10机器学习-学习规则集合解析
- 格式:ppt
- 大小:262.50 KB
- 文档页数:53
机器学习技术中的无监督学习算法解析无监督学习算法是机器学习领域中的一大重要分支,通过在数据集中寻找模式和结构进行学习,从而发现数据中的隐藏属性和关系。
与监督学习算法不同,无监督学习算法不需要已标记的训练数据,而是通过自动探索数据中的模式和结构来学习。
本文将介绍几种常见的无监督学习算法以及它们在机器学习中的应用。
1. 聚类算法聚类算法是无监督学习中最常见的算法之一,它通过将数据集划分为不同的组或者簇,使得同一簇内的数据类似,不同簇之间的数据差异较大。
聚类算法的目标是发现数据的内在结构以及相似性,从而实现对数据的分组。
其中,最著名的聚类算法是K-means算法。
K-means算法是一种迭代的聚类算法,它首先随机选择K个初始中心点,然后将数据点分配到最近的中心点所属的簇中。
接着根据簇中的数据点更新中心点的位置,并重复这个过程直到算法收敛。
K-means算法的优点是简单而高效,但也存在一些问题,比如对初始中心点的选择敏感,容易收敛到局部最优解。
2. 关联规则学习关联规则学习是一种用于发现数据中频繁出现的关联关系的无监督学习算法。
它通过挖掘数据集中的频繁项集和关联规则,揭示数据之间的相关性。
关联规则学习经常应用于市场分析、购物篮分析等领域。
Apriori算法是关联规则学习中的一种经典算法。
它采用逐层搜索的方式,从频繁1项集开始,生成更高阶的频繁项集,直到没有可以生成的频繁项集为止。
Apriori算法通过设置最小支持度和最小置信度来筛选出具有统计意义的频繁项集和关联规则。
3. 主成分分析主成分分析(PCA)是一种常用的降维技术,用于从高维数据中提取出主要的特征。
它通过线性变换将原始数据投影到低维空间中,使得投影后的数据保留了最大的变异性。
PCA最常见的应用是数据可视化和特征提取。
PCA的实现过程包括以下几个步骤:首先计算数据的协方差矩阵,然后通过特征值分解找到最大的特征值和对应的特征向量,最后根据选择的主成分数目将数据进行投影。
十大机器学习算法的一个小总结关于机器学习算法的研究已经获得了巨大的成功,哈佛商业评论甚至将数据科学家称为二十一世纪最具诱惑力的工作。
机器学习算法是在没有人为干涉的情况下,从大量的数据和历史经验中学习数据的结构并提升对某一目标的估计的算法。
学习任务包括:学习从输入到输出的函数学习没有标签的数据的潜在结构基于实体的学习(‘instance-based learning’),譬如根据训练数据,对新的实体分类,判断其的类别。
机器学习算法的类型1. 有监督学习有监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射。
训练数据通常是(n×x,y)的形式,其中n代表训练样本的大小,x和y 分别是变量X和Y的样本值。
(专家标注是指,需要解决问题所需要的领域专家,对数据预先进行人为的分析)利用有监督学习解决的问题大致上可以被分为两类:分类问题:预测某一样本所属的类别(离散的)。
比如给定一个人(从数据的角度来说,是给出一个人的数据结构,包括:身高,年龄,体重等信息),然后判断是性别,或者是否健康。
回归问题:预测某一样本的所对应的实数输出(连续的)。
比如预测某一地区人的平均身高。
下面所介绍的前五个算法(线性回归,逻辑回归,分类回归树,朴素贝叶斯,K最近邻算法)均是有监督学习的例子。
除此之外,集成学习也是一种有监督学习。
它是将多个不同的相对较弱的机器学习模型的预测组合起来,用来预测新的样本。
本文中所介绍的第九个和第十个算法(随机森林装袋法,和XGBoost算法)便是集成技术的例子。
2. 无监督学习无监督学习问题处理的是,只有输入变量X没有相应输出变量的训练数据。
它利用没有专家标注训练数据,对数据的结构建模。
可以利用无监督学习解决的问题,大致分为两类:关联分析:发现不同事物之间同时出现的概率。
在购物篮分析中被广泛地应用。
如果发现买面包的客户有百分之八十的概率买鸡蛋,那么商家就会把鸡蛋和面包放在相邻的货架上。
机器学习10⼤经典算法详解本⽂为⼤家分享了机器学习10⼤经典算法,供⼤家参考,具体内容如下1、C4.5C4.5算法是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下⼏⽅⾯对ID3算法进⾏了改进:1)⽤信息增益率来选择属性,克服了⽤信息增益选择属性时偏向选择取值多的属性的不⾜;2)在树构造过程中进⾏剪枝;3)能够完成对连续属性的离散化处理;4)能够对不完整数据进⾏处理。
C4.5算法有如下优点:产⽣的分类规则易于理解,准确率较⾼。
其缺点是:在构造树的过程中,需要对数据集进⾏多次的顺序扫描和排序,因⽽导致算法的低效。
2、The k-means algorithm即K-Means算法k-means algorithm算法是⼀个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。
它与处理混合正态分布的最⼤期望算法很相似,因为他们都试图找到数据中⾃然聚类的中⼼。
它假设对象属性来⾃于空间向量,并且⽬标是使各个群组内部的均⽅误差总和最⼩。
3、Support vector machines⽀持向量机⽀持向量机(Support Vector Machine),简称SV机(论⽂中⼀般简称SVM)。
它是⼀种监督式学习的⽅法,它⼴泛的应⽤于统计分类以及回归分析中。
⽀持向量机将向量映射到⼀个更⾼维的空间⾥,在这个空间⾥建⽴有⼀个最⼤间隔超平⾯。
在分开数据的超平⾯的两边建有两个互相平⾏的超平⾯。
分隔超平⾯使两个平⾏超平⾯的距离最⼤化。
假定平⾏超平⾯间的距离或差距越⼤,分类器的总误差越⼩。
⼀个极好的指南是C.J.C Burges的《模式识别⽀持向量机指南》。
van der Walt和Barnard 将⽀持向量机和其他分类器进⾏了⽐较。
4、The Apriori algorithmApriori算法是⼀种最有影响的挖掘布尔关联规则频繁项集的算法。
其核⼼是基于两阶段频集思想的递推算法。
机器学习有哪些算法机器学习是一种人工智能的分支,它通过让计算机系统自动学习和改进,从而提高其性能。
在机器学习中,有许多不同的算法可以用来训练模型并进行预测。
下面将介绍一些常见的机器学习算法。
1.监督学习算法监督学习是一种机器学习方法,其中模型从标记的训练数据中学习。
常见的监督学习算法包括:- 线性回归:用于预测连续值的算法,通过拟合数据点之间的线性关系来进行预测。
- 逻辑回归:用于预测二元分类问题的算法,通过将输入数据映射到一个概率范围内来进行预测。
- 决策树:用于预测分类和回归问题的算法,通过树状结构来表示决策规则。
- 支持向量机:用于分类和回归问题的算法,通过找到最佳的超平面来分隔不同类别的数据点。
2.无监督学习算法无监督学习是一种机器学习方法,其中模型从未标记的数据中学习。
常见的无监督学习算法包括:- K均值聚类:用于将数据点分成不同的簇的算法,通过最小化簇内的方差来确定簇的中心。
- 主成分分析:用于降维和数据可视化的算法,通过找到数据中的主要成分来减少数据的维度。
- 关联规则学习:用于发现数据中的关联规则的算法,通过分析数据中的频繁项集来找到规则。
3.强化学习算法强化学习是一种机器学习方法,其中模型通过与环境互动来学习。
常见的强化学习算法包括:- Q学习:用于解决马尔可夫决策过程的算法,通过学习最优策略来最大化长期奖励。
- 深度强化学习:结合深度学习和强化学习的算法,通过深度神经网络来学习价值函数。
总的来说,机器学习算法可以分为监督学习、无监督学习和强化学习三大类。
不同的算法适用于不同的问题和数据集,选择合适的算法对于模型的性能至关重要。
随着机器学习技术的不断发展,我们可以期待更多更高效的算法的出现,从而推动人工智能的发展。
机器学习的四大核心算法解析机器学习是人工智能领域的一个重要分支,通过让计算机具备自主学习和预测能力,使其能够根据过去的经验提供准确的决策和预测。
在机器学习领域中,有四种核心算法起到了至关重要的作用,它们分别是监督学习、无监督学习、半监督学习和强化学习。
以下将对这四大核心算法进行详细解析。
一、监督学习监督学习是机器学习中最常见和最基础的算法之一。
它是通过使用带有标签的训练数据来训练模型,并通过已知的输入和输出对新数据进行预测或分类。
监督学习的核心思想是根据已知的输入输出对建立模型,并利用该模型来预测未知数据的输出值。
最常见的监督学习算法包括决策树、朴素贝叶斯和支持向量机。
二、无监督学习无监督学习是一种没有标签的数据作为输入的机器学习技术。
与监督学习不同的是,无监督学习算法不要求先验的输入输出对。
它可以通过挖掘数据的内在结构和模式来对数据进行分类、聚类或关联分析。
无监督学习的核心思想是从无结构的数据中发现潜在的规律和特征。
常见的无监督学习算法包括聚类算法(如k-means算法)、关联规则算法和主成分分析。
三、半监督学习半监督学习是介于监督学习和无监督学习之间的一种学习方法。
它利用有标签和无标签的数据进行训练,以提高模型的性能。
半监督学习的核心思想是通过使用少量的标签数据和大量的未标签数据来提升模型的泛化能力。
常见的半监督学习算法包括标签传播算法、半监督支持向量机和生成模型。
四、强化学习强化学习是一种通过与环境的交互来学习最佳行为策略的机器学习算法。
它通过试错的方式,通过观察环境的反馈来调整策略,以获得最大的累积奖励。
强化学习的核心思想是在不确定的环境中,通过试错来学习最佳的行为决策。
常见的强化学习算法包括Q学习、深度强化学习和策略梯度方法。
通过对这四大核心算法的解析,我们可以看到它们在不同的问题领域和应用中都具有重要的作用。
监督学习适用于已有标签数据的分类和预测问题,无监督学习适用于数据聚类和关联规则分析,半监督学习适用于标签数据稀缺的情况下提升模型性能,而强化学习则适用于通过反馈机制学习最佳策略的问题。
如何正确使用机器学习中的训练集、验证集和测试集?训练集、验证集和测试集,林林总总的数据集合类型,到底该怎么选、怎么用?看过这篇教程后,你就能游刃有余地处理它们了。
1问题审稿的时候,不止一次,我遇到作者错误使用数据集合跑模型准确率,并和他人成果比较的情况。
他们的研究创意有的很新颖,应用价值较高,工作可能也做了着实不少。
但因对比方法错误,得出来的结果,不具备说服力。
几乎全部都需要返工。
这里,我帮你梳理一下,该怎么使用不同的数据集合:训练集(training set)验证集(validation set)测试集(test set)目的只有一个——避免你踩同样的坑。
其实这个问题,咱们之前的教程文章,已有涉及。
《如何用 Python 和深度迁移学习做文本分类?》一文中,我曾经给你布置了一个类似的问题。
在文章的末尾,我们对比了当时近期研究中, Yelp 情感分类的最佳结果。
下表来自于:Shen, D., Wang, G., Wang, W., Min, M. R., Su, Q., Zhang, Y., ... & Carin, L. (2018).Baseline needs more love: On simple word-embedding-based models and associated pooling mechanisms. arXiv preprint arXiv:1805.09843.注意这里最高的准确率(Accuracy)数值,是 95.81 。
我们当时的模型,在验证集上,可以获得的准确率,是这个样子的:97.28%,着实不低啊!于是我问你:咱们这种对比,是否科学?你当时的答案是什么?这么久过去了,又看了那么多新的教程和论文,你的答案发生变化了吗?现在咱们公布一下答案吧。
不科学。
为什么?因为对比方法有问题。
2方法原文中有这样一句:这里数据集只提供了训练集和“测试集”,因此我们把这个“测试集”当做验证集来使用。