有外部防雷装置的建筑物如何选择电涌保护器
- 格式:pdf
- 大小:46.25 KB
- 文档页数:5
如何快速选择电涌保护器?选择电涌保护器需要遵循防雷设计规范(GB50057-94)。
使用起来比较复杂。
这里我们推荐一些简单的办法,供大家参考。
对于一般建筑物外侧的进线柜建议选用PRD65,位于建筑物内侧的进线柜建议选用PRD40或PRD8。
如果架空线过来,建议选用PRF1(一级),PRD40(二级),PRD8(三级)。
如果是电缆过来(民建),建议选用PRD65(主配),PRD15(分配),PRD8(末端)。
高层住宅PRD65(一级),PRD8(末端)。
如何选择2P/3P的PRF1?在样本中我们可以查到1P的PRF1,它可以泄放60KA的10/350μs的雷电流, 可以泄放200KA的8/20μs的雷电流。
2P的我们需要选择2个1P的PRF1,3P的我们需要选择3个1P的PRF1。
PRF1 非常适合做首级保护,防止直击雷的袭击。
如果保护设备,我们建议在设备端还要加装一个满足Up值要求的电涌保护器。
如果首端与末端电涌保护器之间的距离过长时,建议在二者之间选用解耦器L40A,以PRF1和低残压电涌保护器的动作配合。
电涌保护器在在配电回路中起什么作用?其动作原理是什么?电涌保护器限制电网中的大气过电压(闪电雷击)不超过各种设备及配电装置能够承受的冲击耐压。
电涌器的实质为半导体压敏电阻器件,电阻大小依赖于电涌器的端电压。
当端电压小于保护器的触发电压Up时,保护器的电阻很高(大于1兆欧),只有很小的漏电流(小于1毫安)流过;当端电压(如大气过电压)达到其触发电压Up时电阻突然减小到只有几欧姆,使很大的涌流通过,在很短的时间内使得过电压突降之后又变成高阻性。
电涌器正常漏电流很小,但漏电流会随雷击次数的增加而增加。
过电压分为几种类型?是否都可以采用电涌保护器来保护?过电压可以分为:雷电引起的高频脉冲大气过电压(MHz,1至100微秒);投切变压器、电容器、电动机等电气设备引起的操作过电压(100KHz至1MHz,0.05至10毫秒);电路故障引起的工频过电压(50Hz,持续时间约0.03至1秒),为高能量长波;电涌保护器只能保护其中的大气过电压。
电源系统电涌保护器(SPD)选用(2013版)一、主要依据《建筑物电子信息系统防雷技术规范》 GB50343-2012《建筑物防雷设计规范》 GB50057-2010二、按建筑物电子信息系统的重要性和使用性质,确定本单位目前的设计的建筑物(主要为住宅)的雷电防护等级为D级。
经计算当第一级浪涌保护器保护的线路长度大于100m 时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。
三、SPD的选用原则及主要参数1、第一级SPD (主要安装在建筑物380V低压配电柜(箱)总进线处)1.1、在IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试验的电涌保护器。
主要参数需满足以下要求:波形 10/350μS最大持续运行电压Uc≥253V电压保护水平Up≤2.5KV冲击电流Iimp≥12.5KA1.2、当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。
主要参数需满足以下要求:波形 8/20μS最大持续运行电压Uc≥253V电压保护水平Up≤2.5KV标称放电电流In≥50KA1.3、过电流保护器(熔断器和断路器,优先使用熔断器),选用100A2、第二级SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。
2.1、主要参数需满足以下要求:波形 8/20μS最大持续运行电压Uc≥253V电压保护水平Up≤2KV标称放电电流In≥10KA2.2、过电流保护器(熔断器和断路器,优先使用熔断器),选用32A3、第三级SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。
3.1、主要参数需满足以下要求:波形 8/20μS最大持续运行电压Uc≥253V电压保护水平Up≤1.2KV标称放电电流In≥3KA3.2、过电流保护器(熔断器和断路器,优先使用熔断器),选用16A四、产品选用要求(需在说明中注明)选用的浪涌保护器(SPD)须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。
电涌保护器的选择过程及安装方式摘要文章简述了为防护雷击电磁脉冲(电涌)对信息系统造成干扰破坏,在设计中如何选择电涌保护器(SPD),及在选择使用电涌保护器时涉及的几个主要步骤。
关键词雷击电磁脉冲电涌电涌保护器(SPD)选择过程安装全球每年因雷电灾害造成的人员伤害、财产损失不计其数,引起火灾、爆炸、信息系统瘫痪的事故频繁发生。
因此对雷电的危害必须有充分认识,对雷电的危害种类加以区分,才能有效地防止灾害的发生。
雷电的破坏除了直接雷的破坏外,还有感应雷的破坏、雷电波侵入引起的破坏等。
------------------------对于防护直接雷的破坏我们已有比较成熟的方法。
随着社会经济和科学技术的发展,电子设备及微电子设备得到广泛的应用,我们在注意预防直接雷引起破坏的同时,还必须注意预防感应雷及雷电波侵入产生电涌引起的破坏。
电涌是微秒量级的异常大电流脉冲,它可使电子设备受到瞬态过电流 电压的破坏。
每年半导体器件的集成化都在提高,元件的间距在减小,半导体的厚度在变薄,这使得电子设备受瞬态过电流 电压破坏的可能性越来越大。
如果一个电涌导致的瞬态过电压超过一个电子设备的承受能力,那么这个设备或者被完全破坏,或者寿命大大缩短。
雷电是导致电涌最大的原因。
电涌保护器的防雷电是把因雷电感应而窜入电力线、信号传输线的高电压限制在一定的范围内,保证用电设备不被击穿。
加装电涌保护器可把电器设备两端实际承受的电压限制在允许范围内,以起到保护设备的作用。
1.4高层建筑取两种情况分析:(1)C1+C2+C3+C4+C5=1.0+2.0+1.0+1.0+1.5=6.5Nc=0.00089(2)C1+C2+C3+C4+C5=1.0+3.0+3.0+1.0+1.5=9.5Nc=0.000611.5本次工程为高层建筑物 取Nc=0.00061根据地区雷电日Td按公式(2)决定地区雷击频度NgNg=0.024Td1.3=0.024×35.11.3次 km2年(2)=2.45次 km2年式中雷电日按南京地区Td=35.1根据地区雷击频度Ng和建筑物等效接闪面积Ae按公式(3)决定建筑物年平均接闪次数N:N=KAeNg次 年(3)其中K为地形校正系数:一般情况取1;旷野孤立的建筑取2;金属屋面的砖木结构建筑物取1.7;河边、湖边、山坡下,山地中土壤电阻率较底处,底下水露头处,土山顶部,山谷风口,特别潮湿的建筑物取1.5。
电涌保护器如何选型电涌保护器,又称为“过电压保护器”或“防雷器”,是一种用于保护电子设备免受电涌过电压损坏的装置。
在电力系统、通信系统、计算机网络等领域中广泛应用。
选型合适的电涌保护器可以有效地保护设备,降低设备故障率,延长设备的使用寿命。
本文将介绍如何选型电涌保护器,帮助用户根据自身需求选择适合的产品。
1. 了解电涌保护器的基本原理和工作过程在选择适合的电涌保护器之前,首先需要了解电涌保护器的基本原理和工作过程。
电涌保护器是通过引入可控的低电阻元件,在电流超过设备的耐受能力时分流和吸收过电压的能量,从而保护设备免受过电压的侵害。
其基本原理主要有以下几点:•电涌保护器通过引入低电阻元件,如气体放电管、二阻加擦、稳压二极管等,来降低电流的过电压值,形成分流并吸收过电压的能量。
•当系统中发生电涌时,电涌保护器快速导通,吸收过电压的能量,并将其分流到地线或其他适当的接地设施上。
•在电涌保护器快速导通后,通过合适的断路器或过载保护断开电流,防止过电压继续流向设备。
2. 确定需求和目标在选择电涌保护器之前,需要确定自身需求和目标。
具体来说,需要考虑以下几个方面:•所需保护的设备类型和数量:不同类型的设备和不同数量的设备对电涌保护器的需求不同,需要根据实际情况进行选择。
•设备所处的环境和工作条件:环境和工作条件对电涌保护器的选择也有一定影响。
比如,在雷电密集地区或恶劣的工业环境中,可能需要更高级别的电涌保护器。
•预算限制:预算是选择电涌保护器时需要考虑的重要因素之一。
根据预算的限制,选择性价比较高的电涌保护器。
3. 了解电涌保护器的标准和认证在选择电涌保护器时,需要了解一些相关的标准和认证。
以下是一些常见的标准和认证:•IEC标准:国际电工委员会(IEC)发布了一系列关于电涌保护器的标准,包括IEC 61643、IEC 61633等。
这些标准规定了电涌保护器的基本要求和测试方法。
•UL认证:美国标准与测试实验室(UL)是一家国际性的认证机构,UL认证是电涌保护器行业的重要认证之一。
电涌保护器的选择方法
一、被保护负载特性
1、为了保护负载免受大气过电压的危害,必须考虑两个参数:
·被保护设备的冲击耐受电压Uchoc;
·接地系统类型和电网的最高运行电压Us.max。
2、电涌保护器的电压保护水平Up应为:
Us.max(电网) < Up(电通保护器) < Uchoc(负载)
二、根据IEC60364-4,三相电网电压为230/440V被保护设备冲击耐受电
三、现场环境特性
1、有避雷针的系统
如果建筑物已安装避雷针(或避雷针装在距离建筑物50m范围内)
·应安装最大放电电流Imax为65kA(8/20 μs波形)的进线电涌保护器。
·应在离被保护设备尽可能近的地方安装二级电涌保护器,其最大放电电流Imax为10kA(8/20 μs波形),且与进线电涌保护器级联布置。
·应在离被保护设备尽可能近的地方安装三级电涌保护器,其最大放电电流Imax为10kA(8/20 μs波形),且与进线电涌保护器级联布置。
四、依据接地系统类型选择
Uo:相线与中性线间电压(230/240C)
共模保护(MC):指的是相线对地和中性线对地的保护
差模保护(MD):指的是相线与中性线间的保护,对TT系统和TNS系统是必须的。
·断路器的分断能力必须大于该处最大短路电流
·电涌保护器每极都必须设置保护:
例如:1P+N的电涌保护器必须用2级的断路器保护。
防雷工程中电涌保护器(SPD)的选用分析摘要:现阶段,高集成度的电子信息系统为人类的发展带来了巨大的便利,但是由于闪电过电压与电网的瞬态过电压及操作过电压等因素,给电涌保护器的安全工作带来了很大的威胁。
因此,研究防雷工程中电涌保护器(SPD)的选用具有重要意义。
下面本文就对此展开探讨。
关键词:防雷工程;电涌保护器(SPD);选用1 防雷工程的重要价值1.1 有助于减小雷电对电气设备产生的影响随着工业进程的加快,对电力的需求越来越多,由于外网的电能不能直接使用,需要供配电,所以电力供配电也比较多。
同时,对于电力系统的雷电防护难度也在不断增加,通过防雷接地技术的合理设计,可以在一定程度上减少雷电损害对整体电力系统的影响,并避免雷电损害对相关人员的生命安全和电力设备的运行带来的威胁。
所以,在电气设计及安装过程中,采用合适的防雷接地技术,可以更好地控制雷电损害所造成的影响,对电力系统产生更优异的保护作用,确保供配电设备能够更安全、平稳地发挥作用。
1.2 有助于保障电气系统运行的稳定性在进行电气工程的时候,会使用到了多种电气设备,随着新项目的建成,电子设备种类也变得更加繁多,这就造成了对电子信息系统的管理要求更高,也表现出了一定的复杂性。
此外,在电子信息系统中,对系统接地方式的选择,可以确保电力输送的具体效果和质量,从而推动电力系统和相关设备更加长期、稳定的发展,可以提供更加稳定的电力资源。
1.3 保护人员及财产安全在防雷工程施工过程中,如何进行防雷工作是关键问题,如果将闪电所产生的强电带到了地下,这就涉及到了接地的相关措施,需要根据具体工程中的实际情况及时处理,具体到电子设备安装、防雷接地技术的合理运用。
用正确的操作保障生命健康和财产安全。
施工人员的技术、先进的设备在电子设备安装中日益凸显其重要性,特别是在电子工程结构形式多元化的时代,对于电子工程的安装产生了更大的难度,对施工技术人员提出了更多的要求,所以电子设备要重视技术人才的培养,针对防雷技术进行专项研究,将雷击事故减小到最低。
建筑物电子信息系统防雷5 4浪涌保护器的选择5.4浪涌保护器的选择5.4.1室外进、出电子信息系统机房的电源线路不宜采用架空线路。
5.4.2电子信息系统设备由TN交流配电系统供电时,从建筑物内总配电柜(箱)开始引出的配电线路必须采用TN-S系统的接地形式。
5.4.3电源线路浪涌保护器的选择应符合下列规定:1配电系统中设备的耐冲击电压额定值U w可按表5.4.3-1规定选用。
表5.4.3-1220V/380V三相配电系统中各种设备耐冲击电压额定值U w2浪涌保护器的最大持续工作电压U c不应低于表5.4.3-2规定的值。
表5.4.3-2浪涌保护器的最小U c值注:1标有*的值是故障下最坏的情况,所以不需计及15%的允许误差;2U0是低压系统相线对中性线的标称电压,即相电压220V;3此表适用于符合现行国家标准《低压电涌保护器(SPD)第1部分:低压配电系统的电涌保护器性能要求和试验方法》GB18802.1的浪涌保护器产品。
3进入建筑物的交流供电线路,在线路的总配电箱等LPZ0A或LPZ0B与LPZ1区交界处,应设置Ⅰ类试验的浪涌保护器或Ⅱ类试验的浪涌保护器作为第一级保护;在配电线路分配电箱、电子设备机房配电箱等后续防护区交界处,可设置Ⅱ类或Ⅲ类试验的浪涌保护器作为后级保护;特殊重要的电子信息设备电源端口可安装Ⅱ类或Ⅲ类试验的浪涌保护器作为精细保护(图5.4.3-1)。
使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源线路浪涌保护器。
4浪涌保护器设置级数应综合考虑保护距离、浪涌保护器连接导线长度、被保护设备耐冲击电压额定值U w等因素。
各级浪涌保护器应能承受在安装点上预计的放电电流,其有效保护水平U p/f应小于相应类别设备的U w。
5LPZ0和LPZ1界面处每条电源线路的浪涌保护器的冲击电流I imp,当采用非屏蔽线缆时按公式(5.4.3-1)估算确定;当采用屏蔽线缆时按公式(5.4.3-2)估算确定;当无法计算确定时应取I imp 大于或等于12.5kA。
99D562《建筑物防雷设施安装》图集电涌防护器SPD在工程中选用的说明4—05页当有重要的电子设备安装于建筑物内时,应在电源进线处和电子设备供电处根据设备耐过压的能力装设多级电涌保护器SPD。
由于建筑物内供电线路在各处的电力装置耐受雷电冲击的能力分成多级:总配电柜处为6KV、分配电柜处是4KV、机房配电盘处或电子设备是1.5KV或0.5KV,就要求供电线路上的电涌防护器SPD的冲击通流容量、限制电压等应适应各级的要求,从而保护电气设备、电子设备免遭过电压的破坏。
当10KV电力变压器设置在建筑物内或其附近时,建筑物由多种电子系统的供电方式,通常是采用TN-S型体制供电,属于接零保护的三相五线制,中性线N与保护地线是严格分开的,N线进入建筑物严禁与楼内的接地系统电气连通,而交流保护地线PE与电气、电子设备的金属外壳相连接。
SPD-BC-1为该系统第一级电涌防护器,要求冲击通流容量要大于40KA,安装在总配电柜进线端。
SPD-BC-2 为第二级交流电涌防护器,安装在分配电柜进线端。
SPD-BC-3 为第三级交流电涌防护器,单柜串联安装,将雷电过电压数值降低到设备可以承受的水平。
4—06页信息系统供电,当供电变压器不在楼内,属区域供电时,供电方式采用TN-C-S 供电体制,如局部三相五线制,PE线在分配电柜处由PEN线分出。
SPD-BC-1为第一级电源线过电压防护器,通流量大于40KA。
SPD-BC-2为第二级电源线过电压防护器,通流量20KA即可。
SPD-BC-3为单相串接式电源线过电压防护器,作为第三级防护。
通过三级过电压保护器后,雷电过电压在到达设备处,能达到其安全耐冲击水平内。
4—07供电方式为TT系统,SPD-BC-1是总配电柜处的第一级电涌防护器。
SPD-A是10KV网络为接地系统时,N线经火花间隙SPD-A与地相接。
需要说明的是我国一些城市间10KV网络已开始采用小电阻接地的接地系统,这种网络的接地故障电流不是一、二十安的电容电流而是几百上千安的大故障电流,这将使低压系统对地带有一、二千伏的故障电压,此故障电压持续时间约0.5S至1S(秒),此暂态对地过电压在TN系统内可引起人身电击危险,在TT系统到可能在绝缘老化的设备和线路内触发电气短路事故,它在电涌防护装置中则可将压敏电阻SPD-BC-1烧坏而造成持久性对地短路,因压敏电阻的热容量只能承受以μS计的瞬态电能,不能承受以ms计的暂态过电压和暂态过电流,因此,当10KV网络为接地系统时,必须采用SPD-A,中相线经压敏电阻与N线相接,而N线又经间隙与地相接,可避免被10KV网络接地故障引起的对地工频暂态过电压将压敏电阻SPD-BC-1烧坏的事故。
避雷器(浪涌保护器)的设计与选择摘要目前,智能电子设备广泛应用于日常生产生活中,由于智能电子设备自身耐过电压的水平较低,雷电流电磁脉冲引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。
为了加强建(构)筑物内部电子设备的雷电防护,正确设计选择安装避雷器(浪涌保护器),有效保护低压设备迫在眉睫。
关键词避雷器(浪涌保护器);设计;安装电子设备感应灵敏,且自身耐过电压的水平较低,雷闪期间,雷电流脉冲波会引着电源线、信号线、网线等窜入室内,危害仪器设备,给企业财产、安全生产造成了一定的损失。
2010年8月2日,中卫香山机场遭雷击,雷电流脉冲波引着电源线窜入室内,烧坏了航站楼内德国进口的电子设备主板,造成直接经济损失20多万元;2007年,中卫长河化工厂遭雷电感应袭击,配电室2个空气开关烧坏,直接经济损失2万多元。
正确设计选择安装避雷器(浪涌保护器),有效保护耐过电压水平较低且感应灵敏的电子设备,对企业安全生产、防雷减灾意义重大。
1浪涌保护器的参数浪涌保护器常用的参数包括:标准电压Un、额定电压Uc、额定放电电流Isn、最大放电电流Imax、电压保护级别Up:、响应时间Ta、数据传输速率Vs、插入损耗Ae:、回波损耗Ar。
2浪源电涌保护器选型《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:“电涌保护器必须能承受通过它们的雷电流,并应符合两个要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流”。
2.1最大放电电流按照《建筑物防雷设计规范》GB50057-94(2000年版)相关条款:“全部雷电流的50%流入建筑物的防雷装置,另外50%流入建筑物的各种外来导电物、电力线、通信线、网线等设施”。
图1进入建筑物各种设施的雷电流分配图雷电波进入建筑内电力线、信息线、金属管道等,总配电间的低配供电线雷电流的分流,如表1所示。
2.2电压保护水平Up选择合适的最大放电电流固然重要,但电涌保护器的保护水平也不能忽略。