matlab 微分方程组的解法
- 格式:ppt
- 大小:1.87 MB
- 文档页数:31
matlab求解常微分⽅程本⽂主要介绍matlab中求解常微分⽅程(组)的dsolve和ode系列函数,并通过例⼦加深读者的理解。
⼀、符号介绍D: 微分符号;D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。
⼆、函数功能介绍及例程1、dsolve 函数dsolve函数⽤于求常微分⽅程组的精确解,也称为常微分⽅程的符号解。
如果没有初始条件或边界条件,则求出通解;如果有,则求出特解。
1)函数格式Y = dsolve(‘eq1,eq2,…’ , ’cond1,cond2,…’ , ’Name’)其中,‘eq1,eq2,…’:表⽰微分⽅程或微分⽅程组;’cond1,cond2,…’:表⽰初始条件或边界条件;‘Name’:表⽰变量。
没有指定变量时,matlab默认的变量为t;2)例程例1.1(dsolve 求解微分⽅程)求解微分⽅程:dsolve('Dy=3*x^2','x')例1.2(加上初始条件)求解微分⽅程:例2(dsolve 求解微分⽅程组)求解微分⽅程组:由于x,y均为t的导数,所以不需要在末尾添加’t’。
2、ode函数在上⽂中我们介绍了dsolve函数。
但有⼤量的常微分⽅程,虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解。
ode是Matlab专门⽤于解微分⽅程的功能函数。
该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。
不同类型有着不同的求解器,具体说明如下图。
其中,ode45求解器属于变步长的⼀种,采⽤Runge-Kutta算法;其他采⽤相同算法的变步长求解器还有ode23。
ode45表⽰采⽤四阶-五阶Runge-Kutta算法,它⽤4阶⽅法提供候选解,5阶⽅法控制误差,是⼀种⾃适应步长(变步长)的常微分⽅程数值解法,其整体截断误差为(Δx)^5。
解决的是Nonstiff(⾮刚性)常微分⽅程。
matlab dsolve 微分方程组【实用版】目录1.MATLAB 中的 dsolve 函数2.微分方程组的求解3.使用 dsolve 求解微分方程组的实例正文一、MATLAB 中的 dsolve 函数MATLAB 是一种广泛使用的数学软件,提供了各种数学运算和分析功能。
在 MATLAB 中,dsolve 函数可以用于求解微分方程。
该函数可以解决一类常微分方程组,使得用户可以方便地解决复杂的微分方程问题。
二、微分方程组的求解微分方程组是数学中的一个重要概念,它描述了多个变量之间的变化关系。
在实际问题中,微分方程组可以用于描述物理、生物、经济等各个领域的问题。
解决微分方程组,可以得到变量之间的变化规律,从而为实际问题的解决提供理论依据。
求解微分方程组的方法有很多,如数值法、符号法等。
在 MATLAB 中,dsolve 函数提供了一种符号法求解微分方程组的方法。
这种方法可以方便地处理含有符号的微分方程组,并且可以得到解析解。
三、使用 dsolve 求解微分方程组的实例下面我们通过一个实例,来说明如何使用 dsolve 函数求解微分方程组。
假设有一个二阶常微分方程组:```dx/dt = x + ydy/dt = -x + y```我们可以使用 dsolve 函数求解该方程组。
在 MATLAB 中,输入以下命令:```matlabt = 0:1:10; % 定义时间区间x0 = 1; % 定义初始条件 x 的值y0 = 2; % 定义初始条件 y 的值% 使用 dsolve 函数求解微分方程组[~, x, y] = dsolve("dx/dt = x + y", "dy/dt = -x + y", t, [x0, y0]);```运行以上命令,可以得到方程组的解析解。
在 MATLAB 中,结果以符号形式显示,如需将其转换为数值形式,可以使用以下命令:```matlabx_num = solve(t, x);y_num = solve(t, y);```通过以上命令,我们可以得到微分方程组的数值解,从而为实际问题的解决提供理论依据。
matlab求解常微分方程组常微分方程组是数学中的一个重要分支,它描述了多个变量随时间变化的关系。
在实际应用中,常微分方程组经常被用来描述物理、化学、生物等领域中的动态系统。
本文将介绍如何使用MATLAB求解常微分方程组。
MATLAB是一种强大的数学软件,它提供了许多工具和函数来求解常微分方程组。
在MATLAB中,我们可以使用ode45函数来求解常微分方程组。
ode45函数是一种常用的数值求解器,它使用龙格-库塔方法来求解常微分方程组。
我们需要定义常微分方程组。
常微分方程组通常采用向量形式表示,例如:dy/dt = f(t,y)其中,y是一个向量,f(t,y)是一个向量函数。
在MATLAB中,我们可以使用匿名函数来定义f(t,y)。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2我们可以定义f(t,y)为:f = @(t,y) [-y(1) + 2*y(2); -2*y(1) + 3*y(2)];接下来,我们需要指定初值条件。
初值条件是指在t=0时,y的值。
在MATLAB中,我们可以使用一个向量来表示初值条件。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2初值条件为:y(0) = [1; 0]我们可以定义初值条件为:y0 = [1; 0];现在,我们可以使用ode45函数来求解常微分方程组。
ode45函数的语法如下:[t,y] = ode45(f,tspan,y0)其中,f是一个函数句柄,tspan是一个包含起始时间和结束时间的向量,y0是一个包含初值条件的向量。
ode45函数将返回一个包含时间和解向量的矩阵。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2初值条件为:y(0) = [1; 0]时间范围为0到10秒,我们可以使用以下代码来求解:f = @(t,y) [-y(1) + 2*y(2); -2*y(1) + 3*y(2)];tspan = [0 10];y0 = [1; 0];[t,y] = ode45(f,tspan,y0);现在,我们可以绘制解向量随时间变化的图像。
用matlab 求解常微分方程在MATLAB 中,由函数dsolve ()解决常微分方程(组)的求解问题,其具体格式如下:r = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v')'eq1,eq2,...'为微分方程或微分方程组,'cond1,cond2,...',是初始条件或边界条件,'v'是独立变量,默认的独立变量是't'。
函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解。
例1:求解常微分方程1dy dx x y =+的MATLAB 程序为:dsolve('Dy=1/(x+y)','x'),注意,系统缺省的自变量为t ,因此这里要把自变量写明。
其中:Y=lambertw(X)表示函数关系Y*exp(Y)=X 。
例2:求解常微分方程的MATLAB 程序为:2'''0yy y −=Y2=dsolve('y*D2y-Dy^2=0','x')Y2=dsolve('D2y*y-Dy^2=0','x')我们看到有两个解,其中一个是常数0。
例3:求常微分方程组253ttdxx y edtdyx y edt⎧++=⎪⎪⎨⎪−−=⎪⎩通解的MATLAB程序为:[X,Y]=dsolve('Dx+5*x+y=exp(t),Dy-x-3*y=exp(2*t)','t')例4:求常微分方程组2210cos,24,tttdx dyx t xdt dtdx dyy e ydt dt=−=⎧+−==⎪⎪⎨⎪++==⎪⎩2通解的MATLAB程序为:[X,Y]=dsolve('Dx+2*x-Dy=10*cos(t),Dx+Dy+2*y=4*exp(-2*t)','x(0)=2,y(0)=0','t')以上这些都是常微分方程的精确解法,也称为常微分方程的符号解。
Matlab学习——求解微分⽅程(组)介绍:1.在 Matlab 中,⽤⼤写字母 D 表⽰导数,Dy 表⽰ y 关于⾃变量的⼀阶导数,D2y 表⽰ y 关于⾃变量的⼆阶导数,依此类推.函数 dsolve ⽤来解决常微分⽅程(组)的求解问题,调⽤格式为X=dsolve(‘eqn1’,’eqn2’,…)如果没有初始条件,则求出通解,如果有初始条件,则求出特解系统缺省的⾃变量为 t。
2.函数 dsolve 求解的是常微分⽅程的精确解法,也称为常微分⽅程的符号解.但是,有⼤量的常微分⽅程虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解,在求常微分⽅程数值解⽅⾯,MATLAB 具有丰富的函数,将其统称为 solver,其⼀般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令 ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i 之⼀.(2)odefun 是显⽰微分⽅程y ' = f (t , y) 在积分区间 tspan = [t 0 , t f ] 上从t0 到t f⽤初始条件 y0求解.(3)如果要获得微分⽅程问题在其他指定时间点t 0 , t1 , t 2 , , t f上的解,则令tspan = [t 0 , t1 , t 2 , t f ](要求是单调的).(4)因为没有⼀种算法可以有效的解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 solver,对于不同的 ODE 问题,采⽤不同的 solver3.在 matlab 命令窗⼝、程序或函数中创建局部函数时,可⽤内联函数 inline,inline 函数形式相当于编写 M 函数⽂件,但不需编写 M-⽂件就可以描述出某种数学关系.调⽤ inline 函数,只能由⼀个 matlab 表达式组成,并且只能返回⼀个变量,不允许[u,v]这种向量形式.因⽽,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应⽤ inline 函数,inline 函数的⼀般形式为:FunctionName=inline(‘函数内容’, ‘所有⾃变量列表’)例如:(求解 F(x)=x^2*cos(a*x)-b ,a,b 是标量;x 是向量)在命令窗⼝输⼊:Fofx=inline('x.^2.*cos(a.*x)-b','x','a','b');g = Fofx([pi/3 pi/3.5],4,1)系统输出为:g=-1.5483 -1.7259注意:由于使⽤内联对象函数 inline 不需要另外建⽴ m ⽂件,所有使⽤⽐较⽅便,另外在使⽤ ode45 函数的时候,定义函数往往需要编辑⼀个 m ⽂件来单独定义,这样不便于管理⽂件,这⾥可以使⽤ inline 来定义函数。
一、概述微分方程组是描述自然界中众多物理现象的重要数学工具,它在工程、物理学、生物学等领域有着广泛的应用。
Matlab作为一种高效的科学计算软件,能够方便地对微分方程组进行求解和分析。
在求解微分方程组时,拉普拉斯变换是一种非常重要的方法,它可以将微分方程转化为代数方程,从而简化求解的过程。
本文将重点探讨利用Matlab对微分方程组进行拉普拉斯变换后的求解过程。
二、微分方程组的拉普拉斯变换1. 拉普拉斯变换的定义拉普拉斯变换是一种用来处理微分方程的常用方法。
对于一个函数f(t),它的拉普拉斯变换定义如下:L{f(t)} = F(s) = ∫[0,∞]e^(-st)f(t)dt其中,s为复变量,t为实变量。
通过拉普拉斯变换,可以将微分方程组转化为代数方程组,从而利用代数方法进行求解。
2. 微分方程组的拉普拉斯变换考虑一个n阶线性微分方程组:a_n(t)y^n + a_(n-1)(t)y^(n-1) + ... + a_1(t)y' + a_0(t)y = f(t)通过拉普拉斯变换,将上述微分方程组转化为代数方程组:A_n(s)Y(s) + A_(n-1)(s)Y(s) + ... + A_1(s)Y(s) + A_0(s)Y(s) = F(s)其中,Y(s)和F(s)分别为y(t)和f(t)的拉普拉斯变换,A_n(s)等为对应的系数的拉普拉斯变换。
三、Matlab求解拉普拉斯变换后的微分方程组1. 预处理在利用Matlab求解微分方程组之前,需要对微分方程组进行拉普拉斯变换。
假设有一个简单的n阶线性微分方程组:a_n(t)y^n + a_(n-1)(t)y^(n-1) + ... + a_1(t)y' + a_0(t)y = f(t)通过拉普拉斯变换,可以得到:A_n(s)Y(s) + A_(n-1)(s)Y(s) + ... + A_1(s)Y(s) + A_0(s)Y(s) = F(s)将上述代数方程组输入Matlab中进行求解。