初中数学:圆心角定理的推论练习(含答案)
- 格式:doc
- 大小:1.10 MB
- 文档页数:11
专题08垂径定理、圆心角、圆周角之六大题型利用垂径定理求值【答案】2【分析】根据垂径定理和勾股定理列方程求解即可.【详解】解:设OC=△中,由勾股定理得,在Rt COE【变式训练】【答案】45cm/4【分析】连接BO,延长22=,即可求解.BC OB OC-【详解】解:如图,连接=,由折叠得:CD CEQ D是OC的中点,\=,CD OD\==,CE CD OD2\==,4OC OE【答案】310【分析】由题意易得【详解】解:连接OD∵AB 是O e 的直径,AB ∴152OD OB AB ===,∵CD AB ^,6CD =,∴13,2DE CD DEO ==Ð∴22OE OD DE =-=垂径定理的实际应用【点睛】本题考查了勾股定理和垂径定理,灵活运用所学知识,掌握垂直于弦的直径平分弦,且平分弦所对的弧,是解决本题的关键.【变式训练】1.(2023上·福建龙岩·九年级统考期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧.如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O (O 在水面上方)为圆心的圆,且圆O 被水面截得的弦AB 长为8米.若筒车工作时,盛水桶在水面以下的最大深度为2米,则这个圆的半径为( )A .2米B .3米C .4米D .5米【答案】D 【分析】过圆O 作OD AB ^于E ,如图所示,由垂径定理可知4AE BE ==,设圆的半径为r ,再利用勾股定理列方程求解即可得到答案.【详解】解:过圆O 作OD AB ^于E ,如图所示:Q 弦AB 长为8米,\4AE BE ==,Q 盛水桶在水面以下的最大深度为2米,设圆的半径为r ,在Rt AOE △中,90AEO Ð=°,OA r =,4AE =,2OE OD ED r =-=-,则由勾【答案】26【分析】连接AO ,依题意,得出222AO AC CO =+,解方程即可求解.【详解】解:如图所示,连接∵1CD =,10AB =,AB ∴5AC =,设半径为r ,则AO r =在Rt AOC V 中,2AO =利用弧、弦、圆心角的关系求解A.AB OC=C.12ABC BOC Ð+Ð=【答案】D 【变式训练】【答案】80°/80度【分析】利用等腰三角形的性质和三角形内角和计算出即可求出答案.Ð【详解】解:∵OBC半圆(直径)所对的圆周角是直角A.43【答案】B【分析】如图:连接AQ QB=,最后根据勾股定理即可解答.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成为解答本题的关键.【变式训练】【答案】13【分析】连接BD ,先由三角形内角和定理求出求出30ABD Ð=°,即有【详解】解:连接BD∵在ABC V 中,55B Ð=∴60A Ð=°,∵AB 为O e 的直径,∴90ADB CDB Ð=Ð=°Ð的度数;(1)求BAC(2)若点E为OB中点,CE 【答案】(1)45°(2)3590°的圆周角所对的弦是直径例题:(2023上·广东汕头DA DC =,2AB BC ==【答案】32【分析】连接AC ,过点角三角形,勾股定理求得∵90ADC Ð=°,∴AC 是直径,∴90ABC Ð=°【变式训练】1.(2023上·山东济南·九年级统考期末)如图,正方形ABCD 中,4AB =,E 点沿线段AD 由A 向D【答案】2p【分析】连接BD 交EF 于点1222OB OD BD ===,再由∵四边形ABCD 是正方形,∴4BC AB AD ===,EDO Ð∴242BD AB ==,【答案】90°Ð【分析】(1)由ABP (2)首先证明点P理求出OC即可得到则OP OA OB ==,\点P 在以AB 为直径的O e 在Rt BCO V 中,90OBC Ð=225OC BO BC \=+=,532PC OC OP =-=-=,已知圆内接四边形求角度【答案】102°【分析】根据圆内接四边形的性质得出【详解】解:∵四边形∴180A DCB Ð+Ð=°,又180DCE DCB Ð+Ð=°,∴102DCE A ÐÐ==°,故答案为102°.【点睛】本题主要考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.【变式训练】【答案】40【分析】根据已知可得»»BCBD =56DAC BAC BAD Ð=Ð+Ð=°,再利用圆内接四边形对角互补以及平角的定义可得56DBE DAC Ð=Ð=°,继而利用角平分线定义及三角形内角和定理即可求解.(1)求证:A AEBÐ=Ð(2)若90Ð=°,点CEDC【答案】(1)见解析e的半径为25 (2)O一、单选题1.(2023上·河北张家口·九年级统考期末)O e 中的一段劣弧»AB 的度数为80o ,则AOB Ð=( )A .10oB .80oC .170oD .180o【答案】B 【分析】根据圆心角、弧、弦之间的关系得出答案即可.【详解】解:Q O e 中的一段劣弧»AB 的度数为80°,80AOB \Ð=°,故选:B .A .32°B .42【答案】A 【分析】先根据同弧所对的圆周角相等得到小即可.【详解】解:∵50A Ð=°,∴50D A Ð=Ð=°,A .10【答案】D∴12AH BH AB===在Rt BOHV中,OH∴线段OP长的最小值为A.105°B.110【答案】D【分析】先根据圆内接四边形的性质和平角的定义求出求解.A .1米B .()35+米C .3米【答案】D 【分析】连接OC 交AB 于D ,根据圆的性质和垂径定理可知理求得OD 的长,由CD OC OD =-即可求解.则OC AB ^,12AD BD AB ==在Rt OAD △中,3OA =,AD ∴225OD AO AD =-=,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.【答案】120【分析】过O 点作OD AC ^AD CD =,根据三角形中位线定理可得由折叠可得:12OD OE ==∵AB 是直径,∴90ACB Ð=°,12OD BC =【答案】64°/64度【分析】根据在同圆中,Ð=Ð可推出AOC BOD【详解】解:Q»AE=【答案】3【分析】由圆的性质可得OA后根据中位线的性质即可解答.【答案】45【分析】连接AC ,如图所示,由直径所对的圆周角为直角可知及勾股定理求出AC 【详解】解:连接Q OC AB ^,AB =12AD BD AB \==在Rt AOD V 中,OA 420r \=,解得r【答案】4【分析】如图,连接CD直角三角形斜边上的中线等于斜边的一半可得【点睛】本题考查直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,勾股定理.掌握直径所对的圆周角为直角是解题的关键.三、解答题e的直径AB垂直于弦CD,垂足为E,11.(2023上·安徽合肥·九年级统考期末)如图,O,.==28AE CD(1)求O e 的半径长;(2)连接 BC ,作OF BC ^【答案】(1)5(2)5在Rt OCE V 中,2OE ∴()22224R R -+=,解得5R =,∴O e 的半径长为5;(1)若这个输水管道有水部分的水面宽半径;OE AB ^Q ,11168cm 22BD AB \==´=(1)连接AD,求证:(2)若52,==CD AB 【答案】(1)详见解析;(2)6Ð相等吗?为什么?(1)BAFÐ和CAD^,垂足为(2)过圆心O作OH AB【答案】(1)相等,理由见解析(2)10【详解】(1)解:连接BF ,Q AF 是O e 的直径,90F BAF \Ð+Ð=°Q AC BD ^,\90CAD BDA Ð+Ð=°,Q F BDA Ð=Ð,\BAF CAD Ð=Ð.(2)解:OH AB ^Q ,AH BH \=,OA OF =Q ,210BF OH \==,BAF CAD Ð=ÐQ ,10CD BF \==.【点睛】本题考查的是圆周角定理,等角的余角相等,圆心角、弦的关系,三角形的中位线性质,垂径定理,掌握圆心角、弦的关系,三角形的中位线性质以及垂径定理是解题的关键.15.(2023上·山东威海·九年级统考期末)【初识模型】如图1,在ABC V 中,,90AB AC BAC =Ð=°.点D 为BC 边上一点,以AD 为边作ADE V ,使=90DAE а,AE AD =,连接CE ,则CE 与BD 的数量关系是__________;【构建模型】如图2,ABC V 内接于,O BC e 为O e 的直径,AB AC =,点E 为弧AC 上一点,连接,,AE BE CE .若3,9CE BE ==,求AE 的长;【运用模型】如图3,等边ABC V 内接于O e ,点E 为弧AC 上一点,连接,,AE BE CE .若6,10CE BE ==,求AE 的长.【答案】(1)BD CE =;(2)32;(3)4【分析】(1)只需要利用SAS 证明BAD CAE V V ≌,即可证明BD CE =(2)如图所示,过点A 作AD AE ^交BE 于D ,由BC 是直径,得到明BAD CAE Ð=Ð,再证明45ADE AED Ð=Ð=°,得到AD AE =,即可证明2(3)如图所示,在BE 上取一点∵ABC V 是等边三角形,∴60AB AC ACB ==°,∠,∴60AEB ACB Ð=Ð=°,∴ADE V 是等边三角形,∴60AE DE DAE ==°=,∠∠∴BAC CAD DAE Ð-Ð=Ð-Ð【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,圆周角定理,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。
初中数学:圆心角定理练习(含答案)知识点1 圆的中心对称性1.下列图形中既是轴对称图形又是中心对称图形的是( )A.角 B.等边三角形C.平行四边形 D.圆图3-4-12.如图3-4-1所示,正方形ABCD的四个顶点都在圆上,以点O为中心,逆时针旋转这个图形,如果旋转后的图形和原图形重合,那么最小的旋转角度为( ) A.45° B.90° C.120° D.180°知识点2 圆心角的定义3.如图3-4-2,下列各角是圆心角的是( )A.∠AOB B.∠CBDC.∠BCO D.∠DAO图3-4-2 图3-4-34.如图3-4-3,在⊙O中,AB是弦,∠OAB=50°,则弦AB所对的圆心角的度数是________.知识点3 圆心角定理5.下列命题是真命题的是( ) A .相等的圆心角所对的弧相等 B .相等的圆心角所对的弦相等C .在同圆中,相等的圆心角所对的弧相等D .顶点在圆内的角是圆心角图3-4-46.如图3-4-4,AB 是⊙O 的直径,∠BOC =∠COD =∠DOE =36°,则下列说法错误的是( )A .C 是BD ︵的中点 B .D 是CE ︵的中点 C .E 是AEB ︵的中点 D .E 是AC ︵的中点7.已知:如图3-4-5,在⊙O 中,∠AOD =∠BOC .求证:AB =CD .图3-4-58.如图3-4-6,D ,E 分别是⊙O 的半径OA ,OB 上的点,且CD ⊥OA ,CE ⊥OB ,CD =CE ,求证:C 是AB ︵的中点.3-4-6知识点4 圆心角度数与它所对的弧的度数的关系9.如图3-4-7所示,点A ,B ,C 在⊙O 上,OA ∥BC ,∠OBC =40°,则AB ︵的度数是( ) A .10° B .20° C .40° D .70°图3-4-7图3-4-810.如图3-4-8,若∠AOB =100°,则ACB ︵的度数为________.11.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A .正三角形 B .正方形 C .正五边形 D .正六边形12.在半径为2的⊙O 内有长为2 3的弦AB ,则此弦所对的圆心角∠AOB 为( ) A .60° B .90° C .120° D .150°13.2016·舟山把一张圆形纸片按如图3-4-9所示方式折叠两次后展开,图中的虚线表示折痕,则BC ︵的度数是( )图3-4-9A .120°B .135°C .150°D .165°图3-4-1014.2016·义乌期中如图3-4-10,在半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .已知DE =6,∠BAC +∠EAD =180°,则圆心A 到弦BC 的距离为________.15.如图3-4-11,以Rt △ABC 的直角顶点为圆心,以BA 为半径的圆分别交AC 于点D ,交BC 于点E .若∠C =31°,求AD ︵的度数.图3-4-1116.如图3-4-12,△ABC 是等边三角形,以BC 为直径画⊙O 分别交AB ,AC 于点D ,E .求证:BD =CE .图3-4-1217.(1)如图3-4-13,M,N分别是⊙O的内接正三角形ABC的边AB,BC上的点,且BM =CN,连结OM,ON,求∠MON的度数;(2)若M,N分别是⊙O的内接正方形ABCD的边AB,BC上的点,且BM=CN,连结OM,ON,则∠MON的度数是________;(3)若M,N分别是⊙O的内接正五边形ABCDE的边AB,BC上的点,且BM=CN,连结OM,ON,则∠MON的度数是________;(4)若M,N分别是⊙O的内接正n边形ABCDE…的边AB,BC上的点,且BM=CN,连结OM,ON,则∠MON的度数是________.图3-4-13详解详析1.D 2.B 3.A 4.80°5.C [解析] 叙述圆心角的性质时,必须加上“在同圆或等圆中”.6.C [解析] ∵∠BOC =∠COD =∠DOE =36°,∴∠AOE =180°-3×36°=72°,∠COE =2×36°=72°,∴∠AOE =∠COE ,∴BC ︵=CD ︵=DE ︵,CE ︵=AE ︵,∴C 是BD ︵的中点,D 是CE ︵的中点,E 是AC ︵的中点,故选C.7.证明:法一:∵∠AOD =∠BOC , ∴∠AOB =∠COD . 又∵OA =OC ,OB =OD , ∴△AOB ≌△COD , ∴AB =CD .法二:∵∠AOD =∠BOC , ∴∠AOB =∠COD ,∴AB =CD . 8.证明:∵CD ⊥OA ,CE ⊥OB , ∴∠CDO =∠CEO =90°. 又∵CD =CE ,CO =CO , ∴Rt △COD ≌Rt △COE , ∴∠AOC =∠BOC , ∴AC ︵=CB ︵,即C 是AB ︵的中点.9.C [解析] ∵OA ∥BC ,∴∠AOB =∠OBC =40°,故AB ︵的度数是40°. 10.260°11.A [解析] 正三角形的边所对的圆心角是120°;正方形的边所对的圆心角是90°;正五边形的边所对的圆心角是72°;正六边形的边所对的圆心角是60°.故选A.12.C13.C [解析] 如图所示,连结BO ,过点O 作OE ⊥AB 于点E .由题意可得EO =12BO ,AB ∥DC ,可得∠EBO =30°,故∠BOD =30°,则∠BOC =150°,故BC ︵的度数是150°.14.3 [解析] 如图,过点A 作AH ⊥BC 于点H ,作直径CF ,连结BF .∵∠BAC +∠EAD =180°,而∠BAC +∠BAF =180°,∴∠DAE =∠BAF ,∴DE ︵=BF ︵,∴DE =BF =6. ∵AH ⊥BC ,∴CH =BH .∵CA =AF , ∴AH 为△CBF 的中位线,∴AH =12BF =3,∴点A 到弦BC 的距离为3.15.连结BD .在Rt △ABC 中,∠ABC =90°,∠C =31°, ∴∠A =90°-∠C =59°. 又BA =BD ,∴∠BDA =∠A =59°, ∴∠ABD =180°-∠BDA -∠A =62°, ∴AD ︵的度数为62°.16.证明:如图,连结OD ,OE . ∵△ABC 是等边三角形, ∴∠B =∠C =60°. 又∵OB =OD ,OE =OC ,∴△BOD ,△OEC 都是等边三角形, ∴∠BOD =∠COE =60°,∴BD =CE . 17.解:(1)连结OB ,OC . ∵正三角形ABC 内接于⊙O ,∴∠OBA =∠OBC =12∠ABC =12×60°=30°,同理,∠OCB =∠OCA =12∠ACB =12×60°=30°,∴∠OBA =∠OCB .∵OB =OC ,BM =CN , ∴△OBM ≌△OCN ,∴∠BOM =∠CON ,∴∠MON =∠BOM +∠BON =∠CON +∠BON =∠BOC .易知AB ︵=BC ︵=AC ︵, ∴BC ︵的度数为13×360°=120°,∴∠MON =∠BOC =120°.(2)90° (3)72° (4)360°n。
第2课时圆周角定理的推论2及圆内接四边形的性质知识点 1 圆周角定理的推论21.如图2-2-32,AB为⊙O的直径,点C在⊙O上,∠A=30°,则∠B的度数为 ( )图2-2-32A.15°B.30°C.45°D.60°2.如图2-2-33,小华同学设计了一个测圆的直径的测量器,将标有刻度的尺子OA,OB在点O处钉在一起,并使它们保持垂直,在测圆的直径时,把点O靠在圆周上,读得刻度OE=8 cm,OF=6 cm,则圆的直径为( )图2-2-33A.12 cm B.10 cm C.14 cm D.15 cm3.2017·福建如图2-2-34,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的是( )图2-2-34A.∠ADC B.∠ABDC.∠BAC D.∠BAD4.如图2-2-35,AB为⊙O的直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为________.图2-2-355.如图2-2-36,⊙O的直径AB=10 m,C为直径AB下方半圆上一点,∠ACB的平分线交⊙O于点D,连接AD,BD.判断△ABD的形状,并说明理由.图2-2-36知识点 2 圆内接四边形的概念及其性质6.在圆内接四边形ABCD中,若∠A∶∠B∶∠C=1∶2∶5,则∠D的度数为( )A.60°B.120°C.140°D.150°7.2018·济宁如图2-2-37,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )图2-2-37A.50°B.60°C.80°D.100°8.教材练习第3题变式如图2-2-38,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=96°,则∠ADE的度数为________.图2-2-389.2017·西宁如图2-2-39,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD =120°,则∠DCE=________°.图2-2-3910.如图2-2-40,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,且BC=BE.求证:△ADE是等腰三角形.图2-2-4011.2018·武威如图2-2-41,⊙A过点O(0,0),C(3,0),D(0,1),B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是( )图2-2-41A.15°B.30°C.45°D.60°12.2017·株洲如图2-2-42,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D,E,∠BMD=40°,则∠EOM=________°.图2-2-4213.2016·西宁⊙O的半径为1,弦AB=2,弦AC=3,则∠BAC的度数为________.14.如图2-2-43,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O交于点E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.图2-2-4315.如图2-2-44,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.图2-2-4416.如图2-2-45,已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图①,若AD经过圆心O,求BD,CD的长;(2)如图②,若∠BAD=2∠DAC,求BD,CD的长.图2-2-45教师详解详析1.D 2.B3.D [解析] ∵AB 是⊙O 的直径,∴∠BAD +∠ABD =90°.∵∠ACD =∠ABD ,∴∠BAD +∠ACD =90°,故选D.4.65° [解析] ∵AB 为⊙O 的直径,∴∠ADB =90°.∵相同的弧所对应的圆周角相等,且∠ACD =25°,∴∠B =25°.∴∠BAD =90°-∠B =65°.5.解:△ABD 是等腰直角三角形.理由:∵AB 为⊙O 的直径,∴∠ADB =90°.∵CD 是∠ACB 的平分线,∴AD ︵=BD ︵,∴AD =BD ,∴△ABD 是等腰直角三角形.6.B7.D [解析] 如图所示.在优弧BD 上任取一点A (不与点B ,D 重合),连接AB ,AD .因为四边形ABCD 是⊙O 的内接四边形,所以∠A +∠BCD =180°.因为∠BCD =130°,所以∠A =50°.因为∠A 与∠BOD 都对着劣弧BD ,所以∠BOD =2∠A =2×50°=100°.8.96°9.60 [解析] ∵∠BOD =120°,∴∠A =12∠BOD =60°.∵四边形ABCD 是圆内接四边形,∴∠DCE =∠A =60°.10.证明:∵BC =BE ,∴∠E =∠BCE . ∵四边形ABCD 是圆内接四边形, ∴∠A +∠DCB =180°.又∵∠BCE +∠DCB =180°, ∴∠A =∠BCE ,∴∠A =∠E ,∴AD =DE , ∴△ADE 是等腰三角形.11.B [解析] 连接CD ,则CD 为⊙A 的直径,可得∠OBD =∠OCD ,根据点D (0,1),C (3,0),得OD =1,OC =3,由勾股定理得出CD =2,∵OD =12CD ,∴∠OCD =30°,∴∠OBD =30°.故选B.12.80 [解析] 连接EM ,∵AB =AC ,∠BAM =∠CAM ,∴AM ⊥BC .∵AM 为⊙O 的直径,∴∠ADM =∠AEM =90°,∴∠AME =∠AMD =90°-∠BMD =50°,∴∠EAM =40°,∴∠EOM =2∠EAM =80°.13.15°或75° [解析] 作直径AD ,AD =2.如图①,若两条弦在AD 的同侧,分别连接BD ,CD ,则∠B =∠C =90°.∵AB =2,AC =3,∴cos ∠BAD =AB AD =22,cos ∠CAD =AC AD =32,∴∠BAD =45°,∠CAD =30°,∴∠BAC =45°-30°=15°.如图②,若两条弦在AD的两侧,分别连接BD,CD,则∠B=∠C=90°.∵AB=2,AC=3,∴cos∠BAD=22,cos∠CAD=32,∴∠BAD=45°,∠CAD=30°,∴∠BAC=45°+30°=75°.故答案为15°或75°.14.解:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC.又∵DC=BC,∴AD=AB,∴∠B=∠D. (2)设BC=x,则AC=x-2.在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+x2=42,解得x1=1+7,x2=1-7(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴DC=CE.又∵DC=BC,∴CE=BC=1+7.15.解:(1)证明:如图,连接AE.∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC.又∵AB=AC,∴BE=CE.(2)如图,连接DE,∵BE=CE=3,∴BC=6.易知∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴BEBA=BDBC,即3BA=26,∴AB=9,∴AC=AB=9.16.解:(1)∵AD经过圆心O,∴∠ACD=∠ABD=90°. ∵AB⊥AC,且AB=AC=6,∴四边形ABDC为正方形,∴BD=CD=AB=AC=6.(2)连接BC,OD,过点O作OE⊥BD.∵AB⊥AC,AB=AC=6,∴BC 为⊙O 的直径,∴BC =6 2,∴BO =CO =DO =12BC =3 2.∵∠BAD =2∠DAC ,∴∠DAC =30°,∠BAD =60°, ∴∠COD =60°,∠BOD =120°,∴△COD 为等边三角形,∠BOE =60°, ∴CD =CO =DO =BO =3 2,则BE =3 62,∵OE ⊥BD ,∴BD =2BE =3 6.。
垂径定理圆心角圆周角定理一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55° C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120°D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5 D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B. C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35º C.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110° C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个 C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分 D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B. C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。
初三数学圆心角试题答案及解析1.如图,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是 cm.【答案】5【解析】作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,再根据M是半圆AB的一个三等分点,N是半圆AB的一个六等分点可求出∠MON′的值,再由勾股定理即可求出MN′的长.解:作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,∵M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,∴∠MOB==60°,∠BON′==30°,∴∠MON′=90°,∵AB=10cm,∴OM=ON′=5cm,∴MN′===5cm,即MP+NP的最小值是cm.故答案为:5.点评:本题考查的是最短路线问题及圆心角、弧、弦的关系,根据M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,求出∠MON′=90°是解答此题的关键.2.如图,AB是⊙O的直径,AC是弦,D是AC弧的中点,若∠BAC=30°,则∠DCA= .【答案】30°【解析】根据直径所对的圆周角是直角,得∠ACB=90°,从而求得∠B的度数,再根据圆内接四边形的对角互补,得到∠D的度数,根据等弧对等弦及等边对等角即可得到则∠DAC=∠DCA,根据内角和公式即可求得其度数.解:连接BC.∵AB是半圆O的直径,∴∠ACB=90°;∵∠BAC=30°,∴∠B=60°,∴∠D=120°;∵D是弧AC的中点,∴DA=DC,∴∠DCA=∠DAC=(180°﹣120°)÷2=30°.点评:此题综合运用了圆周角定理的推论、圆内接四边形的性质、等弧对等弦以及等边对等角的知识.3.一条弦把圆分成1:5两部分,则这条弦所对的圆周角的度数是.【答案】30°或150°【解析】根据题意画出图形,得出两种情况,求出两段弧的度数,即可求出答案.解:连接OA、OB,∵一条弦AB把圆分成1:5两部分,如图,∴弧AC′B的度数是×360°=60°,弧ACB的度数是360°﹣60°=300°,∴∠AOB=60°,∴∠ACB=∠AOB=30°,∴∠AC′B=180°﹣30°=150°,故答案为:30°或150°.点评:本题考查了圆周角定理的应用,注意:在同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半.4.如图,AB,AC,BC是⊙O的三条弦,OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF,则弧AC=弧 =弧,∠ABC= °,△ABC是三角形.【答案】弧AC=弧AB=弧BC,∠ABC=60°,等边三角形【解析】由垂径定理得BE=EC,BD=AD;若连接OB、OC、OA,则可证得△OCE≌△OBE≌△OBD,再得△ABC是等边三角形,然后运用圆周角定理可解.解:连接OB,OC,OA∵OD⊥AB,OE⊥BC,由垂径定理知,BE=EC,BD=AD,∵OB=OC,∴△OCE≌△OBE≌△OBD,∴BE=EC=BD=AD,同理,AD=AF=CF=CE,∴AB=BC=AC,即△ABC是等边三角形,∴∠ABC=60°,弧AC=弧AB=弧BC.点评:本题利用了垂径定理,全等三角形的判定和性质,圆周角定理求解.5.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.【答案】60°【解析】由于等于半径,得到等边三角形,然后根据等边三角形的性质求解.解:如图,AB=OA=OB,所以△ABC为等边三角形,所以∠AOB=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.6.如图,已知AD是⊙O的直径,AD垂直于弦BC,垂足为点E.AB=AC吗?为什么?【答案】AB=AC【解析】由AD是⊙O的直径,AD垂直于弦BC,根据垂径定理即可得,则可证得AB=AC.解:AB=AC.理由:∵AD⊥BC,AD是⊙O的直径,(已知)∴,(垂直于弦的直径平分弦所对的弧)…(4分)∴AB=AC.(在同圆中,如果弧相等,那么弧所对的弦也相等)点评:此题考查了垂径定理.此题比较简单,解题的关键是注意数形结合思想的应用.7.如图,AB是⊙O的直径,点C、D在圆上,且=.(1)求证:AC∥OD.(2)若∠AOD=110°,求的度数.【答案】(1)见解析(2)40°【解析】(1)如图,连接AD.由圆心角、弧、弦间的关系,圆周角定理推知同位角∠CAB=∠DOB=2∠DAB,则易证得结论;(2)由邻补角的定义、圆心角、弧、弦的关系求得∠COD=∠DOB=70°,则∠AOC=∠AOD﹣∠COD=110°﹣70°=40°.(1)证明:如图,连接AD.∵=,∴=2∴∠CAB=2∠DAB.又∵∠DOB=2∠DAB,∴∠CAB=∠DOB,∴AC∥OD;(2)解:如图,连接OC.∵∠AOD=110°,∴∠DOB=70°.又∵=,∴∠COD=∠DOB=70°,∴∠AOC=∠AOD﹣∠COD=110°﹣70°=40°,∴=40°.点评:本题考查了圆心角、弧、弦间的关系.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.8.如图,在⊙O中,与相等,OD⊥BC,OE⊥AC,垂足分别为D、E,且OD=OE,那么△ABC是什么三角形,为什么?【答案】等边三角形【解析】根据圆心角、弧、弦的关系由=得到AB=BC,再由OD⊥BC,OE⊥AC,根据垂径定理和垂直的定义得到CE=AC,CD=BC,∠ODC=∠OEC=90°利用三角形全等的判定方法可得到Rt△ODC≌Rt△OEC(HL),则CD=CE,于是有BC=AC,则AB=AC=CB,即可得到△ABC为等边三角形.解:△ABC为等边三角形.理由如下:连OC,∵=,∴AB=BC,∵OD⊥BC,OE⊥AC,∴CE=AC,CD=BC,∠ODC=∠OEC=90°∵在Rt△ODC和Rt△OEC中,,∴Rt△ODC≌Rt△OEC(HL)∴CD=CE,∴BC=AC,∴AB=AC=CB,∴△ABC为等边三角形.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中两个圆心角、两条弧、两条弦中有一组量相等,那么其余各组量也分别相等.也考查了垂径定理和等边三角形的判定.9.如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD.求证:BE=DE.【答案】见解析【解析】先连接BC、AD,由AB=CD可知=,故可得出=,故可得出BC=AD,由全等三角形的判定定理可得出△BEC≌△DEA,根据三角形的对应边相等即可得出结论.证明:先连接BC、AD,∵AB=CD,∴=,∵=,∴BC=AD,在△BEC与△DEA中,∵,∴△BEC≌△DEA(ASA),∴BE=DE.点评:本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,根据题意构造出全等三角形是解答此题的关键.10.已知:如图,AB、CD是⊙O的两条弦,AB=CD.求证:∠OBA=∠ODC.【答案】见解析【解析】过点O分别作OE⊥AB于点E,OF⊥CD于点F.先由圆心角、弧、弦的关系,得出OE=OF,再根据HL证明Rt△BOE≌Rt△DOF,进而得出∠OBA=∠ODC.证明:过点O分别作OE⊥AB于点E,OF⊥CD于点F.∵AB=CD,∴OE=OF.又∵BO=DO,∴Rt△BOE≌Rt△DOF(HL),∴∠OBA=∠ODC.点评:本题主要考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,本题还可以运用全等证明.11.如图,在⊙O中,AD=BC.(1)比较与的长度,并证明你的结论;(2)求证:DE=BE.【答案】见解析【解析】(1)由AD=BC可得出=,进而可得到=;(2)由(1)的结论可得出AB=CD,根据全等三角形的判定定理可得出△ADE≌△CBE,故DE=BE,进而可求出答案.证明:(1)∵AD=BC,∴=,∴=;(2)∵=,∴AB=CD,在△ADE与△CBE中,∵∠DAB=∠BCD,AD=BC,∠ADC=∠ABC,∴△ADE≌△CBE,∴DE=BE,∵AB=CD,∴DE=BE.点评:本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质、圆周角定理,涉及面较广,难易适中.12.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为()度.A.30B.45C.50D.60【答案】A【解析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.解:∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.点评:本题主要考查了圆周角定理,圆心角、弧、弦的关系.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.13.下列命题中为真命题的是()A.有一个角是40°的两个等腰三角形相似B.三点一定可以确定一个圆C.圆心角的度数相等,则圆心角所对的弧相等D.三角形的内心到三角形三边距离相等【答案】D【解析】A、不知道40°的角是底角还是顶角,无法判断相似;B、三点共线不能确定圆;C、要有在同圆或等圆中的条件;D、根据三角形内心的性质进行判断.解:当一个等腰三角形的顶角等于40°而另一个等腰三角形的底角是40°,则这两个三角形不相似,所以A错;只有不共线的三点才确定一个圆,所以B错;只有在同圆或等圆中,圆心角的度数相等,则圆心角所对的弧相等,所以C错;内心就是三角形角平分线的交点,则它到三角形三边的距离相等,所以D对.故选D.点评:有两个角对应相等的三角形相似.记住三点不共线确定一个圆;只有在同圆或等圆中,圆心角的度数相等,则圆心角所对的弧相等.14.下列说法正确的是()A.平分弦的直径垂直于弦B.三角形的外心到这个三角形的三边距离相等C.相等的圆心角所对的弧相等D.等弧所对的圆心角相等【答案】D【解析】利用三角形的外接圆与外心、垂径定理及圆心角、弧、弦之间的关系分别判断后即可得到正确的答案.解:A、平分弦(不是直径)的直径垂直于弦,故错误;B、三角形的外心大三角形三顶点的距离相等,故错误;C、同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、等弧所对的圆心角相等,故正确,故选D.点评:本题考查了三角形的外接圆与外心、垂径定理及圆心角、弧、弦之间的关系,属于基础定理,应重点掌握.15.如图,在⊙O中,=,∠AOB=122°,则∠AOC的度数为()A.122°B.120°C.61°D.58°【答案】A【解析】直接根据圆心角、弧、弦的关系求解.解:∵,=,∴∠∠AOB=∠AOC=122°.故选A.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.16.下列命题正确的是()A.垂直于弦的直径平分弦B.相等的圆心角所对的弧相等C.任何一条直径都是圆的对称轴D.过三点可以作一个圆【答案】A【解析】根据垂径定理,圆幂性质以及确定圆的条件对各选项分析判断后利用排除法求解.解:A、垂直于弦的直径平分弦,正确,故本选项正确;B、应为在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、应为任何一条直径所在直线都是圆的对称轴,故本选项错误;D、应为过不在同一直线上的三点可以作一个圆,故本选项错误.故选A.点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.如图,直线l交圆O于A、B两点,且将圆O分成3:1两段.若圆O半径为2cm,则△OAB的面积为()A.1cm2B.cm2C.2cm2D.4cm2【答案】C【解析】先用“等弧对等角”得出∠AOB=90°,又有半径,故可解.解:如图,由题意知,弦AB把圆周分为3:1两段弧,则弦AB所为的圆心角∠AOB=90°,∴△AOB是等腰直角三角形,∴AO=OB=2cm,∴S=×2×2=2cm2,△AOB故选C.点评:本题利用了一个周角为360°及等腰直角三角形的性质和面积公式求解.18.下列命题中:①平分弦的直径垂直于弦;②等弧所对弦相等;③一个数的绝对值不小于本身;④三角形的外心到三边的距离相等;⑤直径是圆的对称轴;⑥侧面展开图为半圆的圆锥,其轴截面是等边三角形.其中正确的是()A.①②③B.①③④C.②③⑥D.②④⑥【答案】C【解析】由平面图形的折叠及立体图形的表面展开图的特点以及数学知识的定理进行解题.解:①主要考查垂径定理推论的内容,平分弦的直径垂直于弦,这条弦不能是直径;④中三角形的外心是三角各边的垂直平分线的交点,它到三角形的三个顶点的距离相等;⑤直径是圆的对称轴不对,因为对称轴是直线,而直径是线段.正确的是:②③⑥,故选C.点评:本题主要考查学生对于常用的几个重要定理,三角形的外心的识记及理解.19.下列命题中,真命题的个数是()①等弧所对弦相等②平分弦的直径,垂直于这条弦③平移后对应点所连的线段平行且相等④用正三角形和正六边形两种图形可以实现镶嵌.A.1B.2C.3D.4【答案】B【解析】根据题意,对选项进行一一分析,选择正确答案.解:①等弧所对弦相等,正确;②平分弦(非直径)的直径,垂直于这条弦,错误;③平移后对应点所连的线段有可能在同一直线上,错误;④用正三角形和正六边形两种图形可以实现镶嵌.正六边形的每个内角是120°,正三角形的每个内角是60°.2×120°+2×60°=360°或120°+4×60°=360°,正确.故选:B.点评:本题需注意垂径定理中的弦是非直径的弦.两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.已知弧CD是⊙O的一条弧,点A是弧CD的中点,连接AC,CD.则()A.CD=2ACB.CD>2ACC.CD<2ACD.不能确定.【答案】C【解析】首先根据题意画出图形,然后由在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,即可求得AC=AD,然后利用三角形三边关系,即可求得答案.解:如图,∵点A是弧CD的中点,即=,∴AC=AD,∵CD<AC+AD,∴CD<2AC.故选C.点评:此题考查了圆心角、弧、弦的关系以及三角形三边关系.此题难度不大,注意掌握数形结合思想的应用是解此题的关键,注意掌握两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等定理的应用.。
初二圆心角试题及答案解析一、选择题1. 圆心角是圆心到圆上任意两点连线所夹的角,以下哪个说法是正确的?A. 圆心角的大小只与圆的半径有关B. 圆心角的大小只与圆心到圆上两点的距离有关C. 圆心角的大小与圆心到圆上两点的距离和圆的半径都有关D. 圆心角的大小与圆的半径无关答案:C解析:圆心角的大小是由圆心到圆上两点的距离和圆的半径共同决定的。
当圆心到圆上两点的距离一定时,圆的半径越大,圆心角越大;反之,圆的半径越小,圆心角越小。
2. 在同圆或等圆中,如果两个圆心角相等,那么以下哪个说法是正确的?A. 它们所对的弧相等B. 它们所对的弦相等C. 它们所对的弧和弦都相等D. 它们所对的弧和弦都不一定相等答案:C解析:在同圆或等圆中,如果两个圆心角相等,那么它们所对的弧和弦都相等。
这是因为圆心角相等意味着它们所对的弧和弦的长度比例是相同的。
二、填空题1. 一个圆的半径为5cm,圆心角为60°,那么这个圆心角所对的弧长为_______cm。
答案:5π解析:根据弧长公式,弧长L = rθ,其中r为圆的半径,θ为圆心角(以弧度为单位)。
将半径r=5cm和圆心角θ=60°(需要转换为弧度,即60°×π/180°)代入公式,得到L = 5×(π/3) = 5π/3 cm。
2. 如果一个圆的圆心角为90°,那么这个圆心角所对的弦长与半径的关系是______。
答案:弦长等于半径的√2倍解析:当圆心角为90°时,所对的弦是圆的直径的一半,因此弦长等于半径的√2倍。
三、解答题1. 已知一个圆的半径为10cm,圆心角为120°,求这个圆心角所对的弧长。
答案:20π/3 cm解析:根据弧长公式,弧长L = rθ,其中r为圆的半径,θ为圆心角(以弧度为单位)。
将半径r=10cm和圆心角θ=120°(需要转换为弧度,即120°×π/180°)代入公式,得到L = 10×(2π/3) =20π/3 cm。
24.1.4 圆周角第1课时圆周角定理及其推论1.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是() A.25° B.20°C.80° D.100°2.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55° B.110°C.120° D.125°3.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是() A.24° B.28°C.33° D.48°4.如图是一个圆形人工湖的平面图,弦AB是湖上的一座桥,已知桥长100 m,测得圆周角∠ACB=30°,则这个人工湖的直径为 m.5.如图,已知AB是⊙O的直径,点C在⊙O上,∠A=35°,则∠B的度数是() A.35° B.45° C.55° D.65°6.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°7.如图,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为( )A .65°B .75°C .50°D .55°8.如图,已知AB 是⊙O 的直径,∠D =40°,则∠CAB 的度数为 .9.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为 . 10.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD11.如图,AB ︵是半圆,连接AB ,点O 为AB 的中点,点C ,D 在AB ︵上,连接AD ,CO ,BC ,BD ,OD.若∠COD =62°,且AD ∥OC ,则∠ABD 的大小是( )A .26°B .28°C .30°D .32°12.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°13.如图,AB 是⊙O 的直径,点D 在⊙O 上,∠BOD =130°,AC ∥OD 交⊙O 于点C ,连接BC ,则∠B = 度.14.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为 .15.如图,△ABC 的三个顶点都在⊙O 上,AP ⊥BC 于点P ,AM 为⊙O 的直径.若∠BAM =15°,则∠CAP = .16.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点. (1)求证:△ABC 为等边三角形; (2)求DE 的长.17.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为 .第2课时圆内接四边形1.如图,图中∠A+∠C=()A.90° B.180°C.270° D.360°2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是()A.115° B.105° C.100° D.95°3.圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是()A.1∶2∶3∶4 B.1∶3∶2∶4C.4∶2∶3∶1 D.4∶2∶1∶34.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是.5.如图,AB 是半圆O 的直径,∠BAC =30°,D 是AC ︵的中点,则∠DAC 的度数是 度.6.圆内接四边形相邻三个内角度数的比为2∶1∶7,求这个四边形各内角的度数.7.如图,四边形ABCD 内接于⊙O ,∠B =50°,∠ACD =25°,∠BAD =65°.求证: (1)AD =CD ;(2)AB 是⊙O 的直径.8.如图,在⊙O 中,点A ,B ,C 在⊙O 上,且∠ACB =110°,则∠α= .9.如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为( )A .130°B .100°C .65°D .50°10.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,∠DAB =48°,则∠AOC 的度数是( )A .48°B .96°C .114°D .132°11.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为 .12.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO =120°.求⊙C 的半径.13.如图,AB 是⊙O 的直径,D ,E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD =BD.连接AC 交⊙O 于点F ,连接AE ,DE ,DF. (1)求证:∠E =∠C ;(2)若∠E =55°,求∠BDF 的度数.14.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α,β的代数式表示∠A的大小.参考答案:24.1.4 圆周角第1课时圆周角定理及其推论1.A2.D3.A4.200 .5.C6.D7.A8.50°.9.30°或150°.10.D11.B12.D13.40.1415.15°.16.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵点D是BC的中点,∴AD是BC的垂直平分线.∴AB=AC.又∵AB=BC,∴AB=AC=BC.∴△ABC为等边三角形.(2)连接BE.∵AB是⊙O的直径,∴∠AEB=90°.∴BE⊥AC. ∵△ABC是等边三角形,∴AE=EC,即E为AC的中点.又∵D 是BC 的中点, ∴DE 是△ABC 的中位线. ∴DE =12AB =12×2=1.17.8__cm .第2课时 圆内接四边形1.B 2.B 3.D 4.AB ∥CD . 5.30.6.解:根据圆内接四边形的对角互补可知,其对角和相等,所以四个内角的度数的比为2∶1∶7∶8.设这四个内角的度数分别为2x °,x °,7x °,8x °,则 2x +x +7x +8x =360.解得x =20. 2x =40,7x =140,8x =160.答:这个四边形各内角的度数分别为40°,20°,140°,160°. 7.证明:(1)∵四边形ABCD 内接于⊙O , ∴∠ADC =180°-∠B =130°. ∵∠ACD =25°,∴∠DAC =180°-∠ACD -∠D =180°-25°-130°=25°.∴∠DAC=∠ACD.∴AD=CD.(2)∵∠BAC=∠BAD-∠DAC=65°-25°=40°,∠B=50°,∴∠ACB=180°-∠B-∠BAC=180°-50°-40°=90°. ∴AB是⊙O的直径.8.140°.9.C10.B11.50°.12.解:∵四边形ABMO内接于⊙C,∴∠BAO+∠BMO=180°.∵∠BMO=120°,∴∠BAO=60°.在Rt△ABO中,AO=4,∠BAO=60°,∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.13.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C +∠CFD=110°.14.解:(1)证明:∵∠DCE=∠BCF,∠E=∠F,又∵∠ADC =∠E +∠DCE ,∠ABC =∠F +∠BCF , ∴∠ADC =∠ABC.(2)由(1)知∠ADC =∠ABC ,∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°.∴∠ADC =90°.在Rt △ADF 中,∠A =90°-∠F =90°-42°=48°.(3)连接EF.∵四边形ABCD 为⊙O 的内接四边形,∴∠BCD +∠A =180°.又∵∠BCD +∠ECD =180°,∴∠ECD =∠A.∵∠ECD =∠CEF +∠CFE ,∴∠A =∠CEF +∠CFE.∵∠A +∠CEF +∠CFE +∠DEC +∠BFC =180°, ∴2∠A +α+β=180°.∴∠A =90°-α+β2.。
第2课时圆心角定理的推论
1.下列说法中正确的是(C) A.相等的弦所对的弧相等
B.相等的圆心角所对的弧相等
C.在同一个圆中相等的弧所对的弦相等
D.相等的弦所对的圆心角相等
2. 下列命题中,正确的是(C)
①顶点在圆心的角是圆心角;
②相等的圆心角所对的弧也相等;
③两条弦相等,它们所对的弧也相等;
④在等圆中,圆心角不等,所对的弧也不等.
A.①和②B.①和③
C.①和④D.①②③④
3.已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为(C) A.4B.3.25C.3.125D.2.25
【解析】如答图,过A作AD⊥BC,垂足为D,则BD=1
2BC=3,
∵AB=AC,∴圆心O一定在AD上.连结BO,设⊙O的半径为R.
在Rt△ABD中,AB=5,BD=3,
∴AD=4,OD=4-R,
在Rt△OBD中,R2=32+(4-R)2,
解得R=25
8=3.125,故选C.
第3题答图图3-4-13
4.如图3-4-13,OE ,OF 分别是⊙O 的弦CD ,AB 的弦心距,如果OE =OF ,那么__AB =CD __(只需写出一个正确的结论).
5.如图3-4-14所示,AB ,CD 是⊙O 的两条直径,弦BE =BD .
求证:AC ︵=BE ︵.
图3-4-14 第5题答图
证明:如答图,连结AC ,∵AB ,CD 是⊙O 的两条直径,且交于点O ,∴∠
AOC =∠BOD ,∴AC =BD .
又∵BE =BD ,
∴BE =AC ,∴AC ︵=BE ︵.。
中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)知识点总结1.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
2.圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
5.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
练习题1、(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.【分析】首先利用勾股定理逆定理得∠AOC=90°,再根据一条弦对着两种圆周角可得答案.【解答】解:如图,∵OA=OC=1,AC=,∴OA2+OC2=AC2,∴∠AOC=90°,∴∠ADC=45°,∴∠AD'C=135°,故答案为:45°或135°.2、(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC 即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC===13(cm),所以圆形镜面的半径为cm,故答案为:cm.3、(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.4、(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.5、(2022•湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AB ⌒所对的圆周角,则∠APD 的度数是 .【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴,∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =∠AOB =60°,∴∠APD =∠AOD =×60°=30°,故答案为:30°.6、(2022•徐州)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【解答】解:∵∠ACB =∠AOB ,∠ACB =36°,∴∠AOB =2×∠ACB =72°.故答案为:72°.7、(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB=90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.8、(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.【解答】解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.9、(2022•甘肃)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.。
初二圆心角试题及答案图片一、选择题1. 在圆中,圆心角的度数与其所对的弧长成正比。
这种说法是正确的吗?A. 正确B. 错误答案:B2. 如果一个圆的半径是10厘米,圆心角是45度,那么这个圆心角所对的弧长是多少厘米?A. 5πB. 10πC. 15πD. 20π答案:A二、填空题1. 在半径为r的圆中,圆心角为θ度的弧长可以通过公式 ________ 来计算。
答案:L = rθ/180 × π2. 已知一个圆的圆心角是120度,半径为8厘米,那么这个圆心角所对的弧长是 ________ 厘米。
答案:8π/3三、计算题1. 一个圆的半径为15厘米,圆心角为60度。
求这个圆心角所对的弧长。
解:根据弧长公式L = rθ/180 × π,代入 r = 15,θ = 60,得:L = 15 × 60/180 × π = 15π 厘米。
2. 已知一个圆心角所对的弧长为25π厘米,圆心角为150度,求这个圆的半径。
解:根据弧长公式L = rθ/180 × π,将已知的 L 和θ 代入,得:25π = r × 150/180 × π,解得 r = 30 厘米。
四、简答题1. 圆心角定理是什么?请简述其内容。
答:圆心角定理指出,在同圆或等圆中,如果两个圆心角的度数相等,那么它们所对的弧长也相等;反之,如果两个弧长相等,那么它们所对的圆心角的度数也相等。
2. 圆心角与扇形面积有什么关系?答:圆心角与扇形面积的关系可以通过扇形面积公式 S =(1/2)r²θ 来描述,其中 S 是扇形面积,r 是圆的半径,θ 是圆心角的度数。
这个公式表明,扇形的面积与圆心角的度数和圆的半径成正比。
知识点、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所,所对的弦相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
题型1:圆心角性质和推论例1、如图,在△ABC中,∠A=70°,☉O截△ABC的三边所得的弦长相等,则∠BOC的度数为题型2:圆心角性质和推论与综合证明例1、如图,点O在∠MPN 的平分线上,☉O 分别交P N、PM 于点A、B 和点C、D.求证:∠PCO=∠NAO.E D C B A O 题型 1:圆周角性质的综合应用例 1、将量角器按如图所示的方式放置在三角形纸板上,使顶点 C 在半圆上, 点 A 、B 的读数分别为 100°、150°,则∠ACB 的大小为 度.例 2 、如图,量角器的直径与直角三角板 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3 度的速度旋转,CP 与量角器 的半圆弧交于点 E ,第 24 秒,点 E 在量角器上对应的读数是 °.例3.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.例4、如图,AD 是∆ABC 的高,AE 是∆ABC 的外接圆的直径.试说明弧BE=弧CFDF例5、已知:如图,P 是∠AOB 的角平分线OC 上的一点,⊙P 与OA 相交于E ,F 点,与OB 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.例6、已知:⊙O 的半径OA =1,弦AB 、AC 的长分别为2,3,求∠BAC 的度数.例7、已知:如图,为的直径,交于点,交于点.(1)求的度数;(2)求证:.AB O ⊙AB AC BC =,O ⊙D AC O ⊙45E BAC ∠=,°EBC ∠BD CD =,BF与AD 例8、已知:如图,BC是⊙O的直径,AD⊥BC,垂足为D,BA AF 交于E,•求证:AE=BE.例9.已知:如图,∠AOB=90°,C、D是AB的三等分点,AB分别交OC、•OD•于点E、F.求证:AE=BF=CD.题型2:圆中截长补短证线段间数量关系例 1、如图,△ABC 是等边三角形,D 是 B C 上任一点,请判断 BD、CD 和DA 间的关系.题型5:90O的圆周角所对的弦是直径应用例1、下列格点图中都给出了圆,只用直尺就能确定圆心的是( )A B C D例 2 、如图,A、B、E、C 四点都在圆O上,AD 是△ABC 的高,∠EAB=∠DAC,问:AE 是⊙O 的直径吗?为什么?。
3.4 圆心角第1课时 圆心角定理基础过关全练知识点1 圆的中心对称性和旋转不变性1.下列说法中,不正确的是( )A.圆既是轴对称图形,又是中心对称图形B.圆绕着它的圆心旋转任意角度,都能与自身重合C.圆的对称轴有无数条,对称中心只有一个D.圆的每一条直径都是它的对称轴2.如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形MNEF各边仅有一个交点,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是( )A.4πB.3πC.2πD.π知识点2 圆心角的定义及其定理3.如图,下列角中不是☉O的圆心角的是( )A.∠AOBB.∠AODC.∠BODD.∠ACD4.【教材变式·P85作业题T2】如图,A、B、C、D是☉O上的点,∠1=∠2,给出下列结论:①AB=CD;②BD=AC;③AC=BD;④∠BOD=∠AOC.其中正确的有( )A.1个B.2个C.3个D.4个5.【新独家原创】如图,AB是☉O的直径,AB=8,∠AOC=∠COD=60°,则四边形OACD的面积为 .6.如图,在☉O中,D、E分别为半径OA、OB上的点,且AD=BE.C为弧AB上一点,连结CD、CE、CO,且CD=CE.求证:C为AB的中点.知识点3 圆心角的度数与它所对弧的度数的关系7.(2023浙江杭州西湖期中)在☉O中,弦AB等于圆的半径,则它所对的劣弧的度数为( )A.120°B.75°C.60°D.30°8.如图,☉O经过五边形OABCD的四个顶点A,B,C,D,若∠AOD=150°,∠A=65°,∠D=60°,则BC的度数为 °.能力提升全练9.【易错题】(2023浙江宁波北仑期中,16,★★☆)在半径为1的圆中,2的弦所对的弧的度数为 .10.【一题多解】(2023江苏常州新北月考,16,★★☆)如图,在☉O中,∠AOC=2∠BOD,则AC 2BD.(填“>”“<”或“=”)()11.如图,平行四边形ABCD中,以A为圆心,AB长为半径的圆分别交AD、BC于F、G,延长BA交圆A于E,连结EF.(1)求证:EF=FG;(2)当∠ADC为多少度时,四边形GCDF为平行四边形?为什么?素养探究全练12.【推理能力】如图,AB是☉O的直径,已知AB=2,C,D是☉O上的两点,且BC+BD=2AB,M是AB上的一点,则MC+MD的最小值3是 .13.【推理能力】如图,在☉O中,C,D是直径AB上的两点,且AC=BD,MC ⊥AB,ND⊥AB,点M,N在☉O上.(1)求证:AM=BN;(2)若点C,D分别为OA,OB的中点,则AM=MN=BN成立吗?请说明理由.答案全解全析基础过关全练1.D 圆既是轴对称图形,又是中心对称图形,所以A说法正确;圆是一个特殊的中心对称图形,它绕着圆心旋转任意角度都能与自身重合,所以B说法正确;圆的对称轴是过圆心的直线,这样的直线有无数条,对称中心只有一个,是圆心,所以C说法正确;直径是线段而不是直线,不能说直径是圆的对称轴,所以D说法错误.故选D.2.D 利用圆和正方形的对称性,可知阴影部分的面积恰为大圆面积π×(4÷2)2=π.的四分之一,即S阴影=143.D 根据圆心角的定义可知∠AOB、∠AOD、∠BOD都是圆心角,∠ACD不是圆心角,故选D.4.D ∵∠1=∠2,∴AB=CD,∠DOB=∠AOC,∴BD=AC,AC=BD,∴①②③④均正确,故选D.5.答案 83解析 ∵∠AOC=∠COD=60°,OA=OC,OC=OD,∴△AOC和△COD都为等边三角形,∴AC=OA=OC=OD=CD,∠OAC=60°,∴四边形OACD为菱形,∴OC⊥AD,∠OAD=∠CAD=30°,∵AB=8,∴OA=OC=4,∵△OAC 为等边三角形,AE ⊥OC ,∴OE =12OC =2,∴AE =42―22=23,∴AD =2×23=43,∴S 菱形OACD =12OC ·AD =12×4×43=83.6.证明 ∵OA =OB ,AD =BE ,∴OD =OE ,在△OCD 和△OCE 中,OD =OE ,CD =CE ,OC =OC ,∴△OCD ≌△OCE (SSS ),∴∠COD =∠COE ,∴AC =BC ,即C 为AB 的中点.7.C 如图,连结OA 、OB ,∵OA =OB =AB ,∴△OAB 为等边三角形,∴∠AOB =60°,∴AB 的度数为60°,即弦AB 所对的劣弧的度数为60°.故选C .8.答案 40解析 如图,连结OB 、OC ,∵OA=OB=OC=OD,∴∠OBA=∠A=65°,∠OCD=∠D=60°,∴∠AOB=180°-2×65°=50°,∠COD=180°-2×60°=60°,∴∠BOC=∠AOD-∠AOB-∠COD=150°-50°-60°=40°,∴BC的度数为40°.能力提升全练9.答案 90°或270°解析 如图,☉O的半径为1,弦AB=2,连结OA、OB,∵OA=OB=1,AB=2,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∴∠AOB=90°,∴AB的度数为90°,ACB的度数为270°,即弦AB所对的弧的度数为90°或270°.10.答案 <解析 解法一:如图,以OD为边作∠DOE=∠BOD,OE与☉O交于点E,连结BE、ED,则∠BOE=2∠BOD,BD=DE,∵∠AOC=2∠BOD,∴∠AOC=∠BOE,∴AC=BE,在△BDE中,BE<BD+ED=2BD,∴AC<2BD.解法二:如图,作∠AOC的平分线交☉O于点E,连结AE、CE,∴∠AOC=2∠AOE=2∠COE,∵∠AOC=2∠BOD,∴∠AOE=∠COE=∠BOD,∴AE=CE=BD,在△ACE中,AC<AE+CE=2BD,∴AC<2BD.11.解析 (1)证明:如图,连结AG,∵AB=AG,∴∠ABG=∠AGB,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠AGB=∠DAG,∠EAD=∠ABG,∴∠DAG=∠EAD,∴EF=FG.(2)当∠ADC为60°时,四边形GCDF为平行四边形.理由如下:∵四边形ABCD是平行四边形,∠D=60°,∴∠B=60°,∠BAD=120°,AD=BC,AD∥BC,∵AB=AG,∴△ABG是等边三角形,∴∠BAG=60°,BG=AG,∵AF=AG,∴AF=BG,∴DF=CG,又∵DF∥CG,∴四边形GCDF为平行四边形.素养探究全练12.答案 3解析 如图,过D作DD'⊥AB于H,交☉O于D',∴BD=D′B,∵BC +BD =23AB ,∴CD′=BC +BD′=23AB,∵AB 的度数为180°,∴CD′的度数为180°×23=120°,∴∠COD'=120°,连结CD'交AB 于M ,此时MC +MD 的值最小,为线段CD'的长,过O 作ON ⊥CD'于N ,交☉O 于点G ,连结CG ,则CN =ND'.∵OC =OD',∴∠OCD'=∠OD'N =30°.∴∠COG =60°,∵OC =OG ,∴△OCG 为等边三角形,∵CN ⊥OG ,∴ON =12OG ,∵OG =OC =12AB =1,∴ON =12,∴CN=32,∴CD'=3,∴MC +MD 的最小值是3.13.解析 (1)证明:如图,连结OM ,ON.∵OA =OB ,AC =BD ,∴OA -AC =OB -BD ,∴OC =OD.∵MC ⊥AB ,ND ⊥AB ,∴∠OCM =∠ODN =90°,又∵OM =ON ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM =∠BON ,∴AM =BN .(2)成立.理由如下:如图,连结AM,BN,∵C为OA的中点,MC⊥AB,∴AM=OM,又∵OA=OM,∴△AOM为等边三角形,∴∠AOM=60°.同理可得∠BON=60°,∴∠MON=180°-∠AOM-∠BON=60°,∴∠AOM=∠MON=∠BON=60°,∴AM=MN=BN.。
第2课时 圆心角定理的推论1.下列说法中正确的是( B ) A .等弦所对的弧相等 B .等弧所对的弦相等 C .圆心角相等,所对的弦相等 D .弦相等,所对的圆心角相等【解析】 圆心角定理及逆定理的条件是在同圆或等圆中,∴A ,C ,D 都不正确.B 中“等弧”隐含着“同圆或等圆中”这个条件.故选B.2.如图3-4-14,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B 的度数为( B ) A .150° B .75° C .60°D .15°图3-4-14 图3-4-153.[2016·兰州]如图3-4-15,在⊙O 中,C 是弧AB ︵的中点,∠A =50°,则∠BOC =( A ) A. 40° B. 45° C. 50°D .60°4.如图3-4-16,已知AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE =( C ) A .40° B .60° C .80°D .120°【解析】 根据在同圆或等圆中,相等的弧所对的圆心角相等,故由BC ︵=CD ︵=DE ︵,得∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC +∠COD +∠DOE =120°,∴∠BOC =∠COD =∠DOE =40°,∴∠COE =80°.故选C.图3-4-16 图3-4-175.如图3-4-17,C ,D 为半圆上的三等分点,则下列说法正确的有( A ) ①AD ︵=CD ︵=BC ︵;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合. A .4个 B .3个 C .2个D .1个6.AB ,CD 是⊙O 的两条弦,OM ,ON 是弦AB ,CD 的弦心距,则(1)如果AB =CD ,那么__∠AOB =∠COD __,__AB ︵=CD ︵__,__OM =ON __; (2)如果AB ︵=CD ︵,那么__AB =CD __,__∠AOB =∠COD __,__OM =ON __; (3)如果∠AOB =∠COD ,那么__OM =ON __,__AB =CD __,__AB ︵=CD ︵__; (4)如果OM =ON ,那么__∠AOB =∠COD __,__AB =CD __,__AB ︵=CD ︵__. 7.如图3-4-18,圆心角∠AOB =20°,将AB ︵旋转n °得到CD ︵,则CD ︵的度数是__20__度.图3-4-18 图3-4-198.如图3-4-19,PO 是直径所在的直线,且PO 平分∠BPD ,OE ⊥AB ,OF ⊥CD ,则①AB =CD ;②AB ︵=CD ︵;③PO =PE ;④BG ︵=DG ︵;⑤PB =PD .其中结论正确的是__①②④⑤__(填所有正确结论的序号).9.[2017·牡丹江]如图3-4-20,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于D ,CE ⊥OB于E ,求证:AD =BE .图3-4-20 第9题答图证明:如答图,连结OC , ∵AC ︵=CB ︵,∴∠AOC =∠BOC . ∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO =∠CEO =90°,在△COD 与△COE 中,⎩⎨⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE (AAS ),∴OD =OE , ∵AO =BO ,∴AD =BE .10.如图3-4-21,⊙O 的两条弦AB ,CD 互相垂直且相交于点P ,OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,AC ︵=BD ︵.求证:四边形OEPF 是正方形.图3-4-21证明:∵AC ︵=BD ︵, ∴AC ︵+BC ︵=BD ︵+CB ︵, 即ACB ︵=CBD ︵,∴AB =CD .又∵OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F , ∴OE =OF .∵AB ⊥CD ,∴∠EPF =∠PFO =∠PEO =90°, ∴四边形OEPF 是矩形,∵OE =OF ,∴四边形OEPF 是正方形.11.如图3-4-22,在⊙O 中,已知AB ︵=2CD ︵,则( B ) A .AB =2CD B .AB <2CD C .AB >2CDD .AB 与2CD 的大小不确定图3-4-22 第11题答图【解析】 如答图,取AB ︵的中点E ,连结AE ,BE . ∵AB ︵=2CD ︵,∴AB ︵=2AE ︵=2BE ︵, ∴CD =AE =BE ,∴AE +BE =2CD .在△ABE 中,AE +BE >AB ,∴AB <2CD .故选B.12.如图3-4-23,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,则点P ( B ) A .到CD 的距离保持不变 B .位置不变 C .等分DB ︵D .随点C 的移动而移动图3-4-23 第12题答图【解析】 如答图,连结OP . ∵OC =OP ,∴∠2=∠3.又∵CP 平分∠OCD ,即∠1=∠2, ∴∠1=∠3,∴CD ∥OP .∵AB ⊥CD ,∴OP ⊥AB ,且OP 是圆的半径, ∴点P 的位置不变.故选B.13.如图3-4-24,C ,D 是以线段AB 为直径的⊙O 上的两点,且四边形OBCD 是菱形.求证:AD ︵=DC ︵.图3-4-24 第13题答图证明:如答图,连结OC . ∵四边形OBCD 是菱形,∴OB =BC ,∠3=∠2,OD ∥BC ,∴∠1=∠B , 又∵OC =OB ,∴OC =BC ,∴∠3=∠B ,∴∠1=∠2,∴AD ︵=DC ︵.14.如图3-4-25,已知AB ,CD 是⊙O 的直径,DF ∥AB 交⊙O 于点F ,BE ∥DC 交⊙O 于点E . (1)求证:BE =DF ;(2)写出图中4组不同的且相等的劣弧(不需证明).图3-4-25 第14题答图解:(1)证明:如答图,连结OE ,OF . ∵DF ∥AB ,BE ∥DC ,∴∠EBA =∠COA =∠CDF . ∵OB =OE ,OD =OF ,∴∠OEB =∠EBA =∠CDF =∠OFD . ∴∠EOB =∠DOF ,∴BE =DF ;(2)图中相等的劣弧有DF ︵=BE ︵,EC ︵=F A ︵,AC ︵=BD ︵,DA ︵=BC ︵,BF ︵=DE ︵等. 15.如图3-4-26,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点. (1)求证:AB 平分∠OAC ;(2)延长OA 至P ,使得OA =AP ,连结PC ,若⊙O 的半径R =1,求PC 的长.图3-4-26 第15题答图解:(1)证明:如答图,连结OC . ∵∠AOB =120°,C 是AB ︵的中点,∴∠AOC =∠BOC =60°,∵OA =OC =OB , ∴△AOC ,△BOC 是等边三角形,∴四边形AOBC 是菱形,∴AB 平分∠OAC ; (2)∵△OAC 是等边三角形, ∴∠CAO =∠OCA =60°.又∵OA =AP ,∴AP =AC ,∴∠P =∠ACP =30°, ∠OCP =∠OCA +∠ACP =90°, ∴△OPC 是直角三角形.∵R =1,∴OC =1,∴PC =3OC = 3.16.如图3-4-27,A 是⊙O 上的一个六等分点,B 是AN ︵的中点,P 是直径MN 上的一个动点,⊙O 的半径为1.(1)找出当AP +BP 取最小值时,点P 的位置; (2)求出AP +BP 的最小值.图3-4-27 第16题答图解:(1)如答图,过点A 作弦AA ′⊥MN 于点E ,连结BA ′交MN 于点P ,连结AP . ∵MN 是⊙O 的直径, ∴AE =EA ′,∴AP =P A ′,即AP +BP =P A ′+BP .根据两点之间线段最短,当A ′,P ,B 三点共线时, P A ′+BP 取得最小值BA ′,即AP +BP =BA ′, ∴点P 位于A ′B 与MN 的交点处; (2)如答图,连结OA ′,OB . ∵A 是⊙O 上的一个六等分点, ∴∠AON =∠A ′ON =60°. 又∵B 是AN ︵的中点, ∴∠BON =30°,∴∠BOA ′=∠A ′ON +∠BON =90°. 又∵OB =OA ′=1, ∴BA ′=2,即AP +BP 的最小值为 2.。
内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。
三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。
第1题. 在同一个圆中,同弧所对的圆周角和圆心角的关系是.答案:圆周角度数等于圆心角度数的一半第2题. 如图,直径AB 垂直于弦CD ,垂足为E ,130AOC ∠=,则AD 的度数为 ,CBD 的度数为,CAD ∠的度数为,ACD ∠的度数为.答案:13010050 65第3题. 如图,CD 是半圆的直径,O 为圆心,E 是半圆上一点,且93EOD ∠=,A 是DC 延长线上一点,AE 与半圆相交于点B ,如果AB OC =,则EAD ∠= ,EOB ∠=,ODE ∠=.答案:3156 4330'第4题. 如图,:5:4ACB ADB =,则AOB ∠=,ACB ∠=,ADB ∠=,CAD CBD ∠+∠=.答案:16080100180第5题. 如图,△ABC 内接于O ,AB AC =,点E ,F 分别在AC 和BC 上,若50ABC ∠=,则BEC ∠=,∠答案:80100第6题. 下列说法正确中的是()A.顶点在圆周上的角称为圆周角 B.相等的圆周角所对的弧相等C.若三角形一边上的中线等于这边的一半,则这一边必为此三角形外接圆的直径 D.圆周角等于圆心角的一半 答案:C第7题. 在同圆中,同弦所对的两个圆周角()A.相等B.互补C.相等或互补D.互余答案:C 第8题. 在O 中,弦AB 所对的劣弧为圆的16,有以下结论:①AB 为60,②60AOB ∠=,③60AOB AB ∠==,④△ABO 为等边三角形,⑤弦AB 的长等于这个圆的半径.其中正确的是()A.①②③④⑤ B.①②④⑤C.①②D.②④⑤答案:B第9题. A ,B ,C ,D ,依次是O 上的四个点,AB BC CD ==,弦AB ,CD 的延B长线交于P 点,若60ABD ∠=,则P ∠等于( )A.40 B.10C.20D.30答案:C第10题. 如图,△ABC 为锐角三角形,△ABC 内接于圆O ,60BAC ∠=,H 是△ABC 的垂心,BD 是O 的直径.求证:12AH BD =答案:连结AD,CD ,CH .BD 是O 直径,90BAD BCD ∠=∠=.又60BAC ∠=,30CAD ∴∠=,30DBC CAD ∠=∠=.在Rt △BCD 中,12CD BD =,H 是△ABC 的垂心,AH BC ⊥,CH AB ⊥.又DC BC ⊥,DA AB ⊥,∴四边形AHCD 为平行四边形.AH CD =,12AH BD ∴=. 第11题. 如图,BC 为O 的直径,AD BC ⊥,垂足为D ,BA AF =,BF 与AD 交于E .(1)求证:AE BE =;(2)若A ,F 把半圆三等分,12BC =,求AE答案:(1)连AC .90ACB ABC ∠+∠=,90BAD ABD ∠+∠=,ACB BAD ∴∠=∠.BA AF =,ACB ABF ∴∠=∠,BAE ABE ∴∠=∠,AE BE =.(2)连AO .BA AF FC ==,30ABF FBC ∴∠=∠=,60ABO ∠=.OA OB =,60ABC ∠=,∴△AOB 为正三角形.AD BO ⊥,D ∴为BO 中点,162BO BC ==,3BD =.在Rt △BDE 中,30EBD ∠=,3BD =,cos BDBE EBD==∠,AE BE ∴==第12题. 如图,已知P 是O 外任意一点,过点P 作直线PAB ,PCD ,分别交O 于点A ,B ,C ,D .求证:12P ∠=(BD 的度数AC -的度数).答案:连结BC ,BCD P ABC ∠=∠+∠,P BCD ABC ∴∠=∠-∠.BCD ∠的度数等于12BD 的度数,ABC ∠的度数等于12AC 的度数,12P ∴∠=(BD 的度数AC -的度数). 第13题. 如图,AD 是△ABC 的外角EAC ∠的平分线,交BC 的延长线于D ,延长DA 交△ABC 的外接圆于点F ,连结FB ,FC . (1)求证:FB FC =; (2)求证:2FB FA FD =;(3)若AB 是△ABC 外接圆的直径,120EAC ∠=,6cm BC =,求AD 的长.答案:(1)EAD FAB ∠=∠,FAB FCB ∠=∠,EAD FCB ∴∠=∠.DFBC FBA CBA ∠=∠+∠, CAD ACF AFC ∠=∠+∠,FBA ACF ∠=∠,CBA AFC ∠=∠, CAD FBC ∴∠=∠.EAD CAD ∠=∠, FCB FBC ∴∠=∠,FB FC ∴=.(2)FAB FCB ∠=∠,FCB FBC ∠=∠,FAB FBC ∴∠=∠.又AFB BFD ∠=∠,∴△AFB ∽△BFD ,FA FBFB FD∴=, 即2FB FA FD =.(3)AB 是直径,90ACB ∠=.1602CAD EAC ∠=∠=,30D ∴∠=,18060BAC EAC ∠=-∠=.在Rt △ABC 中,tan AC BAC BC ∠=,tan 606AC =,AC =Rt △ACD中,2AD AC ==.第14题. 如图,D ,E 在以AB 为直径的半圆上,F ,C 在AB 上,CDEF 为正方形,若正方形边长为1,AC a =,BC b =,则下列式子中,不正确的是( )A.1a b -=B.1ab =C.a b +=D.225a b +=答案:D第15题. 求证:三角形两边的积等于其外接圆的直径与第三边的高的积. 答案:已知:O 是△ABC 的外接圆,AD 是△ABC 中BC 边上的高,AE 是O 直径.求证:AB AC AD AE =.证明:连BE .AE 是直径,90ABE ∠=.AD BC ⊥,90ADC ∠=,ABE ADC ∠=∠,C E ∠=∠,△ADC ∽△ABE ,AC ADAE AB=,即AB AC AD AE =.第16题. 如图反映某学校学生上学方式的扇形统计图,图中步行上学同学所占扇形圆心角的度数是 .答案:180第17题. 如图,圆内接四边形ABCD 的对角线AC ,BD 把四边形的四个内角分成八个角,这八个角中相等的角的对数至少有( )A.1对 B.2对 C.3对 D.4对 答案:D第18题. 如图,AC 是O 的直径,AB ,CD 是O 的两条弦,且AB CD ∥.如果32BAC ∠=,则AOD ∠的度数是( )A.16 B.32 C.48 D.64B答案:D第19题. 如图,四边形ABCD 内接于O ,若100BOD ∠=,则DAB ∠的度数( ) A.50 B.80 C.100 D.130 答案:D第20题. 如图,已知:O 是△ABC 的外接圆,50BAC ∠=,47ABC ∠=,求AOB ∠的度数. 答案:100。
初二圆心角试题分析及答案1. 题目:已知圆心角为60°,半径为6cm,求圆心角所对的弧长。
分析:根据弧长公式l = (θ/360°) × 2πr,其中θ为圆心角,r为半径。
答案:将已知数据代入公式,得l = (60°/360°) × 2π ×6cm = πcm。
2. 题目:若圆心角为120°,求该圆心角所对的圆周角的度数。
分析:圆心角和圆周角的关系是圆心角的一半。
答案:圆周角的度数为120° ÷ 2 = 60°。
3. 题目:在半径为5cm的圆中,一个圆心角为90°,求该圆心角所对的扇形面积。
分析:扇形面积公式为A = (θ/360°) × πr²,其中θ为圆心角,r为半径。
答案:代入数据得A = (90°/360°) × π × 5²cm² =25π/4 cm²。
4. 题目:已知圆的直径为10cm,求圆心角为45°的弧长。
分析:首先求出半径,半径为直径的一半,即5cm。
然后使用弧长公式l = (θ/360°) × 2πr。
答案:代入数据得l = (45°/360°) × 2π × 5cm = 5π/4 cm。
5. 题目:一个圆心角为30°的扇形,其面积为3π cm²,求该扇形的半径。
分析:使用扇形面积公式A = (θ/360°) × πr²,将面积和圆心角代入公式,解出半径。
答案:由A = (30°/360°) × πr² = 3π cm²,解得 r² = 36,所以 r = 6cm。
6. 题目:若一个圆的周长为37.68cm,求圆心角为150°的弧长。
例题1、如图,已知:在⊙O 中,OA ⊥OB ,∠A=35°,求和的度数. 解:连结OC ,在Rt △AOB 中,∠A=35° ∴∠B=55°,又∵OC=OB , ∴∠COB=180°-2∠B=70°,∴的度数为70°,∠COD=90°-∠COB=90°-70°=20°,∴的度数为20°.说明:连结OC ,通过求圆心角的度数求解。
此题是基本题目,目的是巩固基础知识.例题2、如图,已知:在⊙O 中,=2,试判断∠AOB 与∠COD ,AB 与2CD 之间的关系,并说明理由.解:∠AOB=2∠COD , AB<2CD ,理由如下: 如图,在⊙O 上取一点C ’,使=.∴∠COD=∠DOC’∵=2,∴,=+=.∴AB=CC’. ∠AOB=∠CO C’=∠COD+∠DOC’=2∠COD又∵在△CD C’中,CD+DC’> CC’,∴CC’ <2CD ,即AB<2CD.说明:①证明两条线段的不等关系,常常把两条线段放到一个三角形中。
②此题进一步理解定理及其推论的应用条件,在“相等”问题中的不等量.由=2可得∠AOB=2∠COD 是正确的,但由=2得出AB=2CD ,是错误的,培养学生在学习中的迁移能力.例题3、如图,已知:AB 是⊙O 直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,求证:=.分析:要证弧相等,可以证弧对应的弦相等,弧对应的圆心角相等. 证法一:连结AC 、OC 、OD 、BD ,∵M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB , ∴AC= OC 、OD=BD 又∵OC=OD ,∴AC= BD ,∴=.证法二:连结OC 、OD ,∵M 、N 分别是AO 、BO 的中点,∴OM=21AO ,ON=21BO , ∵OA=OB ,∴OM=ON ,∵CM ⊥AB ,DN ⊥AB ,∴OC=OD ,∴Rt △COM ≌Rt △DON ,∴∠COA=∠DOB ,∴=.证法三、如图,分别延长CM 、DN 交⊙O 于E 、F ,OCD (例题1图)CDC 'O(例题2图) ACDMNO OABM N CDEF(例题3图1)(例题4图)(例题5图)∵M 、N 分别是AO 、BO 的中点,∴OM=21AO ,ON=21BO , ∵OA=OB ,∴OM=ON ,又∵CM ⊥AB ,DN ⊥AB ,∴CE=DF ,∴=∵=21,=21,∴=.说明:此题是利用本节定理及推论应用的优秀题目,题目不难,但方法灵活,培养学生灵活解决问题的能力和基本的辅助线的作法.例题4、如图,C 是⊙O 直径AB 上一点,过C 点作弦DE ,使CD =CO ,若的度数为40°,求的度数.分折: 要求的度数,可求它所对的圆心角∠BOE 的度数,如图作辅助线,通过等量转换得出结果.解: 连OE 、OD 并延长DO 交⊙O 于F . ∵的度数为40°,∴∠AOD=40°.∵CD =CO , ∴∠ODE =∠AOD =40°. ∵OD =OE , ∴∠E = ∠ODE =40°.∴∠EOF=∠E+∠ODE=80°,∠BOF= ∠AOD =40°, 则∠BOE=∠EOF +∠BOF =80°+40°=120°,∴的度数为120°.说明:此题充分体现了圆中的等量转换以及圆中角度的灵活变换.例题5、如图,在⊙O 中,直径AB 垂直于CD 并交CD 于E ;直径MN 交CD 于F ,且OE FD FO 2==,求的度数.解 连结OD .CD AB ⊥于E ,且OE OF 2=. ︒=∠∴30EFO ,︒=∠60EOF , 又FD OF = .︒=∠=∠∴15FOD FDO ︒=∠∴75AOD ,∴的度数是︒150.说明:由于圆心角的度数与它所对的弧的度数相等,而我们对角是比较熟悉的,所以求弧的度数的问题往往转化为求它所对的圆心角度数的问题.AB CO D EF(例题6图)(例题7图)例题6、已知:如图,M 、N 分别是⊙O 的弦AB 、CD 的中点,CD AB =,求证:CNM AMN ∠=∠.分析:由弦CD AB =,想到利用弧,圆心角、弦、弦心距之间的关系定理,又M 、N 分别为AB 、CD 的中点,如连结OM ,ON ,则有ON OM =,AB OM ⊥,CD ON ⊥,故易得结论.证明 连结OM 、ON ,O 为圆心,M 、N 分别为弦AB 、CD 的中点,CD ON AB OM ⊥⊥∴,.ON OM =∴ONM OMN ∠=∠∴ONM CNM OMN AMN ∠-︒=∠∠-︒=∠90,90 CNM AMN ∠=∠∴说明:有弦中点,常用弦心距利用垂径定理及圆心角、弧、弦、弦心距之间关系定理来证题.例题7、如图,已知⊙O 中,,OB 、OC 分别交AC 、DB 于点M ,N ,求证:OMN ∆是等腰三角形.分析:由,应得:AC OM ⊥,BD ON ⊥,因此,只要证明BD AC =就可以证明MON ∆是等腰三角形.说明:在本题中,请注意垂径定理基本图形在证明中的作用例题8、如图,已知AB 为⊙O 的弦,从圆上任一点引弦AB CD ⊥,作OCD ∠的平分线交⊙O 于P 点,连接PB PA ,. 求证:PB PA =. 证明:连结OP .CDAB =∵ ,OP CO =∴ OPC OCP ∠=∠. ∵ CP 是DCO ∠的平分线,∴ OCP DCP ∠=∠.∴OP ∥CD . ∵ ,AB CD ⊥∴ AB OP ⊥.∴ .PB PA = ∴说明:本题考查在同圆中等弧对等弦及垂径定理的综合应用,解题关键是连结OP ,证AB OP ⊥.易错点是囿于用全等三角形的办法证明PA 与PB 相等而使思维受阻或证明繁杂.PA=PB。
初中数学:圆心角定理的推论练习(含答案)
知识点 圆心角、弧、弦、弦心距之间的关系
1.如图3-4-14,AB ,CD 是⊙O 的两条弦,OM ⊥AB ,ON ⊥CD ,则: (1)如果AB =CD ,那么________,________,________; (2)如果AB ︵=CD ︵
,那么________,________,________; (3)如果∠AOB =∠COD ,那么________,________,________; (4)如果OM =ON ,那么________,________,________.
3-4-14
3-4-15
2.如图3-4-15所示,在⊙O 中,AB ︵=AC ︵
,∠A =30°,则∠B 的度数是( ) A .150° B .75° C .60° D .15°
3.如图3-4-16,已知点A ,B ,C 均在⊙O 上,并且四边形OABC 是菱形,那么∠AOC 与2∠AOB 之间的大小关系是( )
A .∠AOC >2∠AO
B B .∠AO
C =2∠AOB C .∠AOC <2∠AOB
D .不能确定
3-4-16
3-4-17
4.如图3-4-17,已知AB 是⊙O 的直径,C ,D 是BE ︵
上的三等分点,∠AOE =60°,则∠COE 的度数为( )
A .40°
B .60°
C .80°
D .120°
5.如图3-4-18,圆心角∠AOB =20°,将AB ︵旋转n °得到CD ︵,则CD ︵
的度数是________.
3-4-18
3-4-19
6.如图3-4-19,在⊙O 中,C 是弧AB 的中点,∠A =50°,则∠BOC =________°.
图3-4-20
7.如图3-4-20, O 是圆心,且PO 平分∠BPD ,OE ⊥AB ,OF ⊥CD ,则下列结论:①AB =CD ;②AB ︵
=CD ︵;③PO =PE ;④BG ︵=DG ︵
;⑤PB =PD ,其中正确的是________(填写序号).
8.课本课内练习第2题变式如图3-4-21所示,在⊙O 中,弦AB 与弦CD 相等.求证:AD ︵
=BC ︵.
图3-4-21
9.2017·牡丹江如图3-4-22,在⊙O 中,AC ︵=CB ︵
,CD ⊥OA 于点D ,CE ⊥OB 于点E .求证:AD =BE .
图3-4-22
10.如图3-4-23所示,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵
,∠COD =34°,则∠AEO 的度数是( )
A .51°
B .56°
C .68°
D .78°
3-4-23
3-4-24
11.如图3-4-24所示,在⊙O 中,AB ︵=2CD ︵
,那么( ) A .AB >2CD B .AB <2CD C .AB =2CD
D .无法比较AB 与2CD 的大小
12.如图3-4-25所示,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( )
A .到CD 的距离保持不变
B .位置不变
C .等分DB ︵
D .随点C 的移动而移动
3-4-25
3-4-26
13.如图3-4-26,AB 是⊙O 的直径,点C 在⊙O 上,∠AOC =40°,D 是弧BC 的中点,则∠ACD =________°.
14.如图3-4-27,在⊙O 中,AB ︵=BC ︵=CD ︵
,OB ,OC 分别交AC ,DB 于点M ,N . 求证:∠OMN =∠ONM .
图3-4-27
15.如图3-4-28所示,在⊙O 中,半径OA ⊥OB ,C ,D 是AB ︵
的三等分点,AB 分别交OC ,OD 于点E ,F .
求证:AE =BF =CD .
图3-4-28
16.如图3-4-29所示,A 是半圆上的一个三等分点,B 是AN ︵
的中点,P 是直径MN 上一动点,⊙O 的半径为1,则PA +PB 的最小值是多少?
图3-4-29
详解详析
1.(1)∠AOB =∠COD AB ︵=CD ︵
OM =ON (2)AB =CD ∠AOB =∠COD OM =ON (3)OM =ON AB =CD AB ︵=CD ︵
(4)∠AOB =∠COD AB =CD AB ︵=CD ︵
2.B
3.B [解析] ∵四边形OABC 是菱形, ∴AB =BC , ∴∠AOB =∠BOC , ∴∠AOC =2∠AOB . 故选B.
4.C [解析] ∵∠AOE =60°, ∴∠BOE =180°-∠AOE =120°, ∴BE ︵
的度数是120°. ∵C ,D 是BE ︵
上的三等分点, ∴CD ︵与ED ︵
的度数都是40°, ∴∠COE =80°.
5.20° 6.40 7.①②④⑤
8.证明:∵AB =CD ,∴AB ︵=CD ︵
, ∴AB ︵-BD ︵=CD ︵-BD ︵,∴AD ︵=BC ︵.
9.证明:如图,连结OC , ∵AC ︵=CB ︵, ∴∠AOC =∠BOC . ∵CD ⊥OA ,CE ⊥OB , ∴∠CDO =∠CEO =90°. 在△COD 与△COE 中,
⎩⎨⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,
∴△COD ≌△COE , ∴OD =OE . 又∵AO =BO , ∴AO -OD =BO -OE , 即AD =BE .
10.A [解析] ∵BC ︵=CD ︵=DE ︵
,∠COD =34°, ∴∠BOC =∠EOD =∠COD =34°,
∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,
∴∠AEO =∠EAO =1
2
×(180°-78°)=51°.
11.B
[解析] 如图,在⊙O 上截取DE ︵=CD ︵,连结CE ,DE ,则AB ︵=CE ︵
,AB =CE ,CD =DE ,根据三角形的三边关系知CD +DE =2CD >CE ,则AB <2CD ,故选B.
12.B [解析] 连结OP ,如图所示.
∵OC =OP ,∴∠2=∠3. 又∵∠1=∠2, ∴∠1=∠3,∴CD ∥OP . ∵CD ⊥AB , ∴OP ⊥AB .
而OP 是⊙O 的半径,故点P 的位置不变. 故选B. 13.125
[解析] 连结OD ,
∵AB 是⊙O 的直径,∠AOC =40°, ∴∠BOC =140°,∠ACO =70°. ∵D 是弧BC 的中点, ∴∠COD =70°, ∴∠OCD =55°,
∴∠ACD =∠ACO +∠OCD =70°+55°=125°. 14.证明:∵AB ︵=BC ︵=CD ︵
, ∴OM ⊥AC ,ON ⊥BD .
∵AB ︵+BC ︵=BC ︵+CD ︵,∴AC ︵=BD ︵, ∴OM =ON ,∴∠OMN =∠ONM . 15.证明:连结AC ,BD . ∵C ,D 是AB ︵
的三等分点,
∴AC ︵=CD ︵=DB ︵
,∠AOC =∠COD =∠DOB , ∴AC =CD =BD .
∵∠AOB =90°,∴∠AOC =30°. ∵OA =OC ,∴∠OAC =∠ACE =75°. 又∵OA =OB ,∴∠OAB =45°,
∴∠AEC =∠EAO +∠AOC =45°+30°=75°, ∴∠AEC =∠ACE =75°,∴AE =AC .
3 同理可证BF =BD ,∴AE =BF =CD .
16解:如图,作点B 关于MN 的对称点B ′,连结AB ′交MN 于点P ,连结OB ′,OB ,PB
,
则此时PA +PB 取得最小值,PA +PB =PA +PB ′=AB ′.
∵A 是半圆上的一个三等分点,AB ︵=BN ︵,
∴∠AON =60°, ∠BON =∠B ′ON =30°,
∴∠AOB ′=90°.
又∵OA=OB′=1,∴AB ′=2,
∴PA +PB 的最小值是 2.。