九年级数学上册相似三角形的判定-讲义
- 格式:doc
- 大小:160.51 KB
- 文档页数:5
相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。
2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。
a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。
ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。
ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。
ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。
8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。
相似三角形是中学数学中的一个重要内容,对于九年级学生来说,掌握相似三角形的判定及证明技巧是必不可少的。
本文将详细讲解相似三角形的判定及证明技巧,帮助学生更好地理解和运用这一知识点。
一、相似三角形的判定:1.AAA相似判定法:如果两个三角形的对应角度相等,则这两个三角形是相似的。
例如,在△ABC和△DEF中,∠A=∠D,∠B=∠E,∠C=∠F,那么这两个三角形相似。
2.AA相似判定法:如果两个三角形的一个角对等于另一个角,且两个角的对边成比例,则这两个三角形是相似的。
例如,在△ABC和△DEF 中,∠A=∠D,∠C=∠F,且AB/DE=BC/EF,那么这两个三角形相似。
3.SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形是相似的。
例如,在△ABC和△DEF中,AB/DE=BC/EF=AC/DF,那么这两个三角形相似。
4.平行线判定法:如果两个三角形的对应边平行,则这两个三角形是相似的。
例如,在△ABC和△DEF中,AB∥DE,BC∥EF,AC∥DF,那么这两个三角形相似。
二、相似三角形的证明技巧:1.用平行线证明相似:如果两个三角形的对应边平行,则这两个三角形是相似的。
证明时,可以使用平行线的性质,如同位角相等、内错角互补等。
2.用角度证明相似:如果两个三角形的对应角度相等,则这两个三角形是相似的。
证明时,可以根据已知信息,使用角度的性质进行推导。
3.用边长比证明相似:如果两个三角形的对应边长比相等,则这两个三角形是相似的。
证明时,可以根据已知的边长比,通过等式推导得出结论。
4.用等腰三角形证明相似:如果两个三角形分别为等腰三角形,且对应的顶角相等,则这两个三角形是相似的。
以上是常用的相似三角形的判定及证明技巧,希望对九年级的数学学习有所帮助。
在学习过程中,要多加练习,掌握不同方法的应用,提高解题能力。
同时,要注重理论与实践相结合,灵活运用知识,培养自己的思维能力和推理能力。
祝每位同学在数学学习中取得优异成绩!。
龙文教育学科教师辅导讲义
4、如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连结ED并延长交AB于F,交AH于H。
(1)求证:AH=CE
(2)如果AB=4AF,EH=8,求DF的长。
5、已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E, EC与AD相交于点F。
(1)求证:△ABC∽△FCD;
高都是,同一时刻,小明站在点处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为和,那么塔高为( ). . . .
反比性质:
更比性质:
合比性质:
(比例基本定理)
相似基本定理
推论 (骨干定理)
平行线分线段成比例定理 (基本定理)(
应用于△中
相似三角形
判定定理
定理1
定理2
定理3
Rt△
推论
推论的逆定理
推论
C
A
D
B.
C
E
D
B
A。
相似三角形综合运用讲义【考点剖析】相似三角形是几何中较难的部分,也是每年中考的热点,相似三角形对圆的学习以及各种类型的综合性问题的解决都有很大的帮助。
在此,我们对相似三角形中经常出现的解答方法与技巧进行讲解。
【例题巧解点拨】一、运用三角形相似的条件进行解答。
例1.已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点.求证:△ADQ ∽△QCP .目标训练1.已知:如图,△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F .求证:BP 2=PE ·PF .2.如图,BD 、CE 为△ABC 的高,求证∠AED =∠ACB .二、相似与函数的运用。
例2.在△ABC 中,∠C =90°,P 为AB 上一点,且点P 不与点A 重合,过点P 作PE ⊥AB ,交AC 边于E 点,点E 不与点C 重合,若AB=10,AC=8,设AP 的长为x ,四边形PECB 的周长为y ,求y 与x 之间的函数关系式。
目标训练1.在△ABC 中,∠ACB =90°,AC=25,斜边AB 在x 轴上,点C 在y 轴的正半轴上,点A 的坐标为(2,0),求直角边BC 所在直线的解析式。
2.已知梯形ABCD 中,AD//BC (AD<BC ),AD=5,AB=DC=2。
(1)如图1,P 为AD 上一点,满足∠BPC=∠A 。
①求证:△ABP ∽△DPC ; ②求AP 的长。
(2)如图2,若点P 在AD 上移动(与A 、D 点不重合),且满足∠BPE=∠A ,PE 交BC 于点E ,交DC 的延长线于点Q ,设AP=x ,CQ=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围。
三、阅读理解类问题。
例3.阅读下列材料,补全证明过程:(1)已知:如图,矩形ABCD 中,AC 、BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点. (2)请你仿照(1)的画法,在原图上画出BC 的一个四等分点(要求保留画图痕迹,可不写画法及证明过程).目标训练1.如图1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.2.已知:△ABC 中,AB =10 ⑴如图①,若点D 、E 分别是AC BC 边的中点,求DE 的长; ⑵如图②,若点A 1、A 2把AC 边三等分,过A 1、A 2作AB 边的平行线,分别交BC 边于点B 1、B 2,求A 1B 1+A 2B 2的值; P A C E A B CO B A C D P B A C D P E D F O N D EF O N C OD ( F )⑶如图③,若点A 1、A 2、…、A 10把AC 边十一等分,过各点作AB 边的平行线,分别交BC 边于点B 1、B 2、…、B 10。
作品编号:0115230988859532558954500001
学校:秘强市景秀镇赛班家屯小学*
教师:丽景春*
班级:凤凰队参班*
学科:数学
专题:相似三角形的判定
重难点易错点解析
判断三角形是否相似,要注意思维的完整性.
题一
题面:如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.
金题精讲
题一
题面:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,
(1)求证:AC2=AD·AB;BC2=BD·BA;
(2)求证:CD2=AD·AD;
(3)求证:AC·BC=AB·CD.
三角形相似
题二
题面:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.
圆周角定理、相似三角形
满分冲刺
题一
题面:如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?
相似多边形、二次函数
题二
题面:已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.
利用平行线构造相似三角形
题三
题面:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值.
图13-2
相似三角形的判定
讲义参考答案
重难点易错点解析
题一
答案:6对.
金题精讲
题一
答案:利用三角形相似证明.
题二
答案:提示:连结AE 、ED ,证△ABE ∽△ECD . 满分冲刺
题一
答案:25=
x 时,S 的最大值为252. 题二
答案:12
AF FB =. 题三
答案:如图13-3.
图13-3
∵AB ⊥BC ,PB ⊥BF ,
∴∠ABP =∠CBF .
当
AB BC BP BM =1,即=31BM 4
4,BM 1=3时,△CBM 1∽△ABP .相似比k =1. 当BP BC AB BM =2即316,34422==BM BM 时,△CBM 2∽△PBA .相似比43
k =. ∴当BM =3或316=BM 时,以点B ,M ,C 为顶点的三角形与△ABP 相似,相似比分别为1和
43
.。