(2)在BC边上取点F,使BF=
,连接OF;
(3)在CD边上取点G,使CG=
,连接OG;
(4)在DA边上取点H,使DH=
,连接OH.
由于AE=
+
=
+
=
+
=
.
可证S =S =S =S =S . △AOE 四边形EOFB 四边形FOGC 四边形GOHD △HOA
答案 3;2;1;EB;BF;FC;CG;GD;DH;HA
解析 (1)证明:∵EG垂直平分DC,∴DE=CE,
∴∠EDC=∠ECD.
∵CD平分∠ECG,∴∠ECD=∠DCG.∴∠EDC=∠DCG.
∴DE∥GC. (1分)
同理DG∥EC.∴四边形DGCE是平行四边形.
∵DE=CE,∴四边形DGCE是菱形. (2分)
(2)∵四边形DGCE是菱形,∴DG=DE=6.
解析 (1)证明:∵D,E,F分别是AB,AC,BC的中点,
∴DE= 1
2
1
BC=FC,DF= 2
AC=EC.
(1分)
∵AC=BC,∴DE=FC=DF=EC. (2分)
∴四边形DFCE是菱形. (3分)
(2)过点E作EH⊥BC于点H,如图.
∵AC=BC,∴∠A=∠B.∵∠A=75°,∴∠C=180°-∠A-∠B=30°. (4分)
图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做 格点. (1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°; (2)在图2中以格点为顶点画出一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积 的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积 没有剩余(画出一种即可).