PLC与变频器控制的自动恒压供水系统
- 格式:docx
- 大小:69.36 KB
- 文档页数:2
plc恒压供水一拖一工变频控制要求PLC恒压供水一拖一工变频控制要求PLC恒压供水一拖一工变频控制系统是一种基于可编程逻辑控制器(PLC)和变频器的智能供水系统,它能够实现对供水系统的恒压控制和多个水泵的自动切换。
本文将介绍该系统的基本原理、工作流程以及相关要求。
一、基本原理PLC恒压供水一拖一工变频控制系统的基本原理是通过PLC控制器和变频器实现对供水系统的智能控制。
PLC控制器作为系统的核心,通过与传感器和执行器的连接,获取供水系统的实时参数,并根据预设的控制逻辑进行处理,最终输出控制信号给变频器,实现对水泵的启停和转速调节。
二、工作流程1. 参数采集:PLC控制器通过与压力传感器、流量传感器等连接,实时采集供水系统的压力、流量等参数。
2. 控制逻辑处理:PLC控制器根据用户预设的压力设定值和控制策略,对采集到的参数进行处理,比较实际压力与设定值之间的差异,确定控制策略。
3. 控制信号输出:根据控制策略,PLC控制器输出相应的控制信号给变频器,控制水泵的启停和转速。
4. 水泵控制:变频器接收到PLC控制器的信号后,控制水泵的启停和转速。
当实际压力低于设定值时,变频器启动水泵,并逐渐提高转速;当实际压力达到设定值时,变频器停止水泵或降低转速。
5. 系统监控:PLC控制器实时监测供水系统的运行状态,如压力变化、水泵故障等,并根据设定的报警条件进行报警处理。
三、系统要求1. 系统可靠性:PLC恒压供水一拖一工变频控制系统应具备高可靠性,能够稳定运行并保证供水系统的正常工作。
2. 系统稳定性:系统应具备良好的稳定性,能够快速响应用户需求并实现恒压供水。
3. 控制精度:系统应具备较高的控制精度,能够准确控制供水系统的压力,并确保在设定范围内波动。
4. 自动切换功能:系统应具备一拖一的自动切换功能,能够实现多个水泵的自动切换运行,确保供水系统的连续供水。
5. 报警功能:系统应具备完善的报警功能,能够监测供水系统的异常情况,并及时发出报警信号,提醒操作人员进行处理。
PLC及变频器在多台泵⾃动恒压供⽔系统中的应⽤⽂章编号:1009—0207(2001)02—067-03P LC 及变频器在多台泵⾃动恒压供⽔系统中的应⽤3邓 巍Ξ(新疆⼯业⾼等专科学校 机电系,乌鲁⽊齐830000)摘 要:本⽂介绍了⽤ABB 公司⽣产的ACS -400型变频器和⽇本三菱公司⽣产的F1-30型⼩型P LC 所设计的⽆塔恒压供⽔系统,其中包括⽅案的确定、硬件设计及软件设计等。
此系统可合理解决三台泵在供⽔⾼、低峰时泵的切换及压⼒的稳定,可确保管⽹平稳压⼒波动<2%,泵切换时压⼒波动10%。
关键词:变频器;P LC ;恒压控制中图分类号:TP202 ⽂献标识码:A 随着异步电机变频调速技术的不断发展,恒压供⽔系统被⼴泛地应⽤到⼯业、农业、科研和民⽤等领域的各个⽅⾯。
不仅取得了显著的节能效果,还极⼤地改善了环境污染。
恒压供⽔的⽅法很多,变频器驱动⽔泵向管路供⽔,由⽔压传感器反馈信号与⽔压设定值在变频器中构成闭环,以保持⽔泵供⽔压⼒恒定的⽅法是⽬前性能最好的。
由于⽤变频器驱动的交流异步电动机能够快速平稳地进⾏调速,使得供⽔系统不仅能够精确地保持设定的⽔压值,⽽且在启停供⽔系统时没有冲击。
与其它⽅法相⽐,除了节能、卫⽣、安全、静⾳、调整⽅便、维修量⼩等特点外,还适于多系统集中控制或是实现⾃动化调节。
1 电⽓控制⽅案的确定1.1 以我校供⽔情况为例学⽣⽤⽔量波动范围较⼤,早、中、晚为⽤⽔⾼峰,上课时间基本不⽤⽔,在泵房设计中考虑⽤⽔量⼩时电机的效率,⽤⽔量⼤时压⼒要稳定,且照顾电机运⾏时间的均稳性,故采⽤三台电机泵各11K W 完成供⽔,要求系统⽆论是⽤⽔⾼峰,还是⽤⽔低⾕,压⼒都要稳定在误差10%范围内,⽽且三台电机投⼊与切换时压⼒不应超过规定范围。
管⽹⽔泵启动电流都不能有冲击。
电机、变频器、P LC 、传感器如有故障,声光报警。
综合系统供⽔质量及低成本要求,选⽤ABB 公司ACS -400型变频器⼀台(内含PI D 调节器),以确保每台电机均可以⾃动软启动及稳态时的压⼒控制。
plc恒压供水一拖一工变频控制要求PLC恒压供水一拖一工变频控制要求是指使用可编程控制器(PLC)实现恒压供水系统中的一拖一工况控制,并通过变频控制达到恒压供水的要求。
下面将详细介绍PLC恒压供水一拖一工变频控制的要求。
一、恒压供水系统概述恒压供水系统是指在供水过程中,根据用户需求自动调节泵运行状态和水流量,保持出水压力恒定。
这样可以有效地解决水压不稳定、压力波动大等问题,提高供水效果和用户体验。
二、一拖一工况控制1. PLC控制方式:使用PLC作为主控制设备,完成控制逻辑的编排和运行,具有高可靠性和灵活性。
2. 运行模式:恒压供水系统采用一拖一工况控制,即根据不同的用水情况,在需求发生变化时能够自动切换到恰当的工况,并调整泵的运行状态。
3. 控制策略:通过监测出水压力信号,采用反馈控制算法,对泵的转速、负载等进行调节,以保持出水压力恒定。
4. 排水处理:当水池水位过高或过低时,PLC会自动控制排水泵进行排水处理,保证水池水位处于正常范围内。
三、变频控制1. 变频器选型:根据泵的负荷情况和供水要求,选择适合的变频器。
变频器具有调整电机转速和输出频率的功能,可以有效控制泵的输出流量,并减少能耗。
2. 变频器参数设置:设置变频器的工作参数,如最大输出频率、起动频率、运行频率等,以满足实际工况要求。
3. 变频器运行模式:设置变频器的运行模式,如V/F控制模式、矢量控制模式等,根据实际情况选择最合适的模式。
4. 变频器保护功能:设置变频器的过流保护、过载保护、过压保护等功能,以保证系统的安全运行。
总结:使用PLC恒压供水一拖一工变频控制,能够提高供水系统的可靠性和稳定性,满足用户对恒压供水的需求。
同时,通过变频器的控制,可实现对泵的输出流量的调节和能耗的降低,进一步提高系统的运行效率。
该系统具有应用广泛、控制精度高等优点,在实际工程中有着很重要的应用价值。
基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。
PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。
下面将介绍一个基于PLC变频恒压供水控制系统的设计。
设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。
2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。
3.实现故障自动检测和报警,提高供水系统的可靠性。
系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。
2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。
3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。
4.水泵:使用多台水泵来实现供水。
系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。
2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。
3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。
当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。
4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。
系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。
2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。
3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。
总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。
摘PLC+变频器的一拖四恒压供水控制系统应用要:本文介绍了变频器在某生活小区双恒压供水系统中的应用情况。
1.引言本文是针对某生活小区实际情况,结合用户生活/消防双恒压供水控制的要求,我们进行改造的一些心得。
现将其中的改造情况介绍如下。
作为变频器在供水控制应用中的案例系列篇。
2.用户现场情况如图1所示,市网自来水用高低水位控制器EQ来控制注水阀YV1,自动把水注满储水水池,只要水位低于高水位,则自动向水箱注水。
水池的高低水位信号也直接送给PLC,作为水位报警。
为了保持供水的连续性,水位上、下限传感器高低距离较少。
生活用水和消防用水共用四台泵,平时电磁阀YV2处于失电状态,关闭消防管网,四台泵根据生活用水的多少,按一定的控制逻辑运行,维持生活用水低恒压。
当有火灾发生时,电磁阀YV2得电,关闭生活用水管网,四台泵供消防用水使用,并维持消防用水的高恒压值。
火灾结束后,四台泵改为生活供水使用。
图1 生活/消防双恒压供水系统示意图1现场设备参数如下:型号65-315(I)A3流量50m/h扬程90m效率56%转速2900r/min电机功率22KW水泵台数4台3.系统控制要求用户对四泵生活/消防双恒压供水系统的基本要求是:⑴生活供水时,系统低恒压运行,消防供水时高恒压值运行。
⑵四台泵根据恒压的需要,采取先开先停的原则接入和退出。
⑶在用水量小的情况下,如果一台泵连续运行时间超过1天,则要切换下一台泵,系统具有倒泵功能,避免一台泵工作时间过长。
⑷四台泵在启动时都要有软启动功能。
⑸要有完善的报警功能。
⑹对泵的操作要有手动控制功能;手动只在应急或检修时使用。
4设备选型(1)JD-BP32-XF型供水变频器JD-BP32-XF型是山东新电子公司推出的专用于供水变频器,使用空间电压矢量控制技术适用于各类自控场合。
在恒压供水中可以采用这类变频器。
JD-BP32-XF型变频器除具有变频器的一般特性外,还具有以下特性:水压高、水压低输出接口,变频器运行上限、下限频率(可以任意设定),可以方便地进行双压力控制,内置智能PI控制,以上功能非常适用于供水控制要求。
变频器与plc恒压供水工作原理
恒压供水系统是用于保持水压稳定的自动化系统,可以根据水压需求自动调节
水泵的运行速度和水量。
变频器和PLC(可编程逻辑控制器)是恒压供水系统中
重要的组成部分,它们协同工作来实现恒压供水。
首先,让我们了解变频器的工作原理。
变频器是一种电力调节设备,可以通过
调节电源的频率来控制电机的转速。
在恒压供水系统中,变频器用来控制水泵的转速,根据实时水压的反馈信号调整电机的运行频率。
当水压低于设定值时,变频器将增加电机的转速以增加水的流量;当水压高于设定值时,变频器将降低电机的转速以减少水的流量,从而保持水压稳定。
其次,PLC是恒压供水系统的主控制器。
它通过读取传感器收集的水压信号,
以及根据预设的控制算法来控制变频器的运行。
PLC可以接收来自传感器的信号,并根据这些信号做出决策,例如控制变频器调整电机的转速,或者打开/关闭阀门
来调节水的流量。
PLC可以通过触摸屏或计算机进行编程和监控,以便操作人员
可以实时监测系统的运行状态并进行必要的调整。
综上所述,变频器和PLC通过协同工作来实现恒压供水。
变频器控制水泵的
转速,根据实时水压信号对电机的运行频率进行调整;而PLC则是整个系统的主
控制器,读取传感器信号并根据预设的控制算法来控制变频器的运行。
这种自动化控制系统可以确保恒定的水压,提高供水系统的运行效率和稳定性。
总之,变频器和PLC是恒压供水系统中关键的组成部分,它们的工作原理是
通过协同工作来实现恒压供水。
这种自动化控制系统能够有效地维持水压稳定,提高供水系统的性能和运行效率。
PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。
PLC(可编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。
1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装位置和水泵的布置,以确保系统的整体效果最优。
通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。
2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网压力的变化,常用的传感器包括压力传感器和流量传感器。
这些传感器需要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。
3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选择合适的变频器,并进行参数设置。
在供水系统中,变频器的作用是通过控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。
4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制逻辑的设计。
程序中需要包括对传感器数据的采集和处理、对变频器的频率设置和控制、对水泵的启停控制等功能。
5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试与优化。
通过实际操作和测试,确定系统的参数设置和控制策略是否满足恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳定性。
6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。
例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。
总而言之,PLC控制变频器的恒压供水系统设计是一项复杂而重要的工作,它能够实现供水系统的自动化控制,提高系统的稳定性和能效。
要设计一个好的恒压供水系统,需要充分了解供水系统的要求和实际情况,并合理选择和配置设备,进行有效的控制策略设计和系统优化。
《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。
恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。
本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。
二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。
其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。
三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。
当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。
此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。
四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。
2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。
3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。
4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。
5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。
五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。
2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。
3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。
PID PLC1.前言恒压供水系统是目前市场上运用最为广泛的供水系统之一。
变频器PID 控制系统是整个恒压供水系统的控制核心。
通过PLC (可编程逻辑控制器)对整个系统进行可靠的控制,不仅提高了水压的稳定性,同时也提高了系统运行效率,降低了能源消耗。
2. 恒压供水系统概述恒压供水系统是指在不同供水流率和负荷状态下,系统所维持的压力都是恒定的。
相比较其他常见的供水系统,恒压供水系统可以满足一些特殊的供水需求,比如公寓、办公楼、酒店、医院等高层建筑物的供水。
恒压供水系统一般可以分为两类:一类是调速泵房恒压供水系统,另一类是变频器恒压供水系统。
调速泵房恒压供水系统采用调速泵进行水压控制,系统通过加减泵数来维持恒定的工作水压。
这种方式适合较小规模的恒压供水系统。
变频器恒压供水系统则采用变频器控制泵的转速,通过控制水泵的转速来保持一定的供水压力。
对于大规模的高楼、大型公共建筑物等供水系统,采用变频器恒压供水系统更为常见。
3. 变频器PID 功能PID 控制是一种最广泛应用的控制方法之一,在变频器控制系统中,同样可以采用PID 控制算法来控制水泵的输出,实现恒压供水系统的控制。
PID 控制器的核心算法为比例(P)、积分(I)和微分(D)三部分,分别调节系统的稳定性、抗干扰性和响应速度。
在恒压供水系统中,通过调整PID 控制器的参数,可以实现快速反馈,实时调整水泵的输出,保持系统稳定性。
4. PLC 控制恒压供水系统PLC 是一种专门用于工业自动化的可编程电子控制器。
PLC 芯片可以通过编程实现对数字信号的处理、控制逻辑、数据存储和通信等功能。
在恒压供水系统中,PLC 的主要任务是控制变频器PID 控制器的输入和输出,采集水泵和供水系统的运行数据。
PLC 控制系统的核心模块为CPU (核心处理单元)和I/O 模块(输入输出模块)。
对于PLC 恒压供水系统的实现,可以通过编写PLC 程序来实现PID 控制器的参数调整、水泵的开关控制、水压监测和数据传输等任务。
变频器与PLC恒压供水系统的设计与应用本系统是由三台水泵供水,它分别由电动机M1、M2、M3进行拖动。
而三台电动机又分别由三个变频接触器KM1、KM3、KM5和三个工频接触器KM2、KM4、KM6控制如图1。
每一台电动机都是先变频低速启动,然后根据供水的需要,由低速向高速逐渐增高。
当达到最高速时,若供水量还是不足,则转变成工频全速运行。
变频器工作时速度的转换及变频与工频的切换,由供水网远传压力表W2中心触头CCI与设定电位器W1—— VCI比较,变频器输出Y1或Y2到PLC的X12或X13经100秒识别进行相应切换。
2 恒压供水的控制方法本恒压供水系统采用变频器与PLC共同控制,具体实现如下。
首先系统通过供水网远传压力表W2中心点电压变化传到变频器CCI端和预设压力的电压VCI比较从变频器Y1或Y2输出到PLC 的X12或X13,进行加减乘除逻辑运于闲置状态。
系统工作时二台运行,一台备用。
在此情况下,运行与备用的水泵每星期算后,将得到的输出信号去控制KM1—KM6的通断,通过PLC与变频器的调节,达到恒压供水的目的。
控制要求如下。
(1)共有三台水泵,按设计要求,水泵的配置必须充分考虑供水余量,因此,在多台水泵供水的情况下,必然存在有的水泵长期处轮换一次,如图2所示。
(2)用水高峰时,一台工频全速运行,一台变频运行;用水低谷时,只有一台变频运行。
(3)三台水泵分别由电动机M1、M2、M3拖动。
而三台电动机又分别由变频接触器KM1、KM3、KM5和工频接触器KM2、KM4、KM6控制。
(4)变频器的启动,在自动状态下,PLC的X0接通、变频接触器KM闭合。
PLC的Y0输出到变频器FWD正传启动。
(5)变频器输出频率与反馈电压信号CCI成反比,既反馈信号低,变频速度高。
信号高则反之。
(6)变频器的速度及变频的切换由供水网远传压力表W2来控制,最终控制M1、M2、M3。
(7)水泵投入工频运行时,电动机的过载由热继电器FR1、FR2、FR3保护,手动复位,并有报警信号。
PLC与变频器控制的自动恒压供水系统
2004-10-22
《PLC&FA》文章介绍了PLC与变频器控制的自动恒压供水系统的实施过程以及实施效果。
1系统简介
为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水 2.5万顿的供水系统,分别建
设了抽水泵系统、加压泵系统和高位水池。
根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。
同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统联动”也是较难解决的。
鉴于以上特点,从技术可靠和经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相
结合的自动恒压控制供水系统,同时通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系
统远程联动”的控制目的。
2系统方案
系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、
数据采集及其辅助设备组成(见图1)。
2.1抽水泵系统
整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。
采用一台150KW和一台90KW的软起动150KW 和90KW
的电机。
当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台
电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。
一次主电路接线示意图见图2
所示。
系统为每台电机配备电机保护器,是因为电机功率较大,在过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机的良好使用条件,达到延长电机的使用寿命的目的。
系统配备水位显示仪表,可进行高低位报警,同时通过PLC可确保取水在合理水位的水质监控,
同时也保护电机制正常运转工况。
系统配备流量计,既能显示一段时间的累积流量,又能显示瞬时流量,可进行岀水量的统计和每
台泵的出水流量监控。
2.2公司内不同压力供水需求的解决
为稳定可靠地满足公司内部分区域供水太力( 0.4~0.45Mpa )低于主管网水压力(0.8〜0.9Mpa )
的要求,配备稳压减压阀来调节,可调范围为0.1~0.8Mpa。
2.3加压泵系统
由于抽水泵房距离高位水池较远,直接供水到高位水池抽水泵的扬程不足,为此在距离高位水池
落差为36米处设计有一加压泵房,配备立式离心泵两台(一用一备)电机功率为75KW,扬程36米。
该加压泵的控制系统需考虑以下条件:
(1 )若高位水池水位低和主管有水,则打开进水电动蝶阀和起动加压泵向高位水池供水;
(2)若高位水池水位满且主管有水,则给岀报警信号并关闭加压泵和进水电动蝶阀;
(3)若主管无水表明用水量增大或抽水泵房停止供水,必须开启岀水电动蝶阀由高位水池向主管补充不。
像抽水泵一样,我们为加压泵配备了软起动器和电机保护器,确保加压泵长期可靠地运转,同时配备了高位水池的水位传感器和数显仪和缺水传感器。
为保证整个主水管网的恒压供不,当高位水池满且主水管有水时,加压泵停止,此时主管压力将憋压”最终导致主管压力上升,并将此压力传递到抽水泵房,抽水泵的控制系统检测到此压力进。