:1.总计,共有21+21+6=48个三角形. 2.224143r r +∏3.ab 64.B5.由于△BEC 的高与矩形ABCD 的AB 边相等,所以∴ S △BEC =S △ABF +S △CDF . 等式左边=S △BPF +S △QFC +S 阴影部分 等式右边=S △ABP +S △BPF +S △CDQ +S △FQC . 等式两边都减去(S △BPF +S △QFC ),则有S 阴影部分=S △ABP +S △CDQ =20+35=55(平方厘米). 6.14或6 7.1<x <13 8.55°9.110°,75°.10.∠C=45°.。
《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
七年级认识三⾓形认识三⾓形(1)1:三⾓形三边关系:“三⾓形任意两边之和⼤于第三边;三⾓形任意两边之差⼩于第三边”. 2:1、能从右图中找出4个不同的三⾓形吗?2、这些三⾓形有什么共同的特点?⼀、新课:1、在右下图中你能⽤符号表⽰上⾯的三⾓形吗?2、它的三个顶点分别是___________________,三条边分别是______________________,三个内⾓分别是____________________.3、分别量出这三⾓形三边的长度,并计算任意两边之和以及任意两边之差.你发现了什么?结论:三⾓形任意两边之和⼤于第三边三⾓形任意两边之差⼩于第三边例:有两根长度分别为5cm 和8cm 的⽊棒,⽤长度为2cm 的⽊棒与它们能摆成三⾓形吗?为什么?长度为13cm 的⽊棒呢?长度为7cm 的⽊棒呢?⼆、巩固练习:1、下列每组数分别是三根⼩⽊棒的长度,⽤它们能摆成三⾓形吗?为什么?(单位:cm )(1)1,3,3;(2)3,4,7;(3)5,9,13;(4)11,12,22;(5)14,15,30.2、已知⼀个三⾓形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是____________________.若X 是奇数,则X 的值是_______________,这样的三⾓形有_______个;若X 是偶数,则X 的值是_______________,这样的三⾓形⼜有_______个A BCDEFGABCabc3、⼀个等腰三⾓形的⼀边是2cm ,另⼀边是9cm ,则这个三⾓形的周长是___________cm4、⼀个等腰三⾓形的⼀边是5cm ,另⼀边是7cm ,则这个三⾓形的周长是________________________________cm5.2 认识三⾓形(2)⼀、复习: 1、填空:(1)当0o<α<90o时,α是______⾓;(2)当α=______o时,α是直⾓;(3)当90o<α<180o时,α是______⾓;(4)当α=______o时,α是平⾓. 2、如右图,∵AB ∥CE ,(已知)∴∠A =_____,(_________________________)∴∠B =_____,(_________________________)练习1: 1、判断:(1)⼀个三⾓形的三个内⾓可以都⼩于60o.()(2)⼀个三⾓形最多只能有⼀个内⾓是钝⾓或直⾓.() 2、在△ABC 中,(1)∠C =70o,∠A =50o,则∠B =_______度;(2)∠B =100o,∠A =∠C ,则∠C =_______度;(3)2∠A =∠B +∠C ,则∠A =_______度.3、在△ABC 中,∠A =3x o∠=2x o∠=x o,求三个内⾓的度数.解:∵∠A +∠B +∠C =180o,(______________________)∴3x +2x +x =_______ ∴6x =_______ ∴x =从⽽,∠A =_______,∠B =_______,∠C =_______.三、猜⼀猜:.⼀个三⾓形中三个内⾓可以是什么⾓?(提醒:⼀个三⾓形中能否有两个直⾓?钝⾓呢?)按三⾓形内⾓的⼤⼩把三⾓形分为三类.锐⾓三⾓形(acute trangle ):三个内⾓都是锐⾓;直⾓三⾓形(right triangle ):有⼀个内⾓是直⾓.钝⾓三⾓形(obtuse triangle ):有⼀个内⾓是钝⾓.练习2:1、观察三⾓形,并把它们的标号填⼊相应的括号内:AB CD E 123锐⾓三⾓形();直⾓三⾓形();钝⾓三⾓形().2、⼀个三⾓形两个内⾓的度数分别如下,这个三⾓形是什么三⾓形?(1)30o和60o();(2)40o和70o();(3)50o和30o();(4)45o和45o().四、猜想结论:简单介绍直⾓三⾓形,和表⽰⽅法,Rt △.思考:直⾓三⾓形中的两个锐⾓有什么关系?结论:直⾓三⾓形的两个锐⾓互余举例(略)练习3:1、图中的直⾓三⾓形⽤符号写成_________,直⾓边是______和______,斜边是_______.2、如图,在Rt △BCD ,∠C 和∠B 的关系是______,其中∠C =55o,则∠B =________度.3、如图,在Rt △ABC 中,∠A =2∠B ,则∠A =_______度,∠B =_______度;⼩结:1、三⾓形的三个内⾓的和等于180o;2、三⾓形按⾓分为三类:(1)锐⾓三⾓形;(2)直⾓三⾓形;(3)钝⾓三⾓形.直⾓三⾓形的两个锐⾓互余.5.1 认识三⾓形(3)三⾓形⼀个⾓的⾓平分线和这个⾓的对边相交,这个⾓的顶点和对边交点之间的线段叫做三⾓形中这个⾓的⾓平分线.简称三⾓形的⾓平分线.如图:∵AD 是三⾓形ABC 的⾓平分线,∴∠BAD =∠CAD =∠BAC ,或:∠BAC =2∠BAD =2∠CAD .⼀个三⾓形共有三条⾓平分线,它们都在三⾓形内部,⽽且相交于⼀点.例题:△ABC 中,∠B =80o∠C =40o,BO 、CO 平分∠B 、∠C ,则∠BOC =______.连结三⾓形⼀个顶点和它对边中点的线段,叫做三⾓形这个边上的中线.简称三⾓形的中线.如图:∵AD 是三⾓形ABC 的中线,∴BD =DC =21BC ,或:BC =2BD =2DC .⼀个三⾓形共有三条中线,它们都在三⾓形内部,⽽且相交于⼀点.已知,AD 是BC 边上的中线,AB =5cm ,AD =4cm ,▲ABD 的周长是12cm ,求BC 的长.AB C BC D巩固练习:1、AD 是△ABC 的⾓平分线(D 在BC 所在直线上),那么∠BAD =_______=21______.△ABC 的中线(E 在BC 所在直线上),那么BE =___________=_______BC . 2、在△ABC 中,∠BAC =60o,∠B =45o,AD 是△ABC 的⼀条⾓平分线,求∠ADB 的度数.⼩结:(1)三⾓形的⾓平分线的定义;(2)三⾓形的中线定义.(3)三⾓形的⾓平分线、中线是线段.(1)已知AD 是三⾓形ABC 的⾓平分线,则∠B =∠C ;( )5.1 认识三⾓形(4)1、★三⾓形的⾼:从三⾓形的⼀个顶点向它的对边所在直线作垂线,顶点和垂⾜之间的线段叫做三⾓形的⾼线,简称三⾓形的⾼.如图,线段AM 是BC 边上的⾼.∵AM 是BC 边上的⾼,∴AM ⊥BC .锐⾓三⾓形的三条⾼在三⾓形的内部且交于⼀点. 1、直⾓三⾓形的三条⾼交于直⾓顶点处.2、钝⾓三⾓形的三条⾼所在直线交于⼀点,此点在三⾓形的外部. 4、练习:如图,(1)共有___________个直⾓三⾓形;(2)⾼AD 、BE 、CF 相对应的底分别是_______,_____,____;(3)AD =3,BC =6,AB =5,BE =4.则S △ABC =___________,CF =_________,AC =_____________. 5、⼩结:(1)锐⾓三⾓形的三条⾼在三⾓形的内部且交于⼀点.(2)直⾓三⾓形的三条⾼交于直⾓顶点处.(3)钝⾓三⾓形的三条⾼所在直线交于⼀点,此点在三⾓形的外部.5.2图形的全等1.把下列两组图形投影出来:(1)(2说出两组图形中上、下两个图形的异同之处2.形状相同且⼤⼩也相同的两个图形能够重合,反之亦然.形状不同或⼤⼩不同的两个图形不能重合,不能重合的两个图形⼤⼩⼀定不相同.3.能够重合的两个图形称为全等图形.全等图形的形状和⼤⼩都相同5.3图案设计在⽣活中,我们经常看到由全等图形拼成的美丽图案.例如在给定的三⾓形上,画出⼩鱼形状的图形,利⽤它就可以拼成下⾯这个美丽的图案.2、根据课本中的图形设计出相应的图案:5.4全等三⾓形(1)⼀个三⾓形共有______个顶点,_________个⾓,_______条边;(2)已知△ABC,它的顶点是_______,它的⾓是___________,它的边是___________;(3)两个图形完全重合指的是它们的形状___________,⼤⼩___________;(4)完全重合的两条线段_________(填“相等”或“不相等”);(5)完全重合的两个⾓_________(填“相等”或“不相等”).1.全等三⾓形的定义及有关概念和性质.(1)定义:全等三⾓形是能够完全重合的两个三⾓形或形状相同、⼤⼩相等的两个三⾓形.2.全等三⾓形的符号表⽰及读法和写法.”≌”读作全等如图,∵△ABC≌DFE,(已知)∴AB=DF,AC=DE,BC=FE,(全等三⾓形的对应边相等)∠A=∠D,∠B=∠F,∠C=∠E.(全等三⾓形的对应⾓相等)(1)全等⽤符号_________表⽰,读作__________.(2)三⾓形ABC全等于三⾓形DEF,⽤式⼦表⽰为______________.(3)已知△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′∠C=∠C′;AB=A′B′,BC=B′C′,AC=A′C′,则△ABC_______△A′B′C′.(4)如右图△ABC≌△BCD,∠A的对应⾓是∠D,∠B的对应⾓∠E,则∠C与____是对应⾓;AB与_____是对应边,BC与_____是对应边,AC与____是对应边.(5)判断题:①全等三⾓形的对应边相等,对应⾓相等.()②全等三⾓形的周长相等.()③⾯积相等的三⾓形是全等三⾓形.()④全等三⾓形的⾯积相等.()三、性质应⽤举例1.性质的基本应⽤.例1 已知:△ABC≌△DFE,∠A=96o,∠B=25o,DF=10cm.求∠E的度数及AB的长.例2 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C=20o,AB=10,AD=4,G为AB延长线上⼀点.求∠EBG的度数和CE的长.5.5探索三⾓形全等的条件(1)1、全等三⾓形的__________相等,__________相等.2、如图1,已知△AOC≌△BOD,则∠A=∠B,∠C=_______,______=∠2,对应边有AC=________,_______=OB,_______=OD.3、如图2,已知△AOC≌△DOB,则∠A=∠D,∠C=_______,______=∠2,对应边有AC=________,OC=_______,AO=_______.4、如图3,已知∠B=∠D,∠1=∠2,∠3=∠4,AB=CD,AD=CB,AC=CA.则△________≌△___________5、判定两个三⾓形全等,依定义必须满⾜()(A)三边对应相等(B)三⾓对应相等(C )三边对应相等和三⾓对应相等(D )不能确定1、画出⼀个三⾓形,使它的三个内⾓分别为40o,60o,80o,结论:_________________________________________________________. 2、画出⼀个三⾓形,使它的三边长分别为3cm ,4cm ,7cm ,结论:_________________________________________________________.⼆、巩固练习:1、下列三⾓形全等的是________________________________________.2、三边对应相等的两个三⾓形全等,简写为_______或__________.3、如图,AB =AC ,BD =DC ,求证:△ABD ≌△ACD .4、如图,AM =AN ,BM =BN ,求证:△AMB ≌△ANB .5、如图,AD =CB ,AB =CD ,求证:∠B =∠D .6、如图,P A =PB ,PC 是△P AB 的中线,∠A =55o,求:∠B 的度数.第5题第6题1、如图,AB =DC ,BF =CE ,AE =DF ,你能找到⼀对全等的三⾓形吗?2、如图,A 、C 、F 、D 在同⼀直线上,AF =DC ,AB =DE ,BC =EF 你能找到哪两个三⾓形全等?3、如图,已知AC =AD ,BC =BD ,CE =DE ,则全等三⾓形共有______对,5.5 探索三⾓形全等的条件(2)1、三边对应相等的两个三⾓形全等,简写为________或_______.2、如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AD 能平分∠BAC 吗?你能说明理由吗?3、如图,(1)∵AC ∥BD (已知),∴∠_____=∠_____(___________________).(2)∵AD ∥BC (已知),∴∠_____=∠_____(___________________).4、如图3,∵EA ⊥AD ,FD ⊥AD (已知),∴∠_________=∠________=90o(___________________).教学过程:⼀、探索练习:1、如果”两⾓及⼀边”条件中的边是两⾓所夹的边,⽐如三⾓形的两个内⾓分别是60A BCD1234ABCDEFABCDo和80o,它们所夹的边为2cm ,你能画出2个三⾓形吗?你画的三⾓形⼀定全等吗?结论:___________________________________________________________. 2、如果”两⾓及⼀边”条件中的边是其中⼀⾓的对边,⽐如三⾓形两个内⾓分别是60o和45o,⼀条边长为3cm .你画的三⾓形⼀定全等吗?结论:___________________________________________________________.⼆、巩固练习:1、两⾓和它们的夹边对应相等的两个三⾓形全等,简写成_______或_________.2、两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等,简写成_______或_________.3、如图,AB =AC ,∠B =∠C ,你能证明△ABD ≌△ACE 吗?4、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD =BC ,你能说明BO =DO 吗?5、如图,∠B =∠C ,AD 平分∠BAC ,你能证明△ABD ≌△ACD ?若BD =3cm ,则CD 有多长?6、如图,在△ABC 中,BE ⊥AD 于E ,CF ⊥AD 于F ,且BE =CF ,那么BD 与DC 相等吗?你能说明理由吗?.7、如图,已知AB =CD ,∠B =∠C ,你能说明△ABO ≌△DCO 吗?ABB ABCD EFA BCDO三、提⾼练习:1、如图,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110o,求∠DCF 的度数.2、如图,在Rt △ACB 中,∠C =90o,BE 是⾓平分线,ED ⊥AB 于D ,且BD =AD ,试确定∠A 的度数.5.5《边⾓边》第1课时1.三⾓形全等的判定Ⅰ(1)全等三⾓形具有”对应边相等、对应⾓相等”的性质.如图2,AC 、BD 相交于O ,AO 、BO 、CO 、DO 的长度如图所标,△ABO 和△CDO 是否能完全重合呢?不难看出,这两个三⾓形有三对元素是相等的: AO =CO ,∠AOB =∠COD , BO =DO .如果把△OAB 绕着O 点顺时针⽅向旋转,因为OA =OC ,所以可以使OA 与OC 重合;⼜因为∠AOB =∠COD ,OB =OD ,所以点B 与点D 重合.这样△ABO 与△CDO 就完全重合.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE =45o,②在AD 、AE 上分别取B 、C ,使AB =3.1cm ,AC =2.8cm .③连结BC ,得△ABC .④按上述画法再画⼀个△A 'B 'C '.(2)把△A 'B 'C '剪下来放到△ABC 上,观察△A 'B 'C '与△ABC 是否能够完全重合?3.边⾓边公理.有两边和它们的夹⾓对应相等的两个三⾓形全等(简称”边⾓边”或”SAS ”)ABCDEAEF⼆、三⾓形全等判定Ⅰ的应⽤1.填空:(1)如图3,已知AD∥BC,AD=CB,要⽤边⾓边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,⼀是AD=CB(已知),⼆是()=();还需要⼀个条件()=()(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要⽤边⾓边公理证明△ABD≌ACE,需要满⾜的三个条件中,已具有两个条件:()=(),()=()(这个条件可以证得吗?).2.例题例1已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.⼩结:1.根据边⾓边公理判定两个三⾓形全等,要找出两边及夹⾓对应相等的三个条件.2.找使结论成⽴所需条件,要充分利⽤已知条件(包括给出图形中的隐含条件,如公共边、公共⾓等),并要善于运⽤学过的定义、公理、定理.3.证明的书写格式:(1)通过证明,先把题设中的间接条件转化成为可以直接⽤于判定三⾓形全等的条件;(2)再写出在哪两个三⾓形中:具备按边⾓边的顺序写出可以直接⽤于判定全等的三个条件,并⽤括号把它们括起来;(3)最后写出判定这两个三⾓形全等的结论.作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同⼀条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.5.6作三⾓形(1)如图,使⽤直尺作图,看图填空.①②③④①过点____和_______作直线AB;②连结线段___________;③以点_______为端点,过点_______作射线___________;④延长线段__________到_________,使得BC=2AB.(2)如图,使⽤圆规作图,看图填空:①在射线AM上__________线段________=___________.②以点______为圆⼼,以线段______为半径作弧交_________于点___________.以点______为圆⼼,以任意长为半径作弧,分别交∠AOB两边,交_________于点___________,交________于点__________.这部分内容是为让学⽣熟悉作法的语⾔表达⽽设的.教师应该让学⽣慢慢理解这种语⾔表达的意思.逐步学会⾃⼰⼝述表达⾃⼰的作图过程.内容⼆(作⼀个三⾓形与已知三⾓形全等)1、已知三⾓形的两边及其夹⾓,求作这个三⾓形.已知:线段a,c,∠α.求作:ΔABC,使得BC=a,AB=c,∠ABC=∠α.作法与过程:(1)作⼀条线段BC=a,(2)以B为顶点,BC为⼀边,作⾓∠DBC=∠a;(3)在射线BD上截取线段BA=c;(4)连接AC,ΔABC就是所求作的三⾓形.2、已知三⾓形的两⾓及其夹边,求作这个三⾓形.已知:线段∠α,∠β,线段c.求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c.作法:(1)作____________=∠α;(2)在射线______上截取线段_________=c;(3)以______为顶点,以_________为⼀边,作∠______=∠β,________交_______于点_______.ΔABC就是所求作的三⾓形.3、已知三⾓形的三边,求作这个三⾓形.已知:线段a,b,c.求作:ΔABC,使得AB=c,AC=b,BC=a.⼩结:能根据题⽬给出的条件作出三⾓形.能⼝述作图过程.5.7 利⽤三⾓形全等测距离1、三边对应相等的两个三⾓形全等,简写为___________或__________;2、两⾓和它们的夹边对应相等的两个三⾓形全等,简写成_______或_________;3、两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等,简写成_______或_______;4、两边和它们的夹⾓对应相等的两个三⾓形全等,简写成_______或_______;5、全等三⾓形的性质:两三⾓形全等,对应边_______,对应⾓_______;6、如图;△ADC ≌△CBA ,那么∠ABC =∠____,AB =_____;7、如图;△ABD ≌△ACE ,那么∠BDA =∠____,AD =_____.⼀、探索练习:如图:A 、B 两点分别位于⼀个池塘的两端,⼩明想⽤绳⼦测量A ,B 间的距离,但绳⼦不够长.他叔叔帮他出了⼀个这样的主意:先在地上取⼀个可以直接到达A 点和B 点的点C ,连接AC 并延长到E ,使CD =AC ;连接BC 并延长到E ,使CE =CB ;连接DE 并测量出它的长度;(1)DE =AB 吗?请说明理由(2)如果DE 的长度是8m ,则AB 的长度是多少?⼆、巩固练习:1.如图,⼭脚下有A 、B 两点,要测出A 、B 两点的距离.(1)在地上取⼀个可以直接到达A 、B 点的点O ,连接AO 并延长到C ,使AO =CO ,ACBDC你能完成下⾯的图形?(2)说明你是如何求AB的距离.2.如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在⼀条直线上,这时测得DE的长就是AB 的长,试说明理由.3.如图,A,B两点分别位于⼀个池塘的两端,完成右图并求出A、B的距离.三、提⾼练习:1.在⼀座楼相邻两⾯墙的外部有两点A、C,如图所⽰,请设计⽅案测量A、C两点间的距离.2.如图,⼀池塘的边缘有A、B两点,试设计两种⽅案测量A、B两点间的距离5.8探索直⾓三⾓形全等的条件1、判定两个三⾓形全等的⽅法:_____、_____、_____、_______2、如图,Rt△ABC中,直⾓边是_________、________,斜边是____________3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(4)若AB=DE,BC=EF,AC=DF则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(⼀)探索练习:(动⼿操作):已知线段a,c(a1、按步骤作图:①作∠MCN=∠α=90o,②在射线CM 上截取线段CB =a ,③以B 为圆⼼,C 为半径画弧,交射线CN 于点A ,④连结AB .2、与同桌重叠⽐较,是否重合?3、从中你发现了什么?__________________________________ 三、巩固练习:1、如图,△ABC 中,AB =AC ,AD 是⾼,则△ADB 与△ADC ___________(填”全等”或”不全等”)根据______________(⽤简写法).2、如图,CE ⊥AB ,DF ⊥AB ,垂⾜分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据______;(2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据______;(3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据______;(4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据__________;(5)若AC =BD ,CE =DF (或AE =BF ),则△ACE ≌△BDF ,根据________. 3、判断两个直⾓三⾓形全等的⽅法不正确的有()(A )两条直⾓边对应相等(B )斜边和⼀锐⾓对应相等(C )斜边和⼀条直⾓边对应相等(D )两个锐⾓对应相等4、如图,B 、E 、F 、C 在同⼀直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB =DC ,BE =CF ,你认为AB 平⾏于CD 吗?说说你的理由.5、如图,⼴场上有两根旗杆,已知太阳光线AB 与DE 是平⾏的,经过测量这两根旗杆在太阳光照射下的影⼦是⼀样长的,那么这两根旗杆⾼度相等吗?说说你的理由.四、提⾼练习:1、判断题:(1)⼀个锐⾓和这个锐⾓的对边对应相等的两个直⾓三⾓形全等.()(2)⼀个锐⾓和锐⾓相邻的⼀直⾓边对应相等的两个直⾓三⾓形全等()(3)⼀个锐⾓与⼀斜边对应相等的两个直⾓三⾓形全等()(4)两直⾓边对应相等的两个直⾓三⾓形全等()(5)两边对应相等的两个直⾓三⾓形全等()(6)两锐⾓对应相等的两个直⾓三⾓形全等()(7)⼀个锐⾓与⼀边对应相等的两个直⾓三⾓形全等()(8)⼀直⾓边和斜边上的⾼对应相等的两个直⾓三⾓形全等() 2、如图,∠D =∠C =90o,请你再添加⼀个条件,使△ABD ≌△BAC ,并在添加的条件后的()内写出判定全等的依据.(1)________();(2)________();(3)________();(4)________(). 3、如上图,AD ⊥DB ,BC ⊥CA ,AC 、BD 相交于点O ,AC =BD ,试说明AD =BC4、如图,∠BAC =∠DCA =90o,AD =BC ,∠1=20o,你能求出∠D 的度数吗?说说你的理由.5、如图,AB //DC ,AD //BC ,AE ⊥BD ,CF ⊥BD ,垂⾜分别为E 、F ,试说明AE =CF。
专题2.2认识三角形(拓展提高)一、单选题1.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是()A.10 B.11 C.12 D.13【答案】D【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:5-2<a<5+2,即3<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为6+2+5=13.故选:D.【点睛】此题考查了三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.2.如图,在△ABC中,AB=5,AC=8,CD=3BD,点E是AC的中点,BE、AD交于点F,则四边形DCEF 的面积的最大值是().A.10cm2B.9cm2C.8cm2D.7cm2【答案】B【分析】连接CF,设S△BFD=a,根据CD=3BD,点E是AC的中点,得出S△CFD=3a,S△ABF=S△CBF=4a,S△ABD=5a,即可得出S△ADC=15a,S△AFC=12a,S△ABC=20a,进而得出S四边形DCEF=9a,从而得出S四边形DCEF=920S△ABC,当△ABC的面积取最大值时,四边形DCEF的面积的最大,求得△ABC的面积的最大值,即可求得结果.【详解】解:连接CF,设S △BFD =a ,∵CD =3BD ,∴S △CFD =3a ,S △ADC =3S △ABD ,∵点E 是AC 的中点,∴S △ABE =S △CBE ,S △AFE =S △CFE ,∴S △ABF =S △CBF =4a ,∴S △ABD =5a ,∴S △ADC =15a ,∴S △AFC =12a ,S △ABC =20a ,∴S △EFC =6a ,∴S 四边形DCEF =9a ,∴S 四边形DCEF =920S △ABC , ∵在△ABC 中,AB =5,AC =8,∴S △ABC 的最大值为:12×5×8=20,∴四边形DCEF 的面积的最大值是9(cm 2),故选:B .【点睛】本题考查了三角形的面积,根据等高的三角形面积的比等于它们底的比,得出S 四边形DCEF =920S △ABC 是解题的关键.3.如图,直线a ∥b ,在Rt △ABC 中,点C 在直线a 上,若∠1=58°,∠2=24°,则∠B 的度数为( )A .56°B .34°C .36°D .24°【答案】A 【分析】利用平行线的性质,三角形的外角的性质求出∠A 即可解决问题. 【详解】解:如图,∵a ∥b ,∴∠1=∠3=58°,∵∠3=∠2+∠A , ∴∠A =58°-24°=34°, ∵∠ACB =90°, ∴∠B =90°-34°=56°, 故选:A .【点睛】本题考查平行线的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识.4.如图,ABC 面积为1,第一次操作:分别延长AB ,BC ,CA 至点1A ,1B ,1C ,使1A B AB =,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到111A B C △,则111A B C △的面积是( )A .4B .7C .10D .13【答案】B 【分析】根据题意,连接A 1C ,得到11A BC ABC S S ∆∆==,则11122A B B A BC S S ∆∆==,然后同理可求112C B C S ∆=,12AAC S ∆=,即可得到答案. 【详解】解:连接A 1C ,如图∵AB =A 1B ,∴△ABC 与△A 1BC 的面积相等, ∵△ABC 面积为1, ∴11A BC S ∆=.∵BB 1=2BC , ∴11122A B B A BC S S ∆∆==,同理可得,112C B C S ∆=,12AAC S ∆=, ∴11122217A B C S ∆=+++=; 故选:B .【点睛】本题考查了三角形的面积,三角形的中线问题,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.5.如图,在△ABC 中,∠A =78°,∠EBD =∠EDB ,DF 平分∠EDC ,则∠BDF 的度数为( )A .35°B .39°C .40°D .45°【答案】B 【分析】设,BDF x EBD y ∠=∠=,利用外角性质求出2AED y ∠=,利用角平分线性质得到EDF CDF x y ∠=∠=+,根据三角形内角和定理得到180A ADE AED ∠+∠+∠=︒,即可求出答案. 【详解】解:设,BDF x EBD y ∠=∠=,∵∠EBD =∠EDB , ∴2AED y ∠=,∵DF 平分∠EDC ,∴EDF CDF x y ∠=∠=+, ∴180(22)ADE x y ∠=︒-+,∵180A ADE AED ∠+∠+∠=︒,∠A =78°, ∴78180(22)2180x y y ︒+︒-++=︒, 解得39x =︒, 故选:B .【点睛】此题考查三角形内角和定理,角平分线的性质定理,外角的性质,读懂图形理解各角之间的位置关系是解题的关键.6.如图,将一副三角尺按图中所示位置摆放,点F 在AC 上,其中90ACB ∠=︒,60ABC ∠=︒,90EFD ∠=︒,45DEF ∠=︒,//AB DE ,则AFD ∠的度数是( )A .15︒B .30C .45︒D .60︒【答案】A 【分析】设AB 与EF 交于点M ,根据//AB DE ,得到45AMF E ∠=∠=︒,再根据三角形的内角和定理求出结果.【详解】解:设AB 与EF 交于点M , ∵//AB DE , ∴45AMF E ∠=∠=︒,∵90ACB ∠=︒,60ABC ∠=︒, ∴30A ∠=︒, ∴1803045105AFM ∠=︒-︒-︒=︒, ∵90EFD ∠=︒,∴AFD ∠=15︒, 故选:A .. 【点睛】此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键. 二、填空题7.如图,在ABC 中,80A ∠=︒,30C ∠=︒,将CDE △沿DE 折叠得到C DE ',则12∠+∠等于__________________度.【答案】50°.【分析】连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求解.【详解】解:连接DG ,根据折叠的性质,得:30C C '==︒∠∠,()()()12180'180'180180301808050C ADG AGD C A ∠+∠=︒-∠-∠+∠=︒-∠-︒-∠=︒-︒-︒-︒=︒故答案为:50°.【点睛】本题考查折叠的性质和三角形的内角和定理,解题的关键是作出辅助线帮助求解,熟练掌握基本知识,属于中考常考题型.8.如图,在ABC 中,80A ∠=︒,高BE 和CH 的交点为O ,则∠BOC =______ 【答案】100︒【分析】由BE 、CF 是△AB C 的高可得90BHC AEB ∠=∠=︒,根据三角形内角和定理可得∠ABE 的度数,进而可求出∠BOH 的度数,根据平角的定义即可得答案.【详解】∵BE 和CH 为ABC 的高, ∴90BHC AEB ∠=∠=︒, ∵80A ∠=︒,∴在ABE △中,180180908010ABE AEB A ∠=︒-∠-∠=︒-︒-︒=︒,在BHO △中,180180901080BOH BHO HBO ∠=︒-∠-∠=︒-︒-︒=︒, ∴180********BOC BOH ∠=︒-∠=︒-︒=︒. 故答案为:100︒.【点睛】本题考查三角形内角和定理,任意三角形的内角和等于180°,熟练掌握三角形内角和定理是解题关键.9.如图,△ABC 中,∠BDC =90°,BE 、CE 分别平分∠ABD 和∠ACD ,BF 、CF 分别平分∠ABE 和∠ACE ,若∠A =40°,则∠F =__°.【答案】52.5.【分析】利用三角形内角和、角平分线的性质求出∠FBC+∠FCB的度数,问题即可解决.【详解】解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=140°﹣90°=50°,∵BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,∴∠FBD+∠FCD=34×50°=37.5°,∴∠FBC+∠FCB=37.5°+90°=127.5°,∴∠F=180°﹣127.5°=52.5°,故答案为52.5.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,关键是熟练掌握这些基本知识,这是基本的题型.10.如图,△ABC中,BE、CD分别平分∠ABC、∠ACB,并相交于点O,∠BOC=140°,则∠A=__°.【答案】100【分析】先根据BO平分∠ABC,CO平分∠ACB,可得∠ABC=2∠1,∠ACB=2∠2,再根据三角形内角和定理计算出∠1+∠2的度数,进而得到∠ABC+∠ACB,即可算出∠A的度数.【详解】解:如图,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠1,∠ACB=2∠2,∵∠BOC=140°,∴∠1+∠2=180°﹣140°=40°,∴∠ABC+∠ACB=2×40°=80°,∴∠A=180°﹣80°=100°,故答案为:100【点睛】本题考查了角的平分线及三角形内角和定理,熟练掌握角的平分线与三角形内角和定理是解题的关键.11.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=70°,则∠ACB的大小为____.【答案】35°【分析】根据矩形的性质和等腰三角形的性质求得∠BAO的度数,再根据直角三角形的两锐角互余求解即可.【详解】解:∵四边形ABCD是矩形,对角线AC,BD相交于点O,∴OA=OB,∠ABC=90°,又∵∠AOB=70°,∴∠BAO=∠ABO=12(180°﹣70°)=55°,∴∠ACB=90°﹣∠BAO=90°﹣55°=35°.故答案为:35°.【点睛】本题考查矩形的性质、等腰三角形的性质、直角三角形的两锐角互余,熟练掌握矩形的性质和等腰三角形的性质是解答的关键.12.如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系____________.【答案】2∠P=∠D+∠C【分析】根据三角形的外角性质、角平分线的定义得到12∠CAD+∠P=12∠CBD+∠C,12∠CAD+∠D=12∠CBD+∠P,两式相减整理即可.【详解】解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠P AD=12∠CAD,∠PBC=∠PBD=12∠CBD,∴12∠CAD+∠P=12∠CBD+∠C①,∵∠DEP=∠P AD+∠D,∠DEP=∠EBP+∠P,∴12∠CAD+∠D=12∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.【点睛】本题考查角平分线定义,三角形外角性质,以及等式的性质,掌握角平分线定义,三角形外角性质,以及等式的性质是解题关键.13.如图,点O是ABCD的对称中心,点E为BC边的中点,点F为AD边上的点,且13DF AD.若12,S S 分别表示AOE △和CDF 的面积,则1S 与2S 之间的等量关系是______.【答案】1234S S = 【分析】根据三角形性质可得S 1=14ABC S , S 2=13ADC S ,根据平行四边形性质可得 ABC ADC S S =,然后可以得到解答. 【详解】解:如图,连结OC ,则A 、O 、C 三点在同一直线上,∵O 是AC 中点,E 是BC 中点,∴S 1=11112224AEC ABC ABC S S S =⨯=,∵DF =13AD , ∴S 2=13ADC S , ∴S 1:S 2=113434=:, 即1234S S =, 故答案为1234S S =. 【点睛】本题考查三角形与平行四边形的综合应用,熟练掌握三角形中线的性质及平行四边形的对称性是解题关键.14.下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∵∠A +∠B =50°+60°=110°, ∴∠ACB =180°-110°=70°, ∴∠DCE =70°, 如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∴∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠ D +100°,因此应将∠D 减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法. 三、解答题15.已知ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠,过点A 作直线//GH BC ,且60GAB ∠=︒,40C ∠=︒.(1)求ABC 的外角CAF ∠的度数;(2)求DAE ∠的度数.【答案】(1)100°;(2)10°【分析】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE =40°,根据平行线的性质求出∠GAD =90°,结合图形计算,得到答案.【详解】解:(1)∵GH ∥BC ,∠C =40°,∴∠HAC =∠C =40°,∵∠F AH =∠GAB =60°,∴∠CAF =∠HAC +∠F AH =100°;(2)∵∠HAC =40°,∠GAB =60°, ∴∠BAC =80°,∵AE 平分∠BAC , ∴∠BAE =40°,∵GH ∥BC ,AD ⊥BC , ∴∠GAD =90°, ∴∠BAD =90°-60°=30°,∴∠DAE =∠BAE -∠BAD =10°.【点睛】本题考查的是三角形的外角性质、三角形内角和定理、角平分线的定义、平行线的性质,掌握三角形内角和定理、平行线的性质是解题的关键.16.如图,ABC 中,80,30,BAC C BP ∠=︒∠=︒平分ABC ∠,点D 为射线BP 上一动点.(1)连接AD ,若//AD BC ,求ADB ∠的度数;(2)连接DC ,若DC 所在的直线垂直于ABC 的一边,则所有满足条件的BDC ∠的度数为__________.【答案】(1)35°;(2)125°或25°或55°【分析】(1)根据三角形内角和得到∠ABC ,根据角平分线的定义得到∠ABP ,再利用平行线的性质得到∠ADB ;(2)分1D C AB ⊥,2D C AC ⊥,3D C BC ⊥三种情况分别求解.【详解】解:(1)∵80BAC ∠=︒,30C ∠=︒, ∴70ABC ∠=︒,∵BP 平分ABC ∠, ∴35ABP CBP ∠=∠=︒, ∵//AD BC , ∴35ADB CBP ∠=∠=︒.(2)①当1D C AB ⊥时,延长1CD 至E ,90BEC ∠=︒,135ABD ∠=︒, ∴11125BDC BEC ABD ∠=∠+∠=︒, ②当2D C AC ⊥时,223090120BCD ACB ACD ∠=∠+∠=︒+︒=︒, ∴221801803512025BD C CBP BCD ∠=︒-∠-∠=︒-︒-︒=︒,③当3D C BC ⊥时,390BCD ∠=︒,35CBP ∠=︒, ∴33180180359055BD C CBP BCD ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和,垂直的定义,解题的关键是灵活运用所学知识,同时分类讨论解决问题.17.给出三个多项式26,2,2A x x B x C x =-+=-=+.(1)计算:A B -;(2)计算:()B C A B ⋅⋅-;(3)分别比较A 与B 、A 与C 的大小,并说明理由;(4)若22x -<<时,A 、B 、C 能否作为同一个三角形的三边长?请说明理由.【答案】(1)24x +;(2)416x -;(3)A B >;A C >,理由见解析;(4)不能;证明见解析【分析】(1)计算A -B ,去括号,合并同类项即可;(2)将A ,B ,C 代入,利用整式的混合运算法则计算即可;(3)分别计算A -B 和A -C ,根据结果比较即可;(4)计算B +C ,将A 利用完全平方公式变形,比较B +C 和A 的结果可得.【详解】解:(1)()262A B x x x -=-+--262x x x =-+-+24x =+;(2)()B C A B ⋅⋅-()()()2224x x x =-++()()2244x x =-+416x =-;(3)A 与B ,2440A B x -=+≥>, ∴A B >,A 与C ,()262A C x x x -=-+-+262x x x =-+--224x x =-+()213x =-+, ∵10x -≥, ∴30A C -≥>, 故A C >;(4)不能作为同一个三角形的三边长,∵224x x -++==B +C ,221232364244A x x x ⎛⎫=-+=-+≥> ⎪⎝⎭, ∴B C A +<,故A 、B 、C 不能同时作为同一个三角形的三边长.【点睛】本题考查了整式的混合运算,三角形的三边关系,完全平方公式,平方差公式,解题的关键是掌握整式的大小比较方法的使用.18.如图,在ABC 中,90,BAC AD BC ∠=︒⊥于点,D AE 平分,50DAC B ∠∠=︒,求BAD ∠和AEC ∠的度数.【答案】∠BAD =40°,∠AEC =115°【分析】先由三角形内角和定理求出∠C 的度数,再由直角三角形的性质即可求出∠BAD 的度数;在△ADC 中,由∠ADC =90°,∠C =40°可得出∠DAC 的度数,再由角平分线的性质即可求出∠DAE 的度数,再由直角三角形的性质求出∠AED 的度数,由两角互补的性质即可得出∠AEC 的度数.【详解】解:在△ABC 中,∵∠BAC =90°,∠B =50°,∴∠C =90°-∠B =40°,∵AD ⊥BC 于点D ,∴∠BAD =90°-∠B =40°;在△ADC 中,∵∠ADC =90°,∠C =40°,∴∠DAC =90°-∠C =50°,∵AE 平分∠DAC ,∴∠DAE =12∠DAC =25°, 在△DAE 中,∵∠ADE =90°,∠DAE =25°,∴∠AED =90°-∠DAE =65°,∴∠AEC =180°-∠AED =180°-65°=115°.【点睛】本题考查的是三角形内角和定理、角平分线的性质及两角互补的性质,熟知三角形的内角和是180°是解答此题的关键.19.如图,将一张三角形纸片ABC 的一角折叠,使得点A 落在四边形BCDE 的外部A '的位置且A '与点C 在直线AB 的异侧,折痕为DE ,已知90C ∠=︒,30A ∠=︒.(1)求12∠-∠的度数;(2)若保持A DE '的一边与BC 平行,求ADE ∠的度数.【答案】(1)60°;(2)45°或30°【分析】(1)先求出∠B 的度数,在根据四边形内角和求出∠1+∠BFD 的度数,由∠BFD =∠A ′FE 和∠A ′的度数可求出答案.(2)分EA '∥BC 和DA '∥BC 两种情况讨论.当DA '∥BC 时,先求出∠A ′DA =90°,再根据折叠可得出∠ADE =45°;当EA '∥BC 时,根据平行线的性质求出∠2=∠ABC =60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE 的度数.【详解】解:(1)由折叠可知,30A A '∠=∠=︒在A EF '△中,2180A A FE ''∠+∠+∠=︒2180150A AFE A FE ''∴∠=︒-∠-∠=︒-∠在ABC 中,18060B C A ∠=︒-∠-∠=︒在四边形BCDF 中,1360C B BFD ∠+∠+∠+∠=︒1360210C B BFD BFD ∴∠=︒-∠-∠-∠=︒-∠ 因为BFD A FE '∠=∠1221015060∴∠-∠=︒-︒=︒(2)①当//DA BC '时,90ADA ACB '∠=∠=︒ ADE 沿DE 折叠A DE ' 1452ADE A DE ADA ''∴∠=∠=∠=︒②当//EA BC '时,260ABC ∠=∠=︒由(1)知,1260∠-∠=︒,1260120∴∠=∠+︒=︒,ADE 沿DE 折叠A DE '()11801302ADE A DE ADA ''∴∠=∠=∠=︒-∠=︒综上,∠ADE 的度数为:45°或30°.【点睛】本题考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,平行线的性质,属于综合题,但难度不大.熟记性质准确识图是解题的关键.20.先阅读下面的内容,再解答问题.(阅读)例题:求多项式2222613m mn n n ++-+的最小值.解;()()2222222226132694()(3)4m mn n n m mn nn n m n n ++-+=+++-++=++-+,∵22()0,(3)0m n n +≥-≥ ∴多项式2222613m mn n n ++-+的最小值是4.(解答问题)(1)请写出例题解答过程中因式分解运用的公式是____________;(2)已知a 、b 、c 是ABC 的三边,且满足2210841a b a b +=+-,求第三边c 的取值范围; (3)求多项式2224369x xy y y -+--+的最大值. 【答案】(1)完全平方公式;(2)1<c <9;(3)18【分析】(1)根据完全平方公式解答;(2)利用完全平方公式把原式变形,根据偶次方的非负性分别求出a 、b ,根据三角形的三边关系计算,得到答案;(3)利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【详解】解:(1)例题解答过程中因式分解运用的公式是完全平方公式, 故答案为:完全平方公式;(2)a 2+b 2=10a +8b -41,a 2-10a +25+b 2-8b +16=0,(a -5)2+(b -4)2=0.∵(a -5)2≥0,(b -4)2≥0,∴a -5=0,b -4=0,∴a =5,b =4,∴5-4<c <5+4,即1<c <9;(3)原式=2222426918x xy y y y --+---+ =()()222226918x xy y y y ---++++ =()()222318x y y +---+∵-2(x -y )2≤0,-(y +3)2≤0,∴多项式2224369x xy y y -+--+的最大值是18. 【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.。
七年级数学下册《认识三角形》练习题及答案解析(北师大版) 一、单选题1.如图在△ABC中AD是△ABC的角平分线则()A.△1=12△BAC B.△1=12△ABC C.△1=△BAC D.△1=△ABC2.两根长度分别为2 10的木棒若想钉一个三角形木架第三根木棒的长度可以是()A.13B.10C.7D.63.如图给出的三角形有一部分被遮挡则这个三角形可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形4.如图从旗杆AB的顶端A向地面拉一条绳子绳子底端恰好在地面P处若旗杆的高度为13.2米则绳子AP的长度不可能是()A.13米B.13.3米C.14米D.15米5.利用直角三角板作△ABC的高线下列作法正确的是()A.B.C.D.6.若一个直角三角形其中一个锐角为40° 则该直角三角形的另一个锐角是()A.60°B.50°C.40°D.30°7.如图AD BE CF是△ABC的三条中线则下列结论正确的是()A.BC=2AD B.AB=2AF C.AD=CD D.BE=CF8.如图用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限)不计螺丝大小其中相邻两螺丝的距离依次为3 4 5 7 且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框则任意两个螺丝间的距离的最大值为()A.9B.8C.7D.69.将一个三角形纸片剪开分成两个三角形这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形10.如图若△ABC的三条内角平分线相交于点I 过I作DE△AI分别交AB AC于点D E 则图中与△ICE一定相等的角(不包括它本身)有()个.A.1B.2C.3D.4二、填空题11.如图AD AE分别是△ABC的角平分线和高∠B=50°∠C=70°则∠BAD=度∠EAD=度.12.已知三角形三边长分别为2 x 13 若x为正整数则这样的三角形有个.13.已知△ABC中△A=12△B=13△C 则△ABC是三角形.14.同一平面内有A B C三点A B两点之间的距离为5cm点C到直线AB 的距离为2cm且△ABC为直角三角形则满足上述条件的点C有个.三、作图题15.用圆规和直尺作图:已知△AOB(如图)求作:△AOB的平分线OC.(要求保留作图痕迹不写作法和证明过程).四解答题16.如图AD是△BAC的平分线CE是△ADC边AD上的高若△BAC=80° △ECD=25° 求△ACB的度数.17.已知a b c是△ABC的三边长若b=2a−1c=a+5且△ABC的周长不超过20cm 求a范围.18.如图在△ABC中AD△BC 垂直为D △1=△B △C=67° 求△BAC的度数19.如图所示图中共有多少个三角形?请写出这些三角形并指出所有以E为顶点的角.20.如图在△ABC中CE BF是两条高若△A=70° △BCE=30° 求△EBF与△FBC的度数.21.如图求△A+△B+△C+△D+△E的大小.22.如图1 AB与CD相交于点O 若△D=38° △B=28° △DAB和△BCD的平分线AP和CP 相交于点P 并且与CD AB分别相交于M N.试求:(1)△P 的度数;(2)设△D=α △B=β △DAP= 13 △DAB △DCP= 13 △DCB 其他条件不变 如图2 试问△P 与△D △B 之间存在着怎样的数量关系(用α β表示△P ) 直接写出结论.参考答案1.【答案】A【解析】【解答】解:∵AD 是△ABC 的角平分线 ∴△1=12△BAC故答案为:A.【分析】根据角平分线的定义求解即可.2.【答案】B【解析】【解答】解:设第三边的长度为x则10−2<x <10+2 即8<x <12 则x =10符合题意 故答案为:B.【分析】设第三边的长度为x 根据三角形中任意两边之和大于第三边 任意两边之差小于第三边 列出不等式组 求解可得x 的取值范围 从而一一判断即可得出答案.3.【答案】B【解析】【解答】解:由图形可得:该三角形为锐角三角形.故答案为:B.【分析】观察图形可知:图中的三角形有两个锐角 且第三个角也小于90° 据此可判断出三角形的形状.4.【答案】A【解析】【解答】解:∵旗杆的高度为AB =13.2米又∵AP >AB∴绳子AP 的长度不可能是:13米. 故答案为:A.【分析】直角三角形的性质:斜边大于直角边 据此解答即可.5.【答案】C【解析】【解答】解:由三角形的高线的定义可知:A 作法不符合题意 不符合题意;B 作法不符合题意 不符合题意;C 作法符合题意 符合题意;D 作法不符合题意 不符合题意; 故答案为:C .【分析】根据高线的定义逐项判断即可。
浙教版七下数学期末总复习--三角形的初步认识能力提升测试一,选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.以下列各组线段为边,能组成三角形的是( ); A .2cm 、2cm 、4cm B .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm2.已知△ABC 的边长均为整数,且最大边的边长为4,那么符合条件的不全等的 三角形最多有( ) A .4个 B .5个 C .6个 D .7个3.如图,Rt ABC 中,90C ∠=︒,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,AE 平分BAC ∠,那么下列关系式中不成立的是( ) A 、B CAE ∠=∠ B 、DEA CEA ∠=∠ C 、B BAE ∠=∠ D 、2AC EC =4.. △ABC 和△A ˊB ˊC ˊ中,条件①AB= A ˊB ˊ;②BC= B ˊC ˊ;③AC= A ˊC ˊ;④∠A=∠A ˊ;⑤∠B=∠B ˊ;⑥∠C=∠C ˊ。
则下列各组条件中 不能保证△ABC ≌△A ˊB ˊC ˊ的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥5.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A 、△ACE≌△BCDB 、△BGC≌△AFC C 、△DCG≌△ECFD 、△ADB≌△CEA6.下列四组中一定是全等三角形的是( )A .两条边对应相等的两个锐角三角形B .面积相等的两个钝角三角形C .斜边相等的两个直角三角形D .周长相等的两个等边三角形7.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定 8.如果三角形的一个内角等于其他两个内角的差,那么这个三角形是 ( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定9.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A 、1B 、2C 、3D 、410.如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . 则=∠AFB ( )BC A E D015.A 075.B 060.C 055.D二,填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAB= .12.如图,在△ABC 中,∠C=90 ,点D 在AC 上,,将△BCD 沿着直线BD 翻折,使点C 落在斜边AB 上的点E 处,DC=5cm ,则点D 到斜边AB 的距离是 cm ..13.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC,△ADF,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12, 则S △ADF ﹣S △BEF = .14如图已知ABC △中,10AB AC ==厘米,∠B =∠C ,BC=6厘米,点D 为AB 的中点.如果点P 在线段BC 上以1厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度与点P 的运动速度相等,经过 秒后,BPD △与CQP △全等;15.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为________________(用含n 的代数式表示)。
认识三角形1、三角形的定义:由3条不在同一直线上的线段,首尾依次相接组成的图形称为三形。
如右的图形就是一个三角形2、三角形的各组成部分3. 三角形表示:“△”来表示一个三角形,如上图中,此三角形可以表示为△ABC,或△ACB或△ BAC等等。
A4、三角形的分类1)按角分2)按边分BC5.三角形三边性质:三角形任意两边之和大于第三边;两边之差 <第三条边 <两边之和试一试:1. △AB C中,已知a=8, b=5,则c为( )A. c=3B.c=13C. c 可以是任意正实数D. c 可以是大于 3 小于 13 的任意数值2.下列长度的 4 根木条中,能与 4cm和 9cm 长的 2 根木条首尾依次相接围成一个三角形的是()A、 4cmB、 9cmC、 5cmD、 13cm3. 有下列长度的三条线段能构成三角形的是( )A.1 cm 、 2 cm、 3 cmB.1 cm、4 cm、2 cmC.2 cm 、 3 cm、 4 cmD.6 cm、2 cm、3 cm4 、如图,以∠ C 为内角的三角形有和在这两个三角形中,∠ C 的对边分别为和5、等腰三角形的一边长为 3 ㎝,另一边长是 5 ㎝,则它的第三边长为6、三角形的三边长为3,a,7,则 a 的取值范围是;如果A这个三角形中有两条边相等,那么它的周长是;B D C7 一个三角形的两边长分别为 2 ㎝和 9 ㎝, 第三边长是一个奇数, 则第三边的长为 ___________, 此三角形的周长为 _________.8 一个等腰三角形的两边分别为 2.5 和 5,求这个三角形的周长。
9、画一个三角形,使它的三条边长分别为 3 cm、 4 cm 、6 cm.三条重要线段;1、高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂足之间的线段称为三角形的高。
注:( 1)三角形的高必为线段;(2)三角形的高必过顶点垂直于对边;(3)三角形有三条高。
数学:7.4 认识三角形同步练习(苏科版七年级下)【基础演练】一、选择题1.现有两根铁条,它们的长分别是30cm和50cm,如果要做成一个三角形铁架,那么在下列四根铁条中应选取()A.20cm的铁条;B.30cm的铁条;C.80cm的铁条;D.90cm的铁条.2.以下列长度的线段为边,可以作一个三角形的是()A.5㎝、10㎝、15㎝; B.5㎝、10㎝、20㎝;C.10㎝、15㎝、20㎝; D.5㎝、20㎝、25㎝.3.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个;B.5个;C.4个;D.3个.4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形的形状是()A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形.5.三角形的角平分线是()A.射线;B.直线;C.线段;D.线段或射线.二、填空题6.等腰三角形的两条边长分别为3cm和4cm,则这个等腰三角形的周长为cm.7.等腰三角形的两条边长分别为4cm和9cm,则第三边长为cm.8.一木工师傅有两根长分别为80cm、150cm的木条,要找第三根木条,将它们钉成一个三角形,现有70cm、105cm、200cm、300cm四根木条,他可以选择长为__ __的木条.9.已知,如图,已知AD、AE分别是△ABC的中线,高线,且AB=5cm,AC=3cm;则△ABD和△ADC的周长之差等于cm;△ABD与△ACD的面积关系是.10.用一根长为15cm的细铁丝围成一个三角形,其三边的长(单位:cm)分别为整数a、b、c,且a>b>c,(1)请写出一组符合上述条件的a、b、c的值;(2)a最大可取,c最小可取.三、解答题11.过A、B、C、D、E五个点中任意三点画三角形;(1)其中以AB为一边可以画出个三角形;(2)其中以C为顶点可以画出个三角形..12.已知:如图△ABC.试作△ABC的:①中线AD;②角平分线BE;③高CH.AB D E第9题图C第11题图ACB第12题图13.已知三角形ABC 的最长边为8,且三条边的比为2:3:4,求这个三角形的周长.【能力提升】14.有一块三角形优良品种试验土地,现引进四个良种进行对比实验,将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(可画图说明)15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?参考答案1.B ;2.C ;3.D ;4.B ;5.C ;第14题图 n=3n=2n=1 第15题图6.10或11;7.9;8. 105cm、200cm;9.2,相等; 10.答案不唯一,如2、6、7,7,2.11.3,3. 12.提示:钝角三角形的高在三角形的外部. 13.18.14.方法不唯一,可根据“三角形的中线将三角形分成面积相等的两部分”进行方案设计.15.60.。
三角形的内角和练习题一、基础练习1、判断下列说法是否正确,并说明理由。
(1)一个三角形的内角和是180度。
(2)一个三角形的内角和等于3个直角。
(3)一个等边三角形的内角和等于一个等腰三角形的内角和。
2、一个三角形的三个内角分别为A、B、C,已知A=30度,B=80度,求C的度数。
二、提升练习1、一个三角形的三个内角分别为A、B、C,已知A=70度,B=90度,求C的度数。
2、一个等边三角形的三个内角分别为A、B、C,已知A=60度,求B 和C的度数。
3、一个等腰三角形的两个内角分别为A、B,已知A=80度,求B的度数(该三角形是等腰三角形,有两边长度相等)。
三、拓展练习1、一个四边形由两个等边三角形组成,它的四个内角分别为A、B、C、D,求A+B+C+D的度数。
2、一个五边形由三个等边三角形组成,它的五个内角分别为A、B、C、D、E,求A+B+C+D+E的度数。
3、一个n边形(n≥3)的所有内角之和是多少?在解答上述问题的过程中,我们可以使用三角形内角和定理以及多边形的内角和公式来进行计算。
我们还需要了解等边三角形和等腰三角形的性质,以便解决相关问题。
三角形的内角和教学设计一、教材分析三角形的内角和是义务教育课程标准实验教科书(人教版)四年级下册第8单元数学广角里的内容,本节课是在学生已经学习了三角形的概念及分类的基础上进一步研究三角形的有关知识,教材中安排了三部分内容:第一部分是例1通过测量计算三个内角的度数和,第二部分是例2通过撕拼、旋转、翻转等不同的方法验证三角形的内角和等于180度,第三部分是例3用已知的两个角度求出第三个角的度数。
通过这些活动,培养学生动手操作能力和数学思维能力。
同时,还体现了数学来源于生活,又应用于生活这一理念。
二、学情分析作为四年级的学生,他们已经具备了一定的观察、猜测、动手操作、积极思考的能力,因此他们可以根据自己的实际情况选择喜欢的方法来研究验证三角形的内角和。
三角形(一)☞考点说明:认识三角形,并掌握三角形画高以及三角形的特性类型一:认识三角形【易】1.判断题(1)有三条线段组成的图形叫做三角形.()(2)三角形有三条边、三个角、三个顶点.()(3)三角形可以作出三条高. ()【易】2.一个三角形有()个顶点,最多可以画()条高.【易】3.三角形的一个顶点到对边的()是三角形的高.A. 直线B. 射线C. 线段D. 垂直线段【中】4.是三角形的打“√”,不是三角形的画“○”.【中】5.如图所示是三角形的画“√”,不是的画“×”.【难】6.下面的图形中,哪些是三角形?是三角形的画“√”,不是的画“×”.三角形的特性类型二:三角形画高【易】1.每个三角形都有()条高.A、2B、1C、3【易】2.画出下面三角形指定底边上的高.【易】3.画出下面三角形指定底边上的高.【易】4.过三角形ABC的B点向对边画高.正确的是().A. B. C.【易】5.小明画了三角形的一条高,你说他画的对吗?为什么?【易】6.在下面的三角形中分别从各角的顶点向它的对边画高.【易】7.如图,画三角形ABC的边AB上的高,画法正确的是().A. B.C. D.【中】8.给下面的三角形对应的底画高.【中】9.小小操作家(画出下面三角形底边上的高)注意:画高要用虚线,画出后要注明高.【难】10.在格子里画一个等腰三角形和一个直角三角形并画出它们的高.(直角三角形以斜边为底画高)类型三:三角形的特性【易】1.三角形具有()性,房屋的屋架通常做成三角形就是利用了这一特性.【易】2.()具有不易变形的特性.A.三角形 B.正方形 C.长方形 D.平行四边形【易】3.木头椅子摇晃了,常常在椅子下边斜着钉木条,这是运用了().A.三角形的稳定性B.平行四边形容易变形的特性【易】4.斜拉桥的设计中运用了三角形具有()的特性.A.稳定 B.不稳定 C.灵活【易】5.小猴这样围篱笆是利用了三角形具有()的特性.【中】6.下列物体中哪些利用了三角形稳定性的特性().A.折叠伞的骨架 B.自行车的三角架 C.推拉门【中】7.这个架子太危险,怎样加固呢?你能在图上画一画吗?这是利用了三角形的()特性.【难】8.下图中有三角形吗,试举两个例子,他们的作用是什么?☞考点说明:能根据三边关系解决相关问题 类型一:判断三边能不能组成三角形【易】1.数学课上,老师给出4组线段长度,你认为能构成三角形的是( ). A .2,2,4 B .1,2,3 C .2,5,9 D .4,5,6【易】2.徐同学想利用下列长度的木棒制成一个三角形工具,下列各组你认为可行的是( ).A .5,2,2B .2,3,6C .5,3,4D .7,13,6【易】3.下面是每组小棒的长度,能围成三角形的是( ). A .4cm 、3cm 、4cm B .2cm 、5cm 、7cm C .1cm 、8cm 、6cm【易】4.下面三组小棒,不能围成三角形的是( ).① ② ③【易】5.剪出下面4组纸条,哪一组能组成三角形?(单位:cm )(1)6、7、8(2)4、5、9 (3)3、6、10(4)8、11、11【中】6.在能拼成三角形的各组小棒下面画“√”,不能拼成三角形的画“×”.(单位:厘米) (1)( )三角形三边关系3厘米 3厘米 5厘米 4厘米 4厘米4厘米3厘米 3厘米6厘米(2)()(3)()(4)()【中】7.下面给出每组三根小棒的长,()组的三根小棒不能围成一个三角形.A.2.3 cm,3.2 cm,5.6 cmB.2.5 cm,2.5 cm,4.5 cmC.6.2 cm,2.8 cm,8.2 cm【中】8.下列长度不能拼成三角形的是().A.2厘米、2厘米、3厘米B.1厘米、2厘米、3厘米C.5厘米、5厘米、5厘米D.3厘米、5厘米、7厘米【中】9.将一根20厘米的细铁丝,剪成3段,拼成一个三角形,以下哪些剪法是可以的(). A.8厘米、7厘米、5厘米B.13厘米、6厘米、1厘米C.4厘米、9厘米、7厘米D.10厘米、3厘米、7厘米类型二:利用三边关系,已知两边,求解第三边【易】1.已知一个三角形的两条边分别是7cm 、3cm,第三条边可能是多少厘米?【易】2.如果三角形的两条边分别是10厘米和4厘米,第三条的边长度可能是多少厘米?(取整厘米数)【易】3.两根小棒分别是5cm、10cm,再有一根()㎝的小棒就能围成一个三角形. A、5cm B、6cm C、4cm D、15cm【易】4.如果三角形的两条边的长分别是5cm和8cm,那么第三条边的长最短是()厘米,最长是()厘米.(填整厘米数)【易】5.一个三角形的各边长都是整厘米数,其中两条边分别是7cm,8cm,那么这个三角形的周长最长是()厘米,最少是()厘米.【易】6.小明要做一个三角形的支架,他的手中有两根长度分别是4分米、8分米的木条,他还需要一根几分米长的木条就能完成他的心愿?【易】7.在三角形ABC中,AB=2,BC=5,则AC的取值范围是().【中】9.在三角形ABC中,AB=6cm,BC=4cm,并且AC的长度数值是一个偶数,三角形ABC 的周长最小是多少?【中】10.在三角形ABC中,AB=7cm,BC=3cm,并且AC的长度数值是一个奇数,三角形ABC 的周长最大是多少?【难】11.已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是().A.4<c<7 B.7<c<10 C.4<c<10 D.7<c<13类型三:利用三边关系,根据给出的线段组成三角形【易】1.2厘米、5厘米、3厘米、4厘米的四根小棒中的三根小棒围成的三角形有()个.【易】2.在1cm、2cm、4cm、5cm 4条线段中,用()厘米、()厘米和()厘米可围成三角形.【易】3.有分别1cm、4cm、5cm、8cm、13cm和50cm的小棒各一根,用其中一些小棒(不能折断小棒)围成一个周长最长的三角形,这个三角形边长分别是()厘米、()厘米和()厘米.【中】4.从四条线段①12cm;②6cm;③24cm;④12cm中选择()三条(填序号)围成一个三角形,这是一个()三角形.【中】5.用2根3cm、1根7cm、2根8cm的木棒能围成()种不同的三角形.【中】6.截一截.截成三段、做一个三角形框架,应该怎么截?你有不同的截法吗?截法1:()+()+()截法2:()+()+()截法3:()+()+()截法4:()+()+()【难】7.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为().A.5个 B.6个 C.7个 D.8个三角形的分类☞考点说明:掌握三角形按角和按边的分类规律,学会进行分类类型一:按角进行分类【易】1.三角形按角来分类,可分成()三角形、()三角形、()三角形.【易】2.在括号里填上每个三角形的名称,并画指定底边上的高.【易】3.一个三角形的三个角中,只有两个角是锐角,这个三角形一定不是().A.锐角 B.直角 C.钝角【易】4.一个三角形的三个内角都相等,那么这个三角形一定不是().A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【易】5.在锐角、直角和钝角三角形中,()的度数是固定不变的.A.锐角 B.直角 C.钝角【中】6.一个三角形被遮住了两个角,露出的角是锐角,这个三角形是()三角形.A.锐角 B.直角 C.钝角 D.不能确定【中】7.锐角三角形底边上的高可以把它分成两个()角三角形.【难】8.下面3个三角形被盖住了一个或两个角,你能知道各是什么三角形吗?类型二:按边进行分类【易】1.两条边相等的三角形一定是().A.锐角三角形 B.钝角三角形C.等腰三角形 D.等边三角形【易】2.把一张正方形的纸,沿对角线剪开,剪出的两个三角形既是()三角形,又是()三角形.【易】3.一个三角形的三条边的长度分别是3厘米、3厘米、4厘米,按照边来分,这是一个()三角形.【易】4.一个三角形三条边的长度都是7厘米,从边的角度看,它是一个()三角形,它有()条对称轴.【易】5.三条边都相等的三角形叫做()三角形,又叫做()三角形.【中】6.用30厘米长铁线围成一个底边长是8厘米的等腰三角形,这个等腰三角形的一条腰长是多少厘米?【中】7.按要求分一分.锐角三角形有()钝角三角形有()直角三角形有()等腰三角形有()【难】8.用16厘米长的铁丝围一个等腰三角形,其中一条边长6cm.(1)画出这个等腰三角形.想一想,有几种可能性?(2)选取其中一个三角形,从顶点向它的底边画高.拓展训练1.数一数下列各图形中共有几个角?2.下图中有多少个长方形3.)()(Array()()。
三角形的初步认识能力提升测试卷(二)及答案以下是查字典数学网为您引荐的三角形的初步看法才干提升测试卷(二)及答案,希望本篇文章对您学习有所协助。
三角形的初步看法才干提升测试卷(二)及答案一、选择题(共10小题,每题3分,共30分)温馨提示:每题四个答案中只要一个是正确的,请把正确的答案选出来!1.一个三角形的两边长区分是2cm和9cm,第三边的长是一个奇数,那么第三边长为( )A、5cm B、7cm C、9cm D、11cm2.如图,点P是BAC的平分线AD上一点,PEAC于点E.PE=3,那么点P到AB的距离是( )A.3B.4C.5D.63.关于三角形的内角,以下判别中不正确的选项是( );A.至少有两个锐角B.最多有一个直角C.必有一个角大于600D.至少有一个角不小于6004.以下四组中一定是全等三角形的是( );A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形5. 如图,在ABC中,BC边上的垂直平分线交AC于点D,AB=3,AC=7,BC=8,那么ABD的周长为( )A.10B.11C.15D.126、一个三角形的两个内角区分为55和65,这个三角形的外角不能够是( )A、115B、120C、125D、1307、如图,在锐角△ABC中,CD、BE区分是AB、AC边上的高,且CD、BE相交于一点P,假定A=50,那么BPC=( )A、150B、130C、120D、1008、用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、堆叠和折断,那么能摆出不同的三角形的个数是( )A、1B、2C、3D、49.如图,在△ABC中,D、E区分是AC、BC边上的点,假定△ADB≌△EDB≌△EDC,那么C的度数为( )A、15B、20C、25D、3010.在△ABC中,A=2B=4C,那么△ABC为( )A.锐角三角形B.钝角三角形C.直角三角形D.都有能够二、填空题(共6小题,每题4分,共24分)温馨提示:填空题必需是将最繁复最正确的答案填在空格处!11.在△ABC中,有两条边长区分是2 cm ,5 cm,那么第三边的范围是_________.假定三边中有两边相等,那么△ABC的周长为cm.12.三角形的三边长区分是3、x、9,那么化简 = ;13.如图,在ABC中,AD是BC边上的中线,AB=7 cm ,AC=5cm,那么ABD和ACD的周长差为 cm.14、设△ABC的三边为a、b、c,化简15、三角形的两边长区分是3cm和7cm,第三边长是偶数,那么这个三角形的周长为___________cm;16、如图,把矩形ABCD沿AM折叠,使D点落在BC上的N点处,假设AD= cm,DM=5cm,DAM=30,那么AN=_____cm,NM=______cm,BNA=_________度;三、解答题(共8题,共66分)温馨提示:解答题必需将解答进程清楚地表述出来!17(此题8分).如图,ABC中,C,D,E,F区分在AB,BC,AC上,且, ;求证: .证明:∵DEC=BDE( )DEC=DEF+FEC 又∵DEF=B(),______=______(等式性质).在△EBD与△FCE中,______=______(已证),______=______(),C(),△EBD≌△FCE ( )ED=EF ( ).18、(此题8分).如图,在△ABC中,AE是BC边上的高,AD 是角平分线,B=42,C=68.(1)求DAE的度数;(2)假定B= ,C= ,用含的代数式表示DAE.19、(此题8分)如图,点E、A、B、F在同一条直线上,AD与BC交于点O,CAE=DBF,AC=BD.说出CAD=DBC的理由。
专题4.2 认识三角形(与三角形有关的线段)(基础篇)(专项练习)一、单选题1.下列图形具有稳定性的是( )A .B .C .D .2.在△ABC 中,若△A -△B =90°,则△ABC 是( ) A .钝角三角形 B .直角三角形C .锐角三角形D .等边三角形3.下列线段中不能组成三角形的是( ) A .2,4,3B .12,6,8C .5,12,9D .3.5,6,2.54.图中,以DE 为边的三角形有( )A .2个B .3个C .4个D .5个5.以下是在钝角三角形ABC 中画BC 边上的高,其中画法正确的是( )A .B .C .D .6.如图,在ABC 中,AE 是高,BD 是角平分线,CF 是中线,下列说法不正确的是( )A .ACF BCF ∠=∠B .ABD CBD ∠=∠C .AEC AEB ∠=∠D .AF BF =7.周末李强和朋友到森林公园游玩,为测量园内湖岸A ,B 两点之间的距离,如图,李强在湖的一侧选取了一点O ,测得20m OA =,8m OB =,则A ,B 间的距离可能是( )A .10mB .22mC .30mD .32m8.如图,在ABC 中,12∠=∠,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上一点,CF AD ⊥于H ,下面判断正确的有( )A .AH 是ACF △的角平分线和高B .BE 是ABD △边AD 上的中线C .FH 是ABD △边AD 上的高D .AD 是ABE 的角平分线9.M 是直线l 上一点,N 是直线l 外一点,在直线l 上求作一点P ,使得PM PN -的值最大,则这点P ( )A .与M 重合B .在M 的左边C .在M 的右边D .是直线l 上任一点10.如图,在ABC 中,已知点D ,E ,F 分别为边AC BD CE ,,的中点,且阴影部分图形面积等于4平方厘米,则ABC 的面积为( )平方厘米A .8B .12C .16D .18二、填空题11.一个三角形的两条边长分别为3,5,周长为11,那么它的第三边长为__________. 12.已知三角形的三边长分别为2,5,x ,则x 的取值范围是______.13.如图,AD 为ABC 的中线,BE 为ABD 的中线.若ABC 的面积为30,5BD =,则BDE 中BD 边上的高为______.14.如图,在ABC 中,AD 是BC 边上的中线,ADC △的周长比ABD △的周长多4,24AB AC +=,则AC 的长为__________.15.如图,在三角形ABC 中,AD 是中线,DE AB ⊥于E ,DF AC ⊥于F ,若6cm,4cm AB AC ==,则DEDF=____________.16.如图,△ABC 的角平分线AD ,中线BE 相交于点O ,有下列结论:△AO 是△ABE 的角平分线;△BO 是△ABD 的中线;△DE 是△ADC 的中线;△ED 是△EBC 的角平分线.其中正确结论的序号是 ________.17.已知a 、b 、c 是ABC 的三边,74a b ==,,c 为整数,则c 的最大值为_______. 18.如图所示,BC 是新建快速公路,长度为10km ,90A ∠=︒,6AB =km ,8AC =km ,一小镇位于点A ,现在该小镇要修一条公路到达快速公路,则修这条公路最短长度为______km .三、解答题19.如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm . (1) 求第三边x 的范围;(2) 当第三边长为奇数时,求三角形的周长.20.某木材市场上的木棍规格与价格如表:(1) 现再从该市场上购买一根木棍,钉成一个三角形支架,若接头忽略不计,问有几种购买方案?(2) 若想花费最少的钱,则他应该选择的规格是哪种?21.如图,ABC 中,按要求画图: (1) BAC ∠的平分线AD ;(2) 画出ABC 中BC 边上的中线AE ; (3) 画出ABC 中AB 边上的高CF .22.已知a ,b ,c 为三角形的三边,满足654a b c==,且26a b c +-=,求三角形周长.23.如图所示,已知,AD AE 分别是ABC 的高和中线,6cm,8cm,10cm,90AB AC BC CAB ===∠=︒.试求:(1) AD 的长; (2)ABE 的面积;(3) ACE △和ABE 的周长的差.24.如图,点D ,E ,F 分别是ABC 的三条边的中点,设ABC 的面积为S ,求DEF 的面积.你可以这样考虑:(1) 连接AE ,AEC △的面积是多少?(2) 由第(1)题,你能求出ECF △的面积吗?ADF △和DBE 的面积呢?参考答案1.D【分析】根据三角形具有稳定性解答.解:选项中只有选项D是三角形组成,故具有稳定性.故选:D.【点拨】本题考查了三角形具有稳定性,是基础题,需熟记,关键是根据三角形具有稳定性解答.2.A【分析】由已知条件,结合三角形的分类即可解答.解:在三角形ABC中,△A-△B=90°,∴∠=︒+∠A B90∴∠>︒A90△△ABC是钝角三角形故选:A.【点拨】本题考查了三角形的分类,是基础考点,掌握相关知识是解题关键.3.D【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边对各选项分析判断.+>,△能够组成三角形,故本选项不符合题意;解:A、△234B、△6812+>,△能够组成三角形,故本选项不符合题意;+>,△能够组成三角形,故本选项不符合题意;C、△5912+=,△不能够组成三角形,故本选项符合题意.D、△3.5 2.56故选:D.【点拨】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.C【分析】根据三角形的边得出三角形即可.解:以DE为边的三角形有△DEC,△AED,△DEF,△BED,故选:C.【点拨】此题考查三角形,关键是根据三角形的边解答.5.D【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.解:A、没有经过顶点A,不符合题意;B、AD不垂直于BC,不符合题意;C 、垂足没有在BC 上,不符合题意;D 、高AD 交BC 的延长线于点D 处,符合题意. 故选:D .【点拨】本题考查了三角形的高的画法,过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高,熟练掌握此定义是解决问题的关键.6.A【分析】根据三角形角平分线、高和中线的性质逐一判断即可.解:A 、当CF 是角平分线时,ACF BCF ∠=∠一定成立,但是CF 是中线,所以选项描述错误,故本选项符合题意;B 、由于BD 是角平分线,所以ABD CBD ∠=∠,故本选项不符合题意;C 、由于AE 是高,所以90AEC AEB ∠=∠=︒,故本选项不符合题意;D 、由于CF 是中线,所以点F 是AB 边的中点,即AF BF =,故本选项不符合题意; 故选:A【点拨】本题考查了三角形的角平分线、高和中线,解决本题的关键是掌握以上的性质并熟练的运用.7.B【分析】根据三角形三边的关系求出AB 的取值范围即可得到答案. 解:由题意得,OA OB AB OA AB -<<+, △20m OA =,8m OB =, △12m 28m AB <<, △只有B 选项符合题意, 故选B .【点拨】本题主要考查了三角形三边的关系,熟知三角形中,任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.8.A【分析】连接三角形的顶点和对边中点的线段叫三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高,据此逐项判断即可.解:A 、AH 是ACF △的角平分线和高,故此选项判断正确,符合题意; B 、BG 是ABD △边AD 上的中线,故此选项判断错误,不符合题意; C 、FH 为AHF △边AH 上的高,故此选项判断错误,不符合题意 D 、AD 是ABC 的角平分线,故此选项判断错误,不符合题意, 故答案为:A .【点拨】本题考查了三角形的角平分线、中线、高线的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和对边相交的交点之间的线段.正确理解定义是解题的关键.9.A【分析】点P ,点M ,点N 可构成P MN ,根据三角形三边关系分析即可. 解:当点P ,点M ,点N 可构成PMN ,根据三角形三边关系得:PM PN MN -<;点P 与点M 重合时,0PM PN MN MN -=-=; △PM PN MN -≤,即当点P 与点M 重合时,PM PN -的值最大, 故选:A .【点拨】本题考查最短路线问题,利用三角形三边关系分析问题是解题的关键. 10.C【分析】根据三角形的中线得出4AEFAFCS S==,ABE AED S S =△△,BECECDSS=,然后结合图形求解即可.解:△F 是EC 的中点, △142AEFAFCAECS SS ===,△8AECS=,△ E 是BD 的中点 , △ABE AED S S =△△,BECECDS S=,△8AEDECDAECS S S +==, △8ABE BEC AECS S S +==, △228=16ABC ABE BECAECAECSSSSS=++==⨯,故选:C .【点拨】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.11.3【分析】根据三角形周长的定义求解即可.解:△一个三角形的周长为11,两条边长分别为3,5, △第三边长为:11353--=, 故答案为:3.【点拨】题目主要考查三角形的周长计算,理解题意是解题关键. 12.3<x <7【分析】根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和解答.解:根据三角形的三边关系,得:5﹣2<x <2+5,即:3<x <7. 故答案为:3<x <7.【点拨】本题考查了能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条就能够组成三角形.13.3【分析】先根据三角形的中线把三角形分成面积相等的两个三角形求得BDE △的面积,再根据三角形的面积公式求解即可.解:△AD 为ABC 的中线,ABC 的面积为30, △1152ABDABCSS ==,△BE 为ABD 的中线, △11522BDEABDSS ==, △5BD =,△BDE 中BD 边上的高为152532⨯÷=, 故答案为:3.【点拨】本题考查三角形的中线性质,熟知三角形的中线把三角形分成面积相等的两个三角形是解答的关键.14.14【分析】由ADC △的周长比ABD △的周长多4可得4AC AB -=,24AC AB +=,然后问题可求解.解:△AD 是BC 边上的中线, △BD CD =, △ADCC AD CD AC =++,ABDCAD BD AB =++,△4ADCABDCCAD CD AC AD BD AB AC AB -=++---=-=,△24AC AB +=, △228AC =, △14AC =; 故答案为14.【点拨】本题主要考查三角形的中线,熟练掌握三角形的中线得到相等的线段是解题的关键.15.23【分析】在ABC 中,可知ABD △和ADC △的面积相等;利用等面积法,即可求解.解:△在三角形ABC 中,AD 是中线, △BD CD =, △ABDADCSS=.△DE AB ⊥于E ,DF AC ⊥于F ,6cm AB =,4cm AC =, △1122AB DE AC DF ⨯=⨯, △116422DE DF ⨯⨯=⨯⨯, △4263DE DF ==. 【点拨】本题主要考查了用等面积法、三角形的中线,理解等面积法和掌握三角形中线的知识点是解题的关键.16.△△【分析】由已知条件易得△BAD=△CAD ,AE=CE ,根据这两个条件判断所给选项是否正确即可.解:△△ABC 的角平分线AD 、中线BE 相交于点O , △△BAD =△CAD ,AE =CE ,△在△ABE 中,△BAD =△CAD ,△AO 是△ABE 的角平分线,故△正确; △AO ≠OD ,所以BO 不是△ABD 的中线,故△错误; △在△ADC 中,AE =CE ,DE 是△ADC 的中线,故△正确;△△ADE 不一定等于△EDC ,那么ED 不一定是△EBC 的角平分线,故△错误; △正确的有2个选项△△.【点拨】本题考查三角形的角平分线、中线性质,熟练掌握性质是解题的关键 17.10【分析】根据已知的两边确定第三边的取值范围,再根据c 为整数,求此三角形的边c 的长度.解:△74a b ==,,△7474c -<<+,即311c <<, 又c 为整数, △c 的最大值为10. 故答案为:10.【点拨】本题考查了三角形三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.4.8【分析】过点A 作AD BC ⊥于点D ,根据点到直线的距离,垂线段最短,进而等面积法即可求解.解:如图,过点A 作AD BC ⊥于点D , 则AD 是ABC ,BC 边上的高,△90A ∠=︒,6AB =,8AC =,10BC =, △1122ABC S AB AC AD BC =⨯⨯=⨯⨯△, △68 4.810AB AC AD BC ⨯⨯===, 故答案为:4.8.【点拨】本题考查了垂线段最短,三角形的面积公式,三角形的高,掌握垂线段最短是解题的关键.19.(1)7<x <11 (2)20cm【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长. 解:(1)由三角形的三边关系得:9292x -<<+,即711x <<;(2)△第三边长的范围为711x <<,且第三边长为奇数,△第三边长为9,则三角形的周长为:99220cm ++=【点拨】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.20.(1)四种 (2)3m【分析】(1)根据三角形的三边关系,求出第三边的取值范围,即可求解;(2)根据第三根木棍时,花费最少,即可求解.(1)解:设第三根木棒的长度为m x ,根据三角形的三边关系可得:5353x -<<+,解得28x <<,3x =,4,5,6,共4种,一共有四种方案.(2)解:△规格为3m 的木棍价格最低,△应该选择的规格是3m .【点拨】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.21.(1)见分析 (2)见分析 (3)见分析【分析】(1)根据角平分线的画法即可画出BAC ∠的平分线AD ;(2)取BC 的中点E ,连接AE ,即可画出ABC 中BC 边上的中线AE ;(3)根据钝角三角形的高线的画法即可画出ABC 中AB 边上的高CF ,即过点C 画AB 的垂线CF 即可.(1)解:如图,AD 即为所求;(2)解:如图,中线AE 即为所求;(3)解:如图,高CF 即为所求.【点拨】本题考查了作图﹣复杂作图,三角形的角平分线、中线和高,解决本题的关键是掌握基本作图方法.22.30【分析】设654a b c k ===,可得6a k =,5b k =,4c k =,再由26a b c +-=,可得2k =,从而得到612a k ==,510,b k ==,48c k ==,即可求解. 解:设654a b c k ===, △6a k =,5b k =,4c k =,△26a b c +-=,△6586k k k +-=,△2k =,△612a k ==,510,b k ==,48c k ==,△30a b c ++=,即三角形的周长为30.【点拨】本题主要考查了求三角形的周长,根据题意得到a ,b ,c 的长值是解题的关键. 23.(1)AD 的长度为4.8cm(2)ABE 的面积是212cm (3)ACE △和ABE 的周长的差是2cm【分析】(1)由1122AB AC BC AD =再代入数值即可得到答案; (2)先求解()2116824cm 22ABCSAB AC ==⨯⨯=,再利用三角形的中线的性质可得答案;(3)利用三角形的中线的性质列式进行计算即可. (1)解:△90,BAC AD ∠=︒是边BC 上的高,△1122AB AC BC AD =, △6cm,8cm,10cm,AB AC BC ===△()4.8cm AD =,即AD 的长度为4.8cm ;(2)如图,△ABC 是直角三角形,6cm,8cm,10cm,AB AC BC ===△()2116824cm 22ABC S AB AC ==⨯⨯=. 又△AE 是边BC 的中线,△BE CE =,△ABE ACE SS =, △()2112cm 2ABE ABCS S ==. △ABE 的面积是212cm .(3)△AE 为BC 边上的中线,△BE CE =,△ACE △的周长-ABE 的周长()()862cm AC AE CE AB BE AE AC AB =++-++=-=-=, 即ACE △和ABE 的周长的差是2cm .【点拨】本题考查的是三角形的高,中线的含义,三角形面积的计算,掌握“三角形的高,中线的含义”是解本题的关键.24.(1)12S (2)14ECF S S =△,14DBE S S =△,14ADF S S =△,14DEF S S =△ 【分析】(1)根据三角形中线平分三角形面积进行求解即可;(2)根据三角形中线平分三角形面积进行求解即可.(1)解:△E 是BC 的中点, △1122AEC ABC S S S ==△△; (2)解:△F 是AC 的中点, △1124ECF ACE S S S ==△△; 同理可得111244DBE ABE ABC S S S S ===△△△; 如图所示,连接CD , 同理可得111244ADF ACD ABC S S S S ===△△△, △14DEF ABC ECF ADF BDE S S S S S S ==--=△△△△△.【点拨】本题主要考查了三角形中线的性质,熟知三角形中线平分三角形面积是解题的关键.。
浙教版七下数学期末总复习--三角形的初步认识巩固练习答案1---10题 题号 1 2 3 4 5 6 7 8 9 10 答案 C CBCACBABC11---20题11.c b a ++ 12.070 13. 080 14. 20 15. 3 1 06016. 144 AD 17. 8 18. 0105 2 19. 43 20.641x()()()()()()ASA ADE ABC AE AC DAE BAC DACDAC E C DFC AFE ∆≅∆∴=∠=∠∴∠+∠=∠+∠∴∠=∠∠=∠∴∠=∠∠=∠已知已知三角形内角和等于已知对顶角相等证明 212118032.210()()()()CDAC AB DE CD AE AC AAS AED ACD AD AD EAD CAD CAB AD AEDC B C B AED EBDE B +=∴==∴∆≅∆∴=∠=∠∴∠∠=∠∴∠=∠∠=∠∴=∴∠=∠全等三角形对应边相等公共边平分不相邻的两内角之和三角形的一个外角等于证明,,,22122AC DEB23.解:连结:AO ,BO ,CO ,DO ,∵012AOEB EAOBSSS ==, 同理:12BOFCOFCOB SSS ==,12COGDOGCOD SSS ==,12DOHAOHAODSS S ==∴ 1122ABCD S a ==阴影部分面积24.已知,在四边形ABCD 中,AD AB ⊥,CD BC ⊥,BC AB =,︒=∠120ABC , ︒=∠60MBN 。
MBN ∠绕点B 旋转,它的两边分别交AD ,CD (或它们的延长线) 于E ,F 。
()AECF EF EF F E BEFF E B B BAE SAS BAE BCF AE CF BCF BAE BC AB +=∴='∴∆≅'∆∆∆≅∆∴==∠=∠=,,120,,,90,)1(2400顺时针旋转绕着点把 AE CF EF +=的方法同样可证用图)1()2(FC EF AE +=不成立图)3(25(1)猜想PA =PF理由:∵正方形ABCD 、正方形ECGF∴ AB =BC =2,CG =FG =3∠B =∠G =90°APFP'(G)ED(B)∵PG =2∴BP =2+3-2=3=FG ,AB =PG ∴△ABC ≌△PGF∴PA =PF(2)存在,是△ABC 和△PGF ,变换过程:把△ABC 先向右平移5个单位,使AB 在GF 边上,B 与G 重合,再绕G 点逆时针旋转90度,就可与△PGF 重合.(答案不唯一)这个大正方形的面积=正方形ABCD 的面积+正方形ECGF 的面积=4+9=13.26.(本题12分)(1)AB=AC. 理由如下: ∵EC 、DB 分别平分∠AED 、∠ADE ∴∠AEC=12∠AED,∠ADB=12∠ADE ∵∠AED =∠ADE ,∴∠AEC=∠ADB 在△AEC 和△ADB 中, ∠AEC=∠ADB , AE=AD,∠A=∠A ∴△AEC ≌△ADB ∴AB=AC(2)BE=CD 且BE ⊥CD . 理由如下:∵∠EAD=∠BAC,∴∠EAB=∠DAC在△AEB 和△ADC 中,AB=AC, ∠EAB=∠DAC,AE=AD, ∴△AEB ≌△ADC ∴EB=CD∴∠AEB=∠ADC ∵∠AEB+∠DEB+∠ADE=90°∴∠ADC+∠DEB+∠ADE=90° ∵∠ADC+∠DEB+∠ADE+∠DOE=180° ∴∠DOE=90°,∴BE ⊥CD(3)四边形CEDB 的面积=212CD =18。
认识三角形
【巩固练习】
一、选择题
1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有().
A.1个B.2个C.3个D.4个
2.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为().
A.2个B.4个C.6个D.8个
3.(优质试题春•玉田县期末)如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()
A.△ABC中,AD是边BC上的高B.△ABC中,GC是边BC上的高
C.△GBC中,GC是边BC上的高D.△GBC中,CF是边BG上的高
4.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是().A.在△ABC中,AC是BC边上的高
B.在△BCD中,DE是BC边上的高
C.在△ABE中,DE是BE边上的高
D.在△ACD中,AD是CD边上的高
5.用3cm、5cm、7cm、9cm、11cm的五根木棒可组成不同的三角形的个数是().A.5个B.6个C.7个D.8个
6.给出下列图形:
其中具有稳定性的是().
A.①B.③C.②③D.②③④
7.(台湾全区)如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的
交点上,若灰色三角形面积为
21
4
平方公分,则此方格纸的面积为多少平方公分? ( )
A .11
B .12
C .13
D .14
8.(四川绵阳)王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条? ( )
A .0根
B .1根
C .2根
D .3根
二、填空题
9.若a 、b 、c 表示△ABC 的三边长,则|a -b -c |+|b -c -a |+|c -a -b |=________. 10.(优质试题•朝阳)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为 .
11.如图,在△ABC 中,D 是BC 边上的任意一点,AH ⊥BC 于H ,图中以AH 为高的三角形的个数为______个.
12.在数学活动中,小明为了求
23411112222++++ (1)
2
n +的值(结果用n 表示),设计了如图所示的几何图形.请你利用这个几何图形求23411112222++++ (1)
2
n +=________.
13.请你观察上图的变化过程,说明四条边形的四条边一定时,其面积________确定.(填“能”或“不能”)
14.如图,是用四根木棒搭成的平行四边形框架,AB =8cm ,AD =6cm ,使AB 固定,转动AD ,当∠DAB =_____时,ABCD 的面积最大,最大值是________.
三、解答题
15.(优质试题•同安区一模)已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A的度数.
16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?
17.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,
(1)求∠BAC的度数.
(2)△ABC是什么三角形.
18.如图,一个四边形木框,四边长分别为AB=8cm,BC=6cm,CD=4cm.AD=5cm,它的形状是不稳定的,求AC和BD的取值范围.
【答案与解析】
一、选择题
1. 【答案】B;
【解析】根据两边之和大于第三边:⑤⑥满足.
2. 【答案】B;
【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以
3. 【答案】B.
4. 【答案】C;
【解析】三角形高的定义.
5. 【答案】C;
【解析】从这些数据中任取三个,并且满足三角形三边关系的有7种:3,5与7、3,7与9、3,9与11、5,7与9、5,7与11、7,9与11、5,9与11.
6. 【答案】C;
【解析】均是由三角形构成的图形,具有稳定性.
7. 【答案】B ;
【解析】设每个小正方形的边长为a ,则有16a 2
-4 a ×2 a ÷2-3 a ×2 a ÷2-4 a ×a ÷2=
214,解得a 2=34
,而整个方格纸的面积为16a 2
=12(平方公分). 8. 【答案】B ; 二、填空题
9. 【答案】a b c ++;
【解析】根据三角形的三边关系可以去掉绝对值,再对原式进行化简. 10.【答案】8.
【解析】设第三边长为x ,∵两边长分别是2和3,∴3﹣2<x <3+2,即:1<x <5, ∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8. 11.【答案】6; 12.【答案】1
12n
-
; 【答案】解:如图所示,设大三角形的面积为1,然后不断地按顺序作出各个三角形的
中线,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++ (1)
2n +
表示组成面积为1的大三角形的n 个小三角形的面积之和,因此23411112222++++ (1)
2
n
+=112
n -.
13.【答案】不能;
【解析】因为四边形的高不能确定. 14.【答案】90°, 48 cm 2; 三、解答题 15.【解析】
解:根据题意,设BC 、AC 、AB 边的长度分别是a 、b 、c , 则a+b+c=12; ∵BC 为最大边, ∴a 最大, 又∵b+c >a , ∴a <6,
∵△ABC 三边长都是整数, ∴a=5,
又∵△ABC 三边长互不相等, ∴其他两边分别为3,4, ∵32+42=52,
∴△ABC 是直角三角形, ∴∠A=90°,
即∠A 的度数是90°.
16.【解析】
解:∵ BD =CD ,∴ ABD ACD S S =△△.
∴ ABD ADG ACD ADG S S S S -=-△△△△. ∴ ADG BGD S S =△△.
17.【解析】 解:(1)当高AD 在△ABC 的内部时(如图(1)).
因为∠BAD =70°,∠CAD =20°,所以∠BAC =∠BAD+∠CAD =70°+20°=90°.
当高AD 在△ABC 的外部时(如图(2)). 因为∠BAD =70°,∠CAD =20°,
所以∠BAC =∠BAD -∠CAD =70°-20°=50°.
综上可知∠BAC 的度数为90°或50°. (2)如图(1),当AD 在△ABC 的内部时,
因为∠BAC =∠BAD+∠CAD =70°+20°=90°, 所以△ABC 是直角三角形.
如图(2),当AD 在△ABC 的外部时,
因为∠BAC =∠BAD -∠CAD =70°-20°=50°, ∠ABC =90°-∠BAD =90°-70°=20°,
所以∠ACB =180°-∠ABC -∠BAC =180°-50°-20°=110°. 所以△ABC 为钝角三角形.
综上可知,△ABC 是直角三角形或钝角三角形. 18.【解析】
解:2cm <AC <9cm 3cm <BD <10cm。