电场和磁场(高三二轮复习)
- 格式:ppt
- 大小:1.35 MB
- 文档页数:65
专题训练——电场和磁场(2)一.单项选择题1.右图是一张实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹。
云室旋转在匀强磁场中,磁场方向垂直照片向里。
云室中横放的金属板对粒子的运动起阻碍作用。
分析此径迹可知粒子( ) A. 带正电,由下往上运动 B. 带正电,由上往下运动 C. 带负电,由上往下运动 D. 带负电,由下往上运动2. 如图所示,在竖直放置的光滑半圆形绝缘细管的圆心O 处放一点电荷。
将质量为m 、电荷量为q 的小球从半圆形管的水平直径端点A 静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力。
若小球所带电量很小,不影响O 点处的点电荷的电场,则点电荷在B 点处的电场强度的大小为( ) A .mg q B . 2mg q C .3mg q D .4mgq3.如图所示,一个半径为R 的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B 大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向)。
若导线环上载有如图所示的恒定电流I ,则下列说法正确的是( )A .导电圆环所受安培力的大小为2BIRB .导电圆环所受安培力的大小为2πBIRsin θC .导电圆环所受安培力方向竖直向下D .导电圆环所受安培力方向斜向上4.如图所示,匀强电场中三点A 、B 、C 是一个三角形的三个顶点,∠ABC=∠CAB=30°,BC =2 3 m ,已知电场线平行于△ABC 所在的平面,一个电荷量q =-2×10-6C 的点电荷由A 移到B 的过程中,电势能增加了1.2×10-5J ,由B 移到C 的过程中电场力做功6×10-6J ,下列说法正确的是( ) A.该电场的场强为1 V/m B.A 点的电势低于B 点的电势C. B 、C 两点的电势差U BC =3 VD.负电荷由C 点移到A 点的过程中,电势能增加 5.如图,平行板电容器与电源相连,下极板接地.带电油滴位于两极板的中心P 点且恰好处于静止状态,现将平行板电容器两极板在纸面内绕OO ′迅速顺时针转过45°,则( )AC BA.P 点处的电势降低B.带电油滴仍将保持静止状态C.带电油滴将水平向右做匀加速直线运动D.带电油滴到达极板前具有的电势能不断增加6.如图甲是回旋加速器的原理示意图.其核心部分是两个D 型金属盒,在加速带电粒子时,两金属盒置于匀强磁场中(磁感应强度大小恒定),并分别与高频电源相连.加速时某带电粒子的动能E k 随时间t 变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断正确的是( )A.高频电源的变化周期等于t n -t n-1B.在E k -t 图象中t 4-t 3=t 3-t 2=t 2-t 1C.粒子加速次数越多,粒子获得的最大动能一定越大D.不同粒子获得的最大动能都相同7.两电荷量分别为q 1和q 2的点电荷放在x 轴上的O 、M 两点,两电荷连线上各点电势φ随x 变化的关系如图所示,其中A 、N 两点的电势为零,ND 段中C 点电势最高,则( ) A.M 点的电场强度大小为零 B.A 点的电场强度大小为零 C.NC 间场强方向沿x 轴正方向D.将一负点电荷从N 点移到D 点,电场力先做正功后做负功8.如图,光滑的水平桌面处在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的绝缘细管,细管封闭端有一带电小球,小球直径略小于管的直径,细管的中心轴线沿y 轴方向。
坚持夯实基础为主的主线
(第二课时)
四.典例精析
题型1.(电场性质的理解)电子在电场中运动时,仅受电场力作用,其由a点运动到b
的轨迹如图中虚线所示。
图中一组平行等距实线可能是电场线,也可能是等势线,则下列说法中正确的是()
A.不论图中实线是电场线还是等势线,a点的电势都比b点低
B.不论图中实线是电场线还是等势线,a点的场强都比b点小
C.如果图中实线是电场线,则电子在a点动能较小
D.如果图中实线是等势线,则电子在b点动能较小
解析:由运动轨迹可知若实线是电场线的话所受电场力水平向右,若实线是等势线的话所受电场力竖直向下。
再结合粒子是电子,可知场强方向要不水平向左(b点电势高),要不场强方向竖直向上(a点电势高)。
且为匀强电场场强处处相同。
AB错。
若实线是电
三点在O点合场强不为零,而
,电场力做负功,电势能增大。
BD对。
等量异种电荷的中垂线是等势线,而电场线和等势线是垂直的
以上的不同的场
满足什么条件时,此带电微粒会碰到偏转极板
内存在着匀强电场
方向垂直的直线上,该直线与x轴和y轴的
2R
轴从C 点进入有磁场区域,并从坐标原点O 沿轴负方向离开,求点场强度和磁感应强度的大小和方向。
轴相交的区域,并说明理由。
,那么它们与x 轴相交的区域又在哪里?并说明带电粒子平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力平衡。
设电场 qE mg = 可得 q
mg E =
方向沿y 轴正方向。
带电微粒进入磁场后,将做圆周运动。
且 r=R。
(2023届高三物理二轮学案)专题三电场和磁场第二讲带电粒子在电磁场中的运动第一课时带电粒子在电场中的运动(一)带电粒子在电场中做直线运动的解题思路(二)利用“两个分运动”求解带电粒子在电场中的偏转问题1.把偏转运动分解为两个独立的直线运动——平行于极板的匀速直线运动,L=v0t;垂直于极板的匀加速直线运动,a=qUmd,vy=at,偏转距离y=12at2,速度偏转角tan θ=vyv0。
2.根据动能定理,带电粒子的动能变化量ΔEk =ydUq。
(三)分时分段处理带电粒子在交变电场中的运动当粒子平行电场方向射入时,粒子可做周期性的直线运动,当粒子垂直于电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动可能具有周期性。
典型例题1.(多选)如图所示,一带电荷量为q的带电粒子以一定的初速度由P点射入匀强电场,入射方向与电场线垂直。
粒子从Q点射出电场时,其速度方向与电场线成30°角。
已知匀强电场的宽度为d,P、Q两点的电势差为U,不计重力作用,设P点的电势为零。
则下列说法正确的是( )A.带电粒子带负电B.带电粒子在Q点的电势能为-UqC.此匀强电场的电场强度大小为E=23U 3dD.此匀强电场的电场强度大小为E=3U 3d2.(多选)如图所示,板长为L的平行板电容器与一直流电源相连接,其极板与水平面成30°角;若带电粒子甲、乙由图中的P点射入电容器,分别沿着虚线1和2运动(虚线1为水平线,虚线2为平行且靠近上极板的直线)。
下列关于带电粒子的说法正确的是( )A.两粒子均做匀减速直线运动B.两粒子电势能均逐渐增加C.两粒子机械能均守恒D.若两粒子质量相同,则甲的电荷量一定比乙的电荷量大3.(多选)如图所示,质子(11H)、氘核(12H)和α粒子(24He)都沿平行板电容器的中线OO′方向,垂直于电场线射入两极板间的匀强电场中,射出后都能打在同一个与中线垂直的荧光屏上,使荧光屏上出现亮点。
电场与磁场的理解一、选择题1.某平面区域内一静电场的等势线分布如图中虚线所示,相邻的等势线电势差相等,一负电荷仅在静电力作用下由a 运动至b ,设粒子在a 、b 两点的加速度分别为a a 、b a ,电势分别为a ϕ、b ϕ,该电荷在a 、b 两点的速度分别为a v 、b v ,电势能分别为p a E 、p b E ,则( )A .a b a a >B .b a v v >C .p p a b E E >D .a b ϕϕ>2.某静电场方向平行于x 轴,x 轴上各点电场强度随位置的变化关系如图所示,规定x 轴正方向为电场强度正方向。
若取x 0处为电势零点,则x 轴上各点电势随位置的变化关系可能为( )A .B .C .D .3.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V 。
下列说法正确的是( ) A .电场强度的大小为2.5V/cmB .坐标原点处的电势为2VC .电子在a 点的电势能比在b 点的小7eVD .电子从b 点运动到O 点,电场力做功为16eV4.如图,空间中存在着水平向右的匀强电场,现将一个质量为m ,带电量为q +的小球在A 点以一定的初动能k E 竖直向上抛出,小球运动到竖直方向最高点C 时的沿场强方向位移是0x ,动能变为原来的一半(重力加速度为g ),下列说法正确的是( )A .场强大小为22mgqB .A 、C 竖直方向的距离为0x 的2倍C .小球从C 点再次落回到与A 点等高的B 点时,水平位移是02xD .小球从C 点落回到与A 点等高的B 点时,电场力做功大小为2k E5.如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为圆的两条直径,60aOc ∠=︒。
将一电荷量为q 的正点电荷从a 点移到b 点,电场力做功为W (0W >);若将该电荷从d 点移到c 点,电场力做功也为W 。
2023年高三物理二轮高频考点冲刺突破专题14带电粒子在交变电场和磁场中的运动专练目标专练内容目标1高考真题(1T—4T )目标2带电粒子在交变电场中的直线运动(5T—8T )目标3带电粒子在交变电场中的曲线运动(9T—12T )目标4带电粒子在交变电磁场中的运动(13T—16T )【典例专练】一、高考真题1.某装置用电场控制带电粒子运动,工作原理如图所示,矩形ABCD 区域内存在多层紧邻的匀强电场,每层的高度均为d ,电场强度大小均为E ,方向沿竖直方向交替变化,AB 边长为12d ,BC 边长为8d ,质量为m 、电荷量为q +的粒子流从装置左端中点射入电场,粒子初动能为k E ,入射角为θ,在纸面内运动,不计重力及粒子间的相互作用力。
(1)当0θθ=时,若粒子能从CD 边射出,求该粒子通过电场的时间t ;(2)当k 4E qEd =时,若粒子从CD 边射出电场时与轴线OO '的距离小于d ,求入射角θ的范围;(3)当k 83E qEd =,粒子在θ为22ππ-~范围内均匀射入电场,求从CD 边出射的粒子与入射粒子的数量之比0:N N 。
2.两块面积和间距均足够大的金属板水平放置,如图1所示,金属板与可调电源相连形成电场,方向沿y 轴正方向。
在两板之间施加磁场,方向垂直xOy 平面向外。
电场强度和磁感应强度随时间的变化规律如图2所示。
板间O 点放置一粒子源,可连续释放质量为m 、电荷量为(0)q q >、初速度为零的粒子,不计重力及粒子间的相互作用,图中物理量均为已知量。
求:(1)0=t 时刻释放的粒子,在02πm t qB =时刻的位置坐标;(2)在06π0~m qB 时间内,静电力对0=t 时刻释放的粒子所做的功;(3)在20022004ππ4E m E m M qB qB ⎛⎫ ⎪⎝⎭,点放置一粒接收器,在06π0~m qB 时间内什么时刻释放的粒子在电场存在期间被捕获。
专题训练——电场和磁场(1)一.单项选择题1.用两根等长的细线各悬一个小球,并挂于同一点,已知两球质量相等.当它们带上同种电荷时,相距L 而平衡,如图所示.若使它们所带电荷量都减少一半,待它们重新平衡后,两球间距离( )A .大于L 2 B .等于L2 C .小于L2D .等于L2.如图所示,带电微粒在某一真空中水平向右的匀强电场恰能沿图示虚线由A 向B 做直线运动,则微粒从A 向B 运动的过程中( )A .动能增加B .电势能增加C .机械能增加D .动能与电势能之和增加3. 图中等间距平行虚直线为等势面,两粒子M 、N 质量相等,所带电荷的绝对值也相等。
现将M 、N 从虚线上的O 点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示。
点a 、b 、c 为实线与虚线的交点,已知O 点电势高于c 点。
若不计重力,则( ) A. M 带负电荷,N 带正电荷B. N 在a 点的速度大于M 在c 点的速度C. N 在从O 点运动至a 点的过程中克服电场力做功D. M 在从O 点运动至b 点的过程中,电场力对它做的功等于零4.如图所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为N 1,现在磁铁左上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为N 2 ,则以下说法正确的是( )A .弹簧长度将变长B .弹簧长度将不变C .N 2>N 1D .N 2<N 15.如图所示,两平行、正对金属板水平放置,使上面金属板带上一定量正电荷,下面金属板带上等量的负电荷,再在它们之间加上垂直纸面向里的匀强磁场,一个带电粒子以初速度v 0沿垂直于电场和磁场的方向从两金属板左端中央射入后向上偏转.若带电粒子所受重力可忽略不计,仍按上述方式将带电粒子射入两板间,为使其向下偏转,下列措施中一定不可行的是( )A .仅增大带电粒子射入时的速度B .仅增大两金属板所带的电荷量C .仅减小粒子所带电荷量D .仅改变粒子的电性6.如图所示竖直放置的两个平行金属板间存在匀强电场,与两板上边缘等高处有两个质量相同的带电小球,P 小球从紧靠左极板处由静止开始释放,Q 小球从两板正中央由静止开始释放,两小球最终都能运动到右极板上的同一位置,则从开始释放到运动到右极板的过程中它们的( )A .运行时间P Q t t >B .电荷量之比:2:1P Q q q =C .电势能减少量之比:2:1P Q E E ∆∆=D .动能增加量之比:4:1KP KQE E ∆∆=7.如图所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直于纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v -t 图象如图所示,其中正确的是( )8. 磁感应强度为B 的匀强磁场垂直光滑水平桌面向下,有一正点电荷固定在桌面上,另一质量为m ,电量为q 的负电荷此正电荷沿固定的光滑水平轨道做匀速圆周运动,运动方向为俯视顺时针,若作用在负电荷的电场力恰好是磁场力的3倍,则它的角速度是( )A. B. C. D.二.计算题9. 一质量m 、带电q 的粒子以速度V 0从A 点沿等边三角形ABC 的AB 方向射入强度为B 的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC 射出,求圆形磁场区域的最小面积。
通过场的类比(电场与重力场类比、电场与磁场的类比),形象理解电场的性质,掌握电场力和洛伦兹力的特性;围绕两大性质,理顺电场中基本概念的相互联系;熟知两大定则(安培定则和左手定则),准确判定磁场及磁场力的方向;认识两类偏转模型(类平抛和圆周运动),掌握带电粒子在场中的运动性质、规律和分析处理方法.第6讲带电粒子在电场中的运动1.[2015·全国卷Ⅰ] 如图61所示,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则( )A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功【考题定位】难度等级:容易出题角度:本题考查了考生对电场能的性质的理解,要求考生掌握匀强电场的电场强度与电势差的关系.2.[2015·全国卷Ⅱ] 如图62所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【考题定位】难度等级:容易出题角度:本题考查了力电综合的力与运动关系问题,涉及平行板电容中电场特点、牛顿运动定律的应用等考点.考点一电场的性质1 如图64所示,半径为R的水平绝缘圆盘可绕竖直轴OO′转动,水平虚线AB、CD互相垂直,一电荷量为+q的可视为质点的小物块置于距转轴r处,空间有方向由A指向B的匀强电场.当圆盘匀速转动时,小物块相对圆盘始终静止.小物块转动到位置Ⅰ(虚线AB上)时受到的摩擦力为零,转动到位置Ⅱ(虚线CD上)时受到的摩擦力为f.求:(1)圆盘边缘两点间电势差的最大值;(2)小物块由位置Ⅰ转动到位置Ⅱ克服摩擦力做的功.导思①小物块分别转动到位置Ⅰ、位置Ⅱ时由哪些力提供向心力?②小物块由位置Ⅰ转动到位置Ⅱ电场力做了多少功?克服摩擦力做了多少功?归纳1.电场力:电场对放入其中的电荷有力的作用,电场力的大小和方向由电场强度和电荷共同决定,大小为F=qE,正电荷所受的电场力方向与电场方向相同.2.电势能:电势能是标量,电场中电荷的电势能与电势的高低及电荷所带的电荷量及电性有关,即E p=qφ,而电场力做的功等于电势能变化的相反数,即W=qU=-ΔE p.变式1 (多选)图65是某空间部分电场线分布图,在电场中取一点O,以O为圆心的圆周上有M、Q、N三个点,连线MON与直电场线重合,连线OQ垂直于MON.下列说法正确的是( )A.M点的场强大于N点的场强B.O点的电势等于Q点的电势C.将一负点电荷由M点移到Q点,电荷的电势能增加D.一静止的正点电荷只受电场力作用能从Q点沿圆周运动至N点变式2 (多选)如图66所示,图中五点均在匀强电场中,它们刚好是一个半径为R=m 的圆的四个等分点和圆心.b、c、d三点的电势如图所示.已知电场线与圆所在的平面平行,关于等分点a处和圆心O处的电势及电场强度,下列描述正确的是( )A.a点的电势为4 VB.O点的电势为5 VC.电场强度方向由O点指向b点D.电场强度的大小为10 5 V/m考点二带电粒子在电场中的加速和偏转2 图67为两组平行金属板,一组竖直放置,一组水平放置,今有一质量为m、电荷量为e的电子静止在竖直放置的平行金属板的A点,经电压U0加速后通过B点进入两板间距为d、电压为U的水平放置的平行金属板间,若电子从两块水平平行板的正中间射入,且最后电子刚好能从右侧的两块平行金属板间穿出,求:(1)电子通过B点时的速度大小;(2)右侧平行金属板的长度;(3)电子穿出右侧平行金属板时的动能.导思①电子通过A、B做什么运动?怎样计算电子在B点的速度?②电子在两块水平平行金属板间做什么运动?水平位移和竖直位移分别满足什么关系?③电子在运动过程中,电场力一共做了多少功?归纳1.带电粒子在电场中的加速可以应用牛顿运动定律结合匀变速直线运动的公式求解,也可应用动能定理qU =12mv 22-12mv 21求解,其中U 为带电粒子初、末位置之间的电势差.2.带电粒子在电场中的偏转带电粒子在匀强电场中做匀变速曲线运动,属类平抛运动,要应用运动的合成与分解的方法求解,同时要注意:(1)明确电场力的方向,确定带电粒子到底向哪个方向偏转;(2)借助画出的运动示意图寻找几何关系或题目中的隐含关系.带电粒子在电场中的运动可从动力学、能量等多个角度来分析和求解.考点三 带电体在电场中的运动3 [2015·四川卷] 如图68所示,粗糙、绝缘的直轨道OB 固定在水平桌面上,B 端与桌面边缘对齐,A 是轨道上一点,过A 点并垂直于轨道的竖直面右侧有大小E =×106N /C 、方向水平向右的匀强电场.带负电的小物体P 电荷量是×10-6C ,质量m = kg ,与轨道间动摩擦因数μ=,P 从O 点由静止开始向右运动,经过 s 到达A 点,到达B 点时速度是5 m /s ,到达空间D 点时速度与竖直方向的夹角为α,且tan α=,P 在整个运动过程中始终受到水平向右的某外力F 作用,F 大小与P 的速率v 的关系如下表所示.P 视为质点,电荷量保持不变,忽略空气阻力,g 取10 m /s 2.求:(1)小物体P 从开始运动至速率为2 m /s 所用的时间; (2)小物体P 从A 运动至D 的过程,电场力做的功.归纳带电体通常是指需要考虑重力的物体,如带电小球、带电液滴、带电尘埃等.带电体在电v/(m ·s -1)0≤v≤22<v<5 v≥5 F/N263场中运动的研究方法与力学综合题的分析方法相近,一般应用牛顿运动定律、运动学规律、动能定理和能量守恒定律求解.当带电体同时受重力和电场力时,可以应用等效场的观点处理.变式1 如图69所示,CD左侧存在场强大小 E=mgq、方向水平向左的匀强电场,一个质量为m、电荷量为+q的光滑绝缘小球从底边BC长为L、倾角为53°的直角三角形斜面顶端A 点由静止开始下滑,运动到斜面底端C点后进入一竖直半圆形细圆管内(C处为一小段长度可忽略的光滑圆弧,圆管内径略大于小球直径,半圆直径CD在竖直线上),恰能到达细圆管最高点D点,随后从D点离开后落回斜面上某点P.(重力加速度为g , sin 53°=, cos 53°=求:(1)小球到达C点时的速度;(2)小球从D点运动到P点的时间t.变式2 如图610所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径.一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°.不计空气阻力.已知重力加速度为g,sin37°=,cos 37°=.(1)求电场强度E的大小;(2)要使小球从P点出发能做完整的圆周运动,求小球初速度v应满足的条件.4 如图611甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压U MN=U0时,两板间为匀强电场,忽略两极板外的电场,某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.(1)求带电粒子的比荷q m ;(2)若MN间加如图乙所示的交变电压,其周期T=Lv0,从t=0开始,前T3内U MN=2U,后2T3内U MN=-U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子恰好能全部离开电场而不打在极板上,求U的值.图611导思①MN间加交变电压后,粒子在水平方向做什么运动?运动时间是多少?②MN间加交变电压后,粒子在竖直方向做什么运动?可以分成几个阶段?每阶段的加速度是多少?归纳交变电场中粒子的运动往往属于运动的多过程问题,关键是搞清楚电场力或加速度随时间变化的规律,进而分析速度的变化规律,通过绘制vt图像来分析运动过程比较直观简便.【真题模型再现】平行板电容器中带电粒子的运动2011 ·安徽卷交变电场中粒子的运动2012·新课标全国卷带电粒子在电容器中的匀速直线运动2013·广东卷加速偏转模型应用2014·安徽卷带电粒子在电容器中运动的功能关系2014·天津卷带电体在复合场中的功能转化2015·海南卷带电粒子在电场中加速(续表)【真题模型再现】平行板电容器中带电粒子的运动2015·山东卷带电体在变化电场中运动2015·北京卷带电粒子在电场中的功能转化2015·全国卷Ⅱ带电粒子在电场中的动力学问题【模型核心归纳】带电体在平行板电容器间的运动,实际上就是在电场力作用下的力电综合问题,依然需要根据力学解题思路求解,解题过程要遵从以下基本步骤:(1)确定研究对象(是单个研究对象还是物体组);(2)进行受力分析(分析研究对象所受的全部外力,包括电场力.其中电子、质子、正负离子等基本微观粒子在没有明确指出或暗示时一般不计重力,而带电油滴、带电小球、带电尘埃等宏观带电体一般要考虑其重力);(3)进行运动分析(分析研究对象所处的运动环境是否存在束缚条件,并根据研究对象的受力情况确定其运动性质和运动过程);(4)建立物理等式(由平衡条件或牛顿第二定律结合运动学规律求解,对于涉及能量的问题,一般用动能定理或能量守恒定律列方程求解.例在真空中水平放置平行板电容器,两极板间有一个带电油滴,电容器两极板间距为d,当平行板电容器的电压为U0时,油滴保持静止状态,如图612所示.当给电容器突然充电使其电压增加ΔU1,油滴开始向上运动;经时间Δt后,电容器突然放电使其电压减少ΔU2,又经过时间Δt,油滴恰好回到原来位置.假设油滴在运动过程中没有失去电荷,充电和放电的过程均很短暂,这段时间内油滴的位移可忽略不计,重力加速度为g.试求:(1)带电油滴所带电荷量与质量之比;(2)第一个Δt与第二个Δt时间内油滴运动的加速度大小之比;(3)ΔU1与ΔU2之比.展如图613所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有一小孔M和N.今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N 在同一竖直线上),空气阻力忽略不计,到达N孔时速度恰好为零,然后沿原路返回.若保持两极板间的电压不变,则不正确的是( )图613A.把A板向上平移一小段距离,质点自P点自由下落后仍能返回B.把A板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落C.把B板向上平移一小段距离,质点自P点自由下落后仍能返回D.把B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落第7讲带电粒子在磁场及复合场中的运动1.(多选)[2014·新课标全国卷Ⅱ] 图71为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )图71A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小【考题定位】难度等级:中等出题角度:本题主要考查学生对左手定则、带电粒子在匀强磁场中运动规律的掌握情况.2.[2015·全国卷Ⅰ] 两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动结论的掌握情况,属于较简单题目.3.(多选)[2015·全国卷Ⅱ] 两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ的磁感应强度是Ⅱ的k倍,两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动规律的掌握情况,考查了应用牛顿运动定律、圆周运动的规律解决物理问题的能力.考点一通电导体在磁场中的安培力问题1 [2015·重庆卷] 音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.图72是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向.(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.导思①单根通电直导线垂直磁场放置,安培力的大小、方向如何?n根呢?②安培力的功率与哪些因素有关?归纳安培力与动力学综合问题已成为高考的热点,解决这类问题的关键是把电磁学问题力学化,把立体图转化为平面图,即画出平面受力分析图,其中安培力的方向切忌跟着感觉走,要用左手定则来判断,注意F安⊥B、F安⊥I.其次是选用牛顿第二定律或平衡条件建立方程解题.变式如图73所示,一劲度系数为k的轻质弹簧下面挂有匝数为n的矩形线框边长为l,线框的下半部分处在匀强磁场中,磁感应强度大小为B,方向垂直线框平面向里.线框中通以电流I,方向如图所示,开始时线框处于平衡状态,弹簧处于伸长状态.令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡.则在此过程中线框位移的大小Δx及方向是( )A.Δx=2nIlBk,方向向上B.Δx=2nIlBk,方向向下C.Δx=nIlBk,方向向上D.Δx=nIlBk,方向向下考点二带电粒子在有界磁场中的运动2 如图74所示,在xOy平面内以O为圆心、R0为半径的圆形区域Ⅰ内有垂直于纸面向外、磁感应强度为B1的匀强磁场.一质量为m、带电荷量为+q的粒子以速度v0从A(R0,0)点沿x轴负方向射入区域Ⅰ,经过P(0,R0)点,沿y轴正方向进入同心环形区域Ⅱ,为使粒子经过区域Ⅱ后能从Q点回到区域Ⅰ,需在区域Ⅱ内加一垂直于纸面向里、磁感应强度为B2的匀强磁场.已知OQ与x轴负方向成30°角,不计粒子重力.求:(1)区域Ⅰ中磁感应强度B1的大小;(2)环形区域Ⅱ的外圆半径R的最小值;(3)粒子从A点出发到再次经过A点所用的最短时间.导思①粒子以速度v0从A到P,经过P点的速度方向如何?②粒子在区域Ⅱ从P到Q,圆心角是多少?③粒子从A点出发到再次经过A点,经过哪些圆弧?圆心角分别为多少?归纳解答带电粒子在匀强磁场中运动的关键是画粒子运动轨迹的示意图,确定圆心、半径及圆心角.此类问题的解题思路是:(1)画轨迹:即确定圆心,用几何方法求半径并画出运动轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、入射方向、出射方向相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式.变式1 如图75所示,横截面为正方形abcd的有界匀强磁场的磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场.对于从不同边界射出的电子,下列判断不正确的是( )图75A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度变式2 (多选)如图76所示,ab是匀强磁场的边界,质子(11H)和α粒子(42He)先后从c点射入磁场,初速度方向与ab边界的夹角均为45°,并都到达d点.不计空气阻力和粒子间的作用.关于两粒子在磁场中的运动,下列说法正确的是( )图76A.质子和α粒子运动轨迹相同B.质子和α粒子运动动能相同C.质子和α粒子运动速率相同D.质子和α粒子运动时间相同考点三带电粒子在复合场中的运动3 [2015·福建卷] 如图77所示,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C 点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P.【规范步骤】[解析] (1)小滑块沿MN运动过程,水平方向受力满足qvB +N=qE小滑块在C点离开MN时,有N=0解得v C=E B .(2)由动能定理,有___________________________________________解得______________________________________.(3)如图78所示,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤去磁场后小滑块将做类平抛运动,等效加速度为g′g ′=⎝⎛⎭⎫qE m 2+g 2 且v 2P =v 2D +g′2t 2解得_______________________________.归纳带电粒子在复合场中常见的运动形式:①当带电粒子在复合场中所受的合力为零时,粒子处于静止或匀速直线运动状态;②当带电粒子所受的合力大小恒定且提供向心力时,粒子做匀速圆周运动;③当带电粒子所受的合力变化且与速度方向不在一条直线上时,粒子做非匀变速曲线运动.如果带电粒子做曲线运动,则需要根据功能关系求解,需要注意的是洛伦兹力始终不做功.4 如图79所示,直线MN 上方有平行于纸面且与MN 成45°角的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R.若该粒子从O 点出发记为第一次经过直线MN ,而第五次经过直线MN 时恰好又通过O 点.不计粒子的重力.求:(1)电场强度的大小;(2)该粒子再次从O 点进入磁场后,运动轨道的半径; (3)该粒子从O 点出发到再次回到O 点所需的时间. 导思①粒子从O 点出发到第五次经过直线MN ,经过哪些运动过程,分别做什么运动?②粒子第四次经过直线MN ,进入电场,沿电场线和垂直电场线方向分别做什么运动?其位移分别是多少?③粒子再次从O 点进入磁场后,运动的速度是多少?归纳电场(或磁场)与磁场各位于一定的区域内并不重叠,或在同一区域电场与磁场交替出现,这种情景就是组合场.粒子在某一场中运动时,通常只受该场对粒子的作用力.其处理方法一般为:①分析带电粒子在各场中的受力情况和运动情况,一般在电场中做直线运动或类平抛运动,在磁场中做匀速圆周运动;②正确地画出粒子的运动轨迹图,在画图的基础上注意运用几何知识寻找关系;③注意确定粒子在组合场交界位置处的速度大小与方向,该速度是联系两种运动的桥梁.【真题模型再现】带电粒子在电磁场中运动的科技应用2013·重庆卷霍尔效应原理2014·浙江卷离子推进器2014·福建卷电磁驱动原理2015·浙江卷回旋加速器引出离子问题2015·重庆卷回旋加速器原理2015·江苏卷质谱仪(续表)【模型核心归纳】带电粒子在电场、磁场中的运动与现代科技密切相关,应重视以科学技术的具体问题为背景的考题.涉及带电粒子在复合场中运动的科技应用主要是速度选择器、磁流体发电机、电磁流量计、质谱仪等,对应原理如下:装置名称装置图示原理及结论速度选择器粒子经加速电场加速后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中射出,则有qv0B=qE,即v0=EB,故若v=v0=EB,粒子必做匀速直线运动,与粒子电荷量、电性、质量均无关.若v<EB,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>EB,洛伦兹力大,粒子向洛伦兹力方向偏,电场力做负功,动能减少磁流体发电机正、负离子(等离子体)高速喷入偏转磁场中,在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个场强向下的电场,两板间形成一定的电势差.当qvB=qUd时,电势差达到稳定,U=dvB,这就相当于一个可以对外供电的电源电磁流量计一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下纵向偏转,a、b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,由Bqv=Eq=Uqd,可得v=UBd,则流量Q=Sv=πUd4B质谱仪选择器中v=EB1;偏转场中d=2r,qvB2=mv2r,解得比荷qm=2EB1B2d,质量m=B1B2dq2E.作用:主要用于测量粒子的质量、比荷,研究同位素霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应例[2015·浙江卷] 使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m,速度为v的离子在回旋加速器内旋转,旋转轨道是半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B.为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图710所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出.已知OQ 长度为L,OQ与OP的夹角为θ.(1)求离子的电荷量q并判断其正负;(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为B′,求B′;(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应.为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小.图710。
高考物理(电场和磁场)二轮习题含答案一、选择题。
1、(双选)质谱仪是用来分析同位素的装置,如图为质谱仪的示意图,其由竖直放置的速度选择器和偏转磁场构成。
由三种不同粒子组成的粒子束以某速度沿竖直向下的方向射入速度选择器,该粒子束沿直线穿过底板上的小孔O 进入偏转磁场,最终三种粒子分别打在底板MN 上的P 1、P2、P 3三点,已知底板MN 上下两侧的匀强磁场方向均垂直纸面向外,且磁感应强度的大小分别为B 1、B 2,速度选择器中匀强电场的电场强度大小为E 。
不计粒子的重力以及它们之间的相互作用,则( )A .速度选择器中的电场方向向右,且三种粒子均带正电B .三种粒子的速度大小均为E B 2C .如果三种粒子的电荷量相等,则打在P 3点的粒子质量最大D .如果三种粒子的电荷量均为q ,且P 1、P 3的间距为Δx ,则打在P 1、P 3两点的粒子质量差为qB 1B 2Δx E2、如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0 B.33B 0 C.233B 0 D .2B 03、(多选)如图所示,在某空间的一个区域内有一直线PQ 与水平面成45°角,在PQ 两侧存在垂直于纸面且方向相反的匀强磁场,磁感应强度大小均为B 。
位于直线上的a点有一粒子源,能不断地水平向右发射速率不等的相同粒子,粒子带正电,电荷量为q,质量为m,所有粒子运动过程中都经过直线PQ上的b点,已知ab=d,不计粒子重力及粒子相互间的作用力,则粒子的速率可能为()A.2qBd6m B.2qBd4m C.2qBd2m D.3qBdm4、(双选)如图所示,绝缘中空轨道竖直固定,圆弧段COD光滑,对应圆心角为120°,C、D两端等高,O为最低点,圆弧圆心为O′,半径为R;直线段AC,HD粗糙,与圆弧段分别在C、D端相切;整个装置处于方向垂直于轨道所在平面向里、磁感应强度为B的匀强磁场中,在竖直虚线MC左侧和ND右侧还分别存在着场强大小相等、方向水平向右和向左的匀强电场。
2023届二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)本专题主要讲解带电粒子(带电体)在电场中的直线运动、偏转,以及带电粒子在交变电场中运动等相关问题,强调学生对于直线运动、类平抛运动规律的掌握程度。
高考中重点考查学生利用动力学以及能量观点解决问题的能力,对于学生的相互作用观、能量观的建立要求较高。
探究1带电粒子在电场中的直线运动典例1:(2021湖南联考)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为d,中央分别开有小孔O、P。
现有甲电子以速率v0从O点沿OP方向运动,恰能运动到P点。
若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则()A.金属板A、B组成的平行板电容器的电容C不变B.金属板A、B间的电压减小C.甲、乙两电子在板间运动时的加速度相同D.乙电子运动到O点的速率为2v0训练1:(2022四川联考题)多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子初速度不计,经电压为U的匀强电场加速后射入质量分析器。
质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使得进入反射区的离子能够反射回漂移管。
离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。
设实验所用离子的电荷量均为q,不计离子重力。
(1)求质量为m的离子第一次通过漂移管所用的时间T1;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为m0的离子总飞行时间为t0,待测离子的总飞行时间为t1,两种离子在质量分析器中反射相同次数,求待测离子质量m1。
探究2 带电粒子在电场中的偏转典例2:(2022北京月考)让氕核(1H)和氘核(21H)以相同的动能沿与电场垂直的方向1从ab边进入矩形匀强电场(方向沿a→b,边界为abcd,如图所示)。
启东中学高三二轮复习电场、磁场及复合场一、高考导航“场”是现代物理的重要支柱,场是一种特殊的物质。
电磁学知识是以“场”为基础的。
电场对运动电荷的作用力与电荷的运动状态无关,磁场对运动电荷才有作用力。
静止的电荷只产生电场,而运动的电荷除产生电场外还产生磁场。
变化的电场能产生磁场,变化的磁场能产生电场,变化的电场和变化的磁场交替产生,由发生区域向外传播形成电磁波。
本讲内容概念多,题目综合性强,尤其是带电体在复合场中的运动问题,这里讲的复合场指电场、磁场和重力场并存,或其中某两种场并存,或分区域存在。
当带电体所受合外力为零时,将处于静止或匀速直线运动状态;当带电体作匀速圆周运动时,洛仑兹力作向心力,其余各力的合力必为零;当带电体受合力大小与方向均变化时,将作非匀变速曲线运动。
本讲中不少知识在实际生产、生活中有广泛的应用,如速度选择器、磁流体发电机、粒子加速器等。
解决带电体在复合场中的运动问题的基本思路是:正确的受力分析,其次是场力(是否考虑重力,要视具体情况而定)→弹力→摩擦力;正确分析物体的运动状态,找出物体的速度、位置及其变化特点,如出现临界状态,要分析临界条件。
要恰当地灵活地运用动力学的三大方法解决问题。
二、典型例题1. 空间存在相互垂直的匀强电场E和匀强磁场B ,其方向如图实用文档所示。
一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是(A D )A、沿初速度方向做匀速运动B、在纸平面内沿逆时针方向做匀速圆周运动C、在纸平面内做轨迹向下弯曲的匀变速曲线运动D、初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动2、如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A沿曲线ACB运动到B点时,速度为零,C是轨迹的最低点,以下说法中正确的是(ABD )A、液滴带负电B.滴在C点动能最大C.若液滴所受空气阻力不计,则机械能守恒D、液滴在C点机械能最大实用文档3、如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是(ACD )A、始终作匀速运动B、先作加速运动,后作匀速运动C、先作减速运动,后作匀速运动D、先作减速运动,最后静止在杆上4、如图所示,质量为m、带电量为+q的带电粒子,以初速度v0垂直进入相互正交的匀强电场E和匀强磁场B中,从P点离开该区域,此时侧向位移为s,则(A C )(重力不计)A、粒子在P点所受的磁场力可能比电场力大B、粒子的加速度为(qE-qv0B)/m实用文档实用文档C 、粒子在P 点的速率为mqsE v 220 D 、粒子在P 点的动能为mv 02/2-qsE5、如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则( CD )A 、物体的运动由v 减小到零所用的时间等于mv/μ(mg+qvB )B 、物体的运动由v 减小到零所用的时间小于mv/μ(mg+qvB )C 、若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动D 、若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动6、如图所示,磁感强度为B的匀强磁场,在竖直平面内匀速平移时,质量为m,带电-q的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为。
电场和磁场综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V . 下列说法不正确的是( ) A .电场强度的大小为2. 5 V/cm B .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV2.真空中有一半径为r 0的带电金属球,以球心O 为坐标原点沿某一半径方向为正方向建立x 轴,x 轴上各点的电势φ随x 的分布如图所示,其中x 1、x 2、x 3分别是x 轴上A 、B 、C 三点的位置坐标.根据φ-x 图象,下列说法正确的是 A .该金属球带负电B .A 点的电场强度大于C 点的电场强度 C .B 点的电场强度大小为2332x x φφ--D .电量为q 的负电荷在B 点的电势能比在C 点的电势能低|q (φ2-φ3)|3.一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A .3BωB .2BωC .BωD .2Bω4.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )A .11B .12C .121D .1445.如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动,下列选项正确的是( )A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a二、多选题6.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为A a 、B a ,电势能分别为PA E 、PB E .下列说法正确的是( )A .电子一定从A 向B 运动B .若A a >B a ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有PA E <PB ED .B 点电势可能高于A 点电势7.如图所示,空间存在水平向右、电场强度大小为E 的匀强电场,一个质量为m 、电荷量为+q 的小球,从A 点以初速度v 0竖直向上抛出,经过一段时间落回到与A 点等高的位置B 点(图中未画出),重力加速度为g .下列说法正确的是A .小球运动到最高点时距离A 点的高度为20v gB .小球运动到最高点时速度大小为qEv mgC .小球运动过程中最小动能为()222022mq E v mg qE +D .AB 两点之间的电势差为22022qE v mg三、解答题8.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ´,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行,一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出,不计重力. (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为6π,求该粒子的比荷及其从M 点运动到N 点的时间.9.如图,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氘核21H 先后从y 轴上y =h 点以相同的动能射出,速度方向沿x 轴正方向.已知11H 进入磁场时,速度方向与x 轴正方向的夹角为45︒,并从坐标原点O 处第一次射出磁场. 氕核11H 的质量为m ,电荷量为q . 氘核21H 的质量为2m ,电荷量为q ,不计重力.求: (1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)21H 第一次进入磁场到第一次离开磁场的运动时间.10.如图,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在0x ≥区域,磁感应强度的大小为0B ;<0x 区域,磁感应强度的大小为0B λ(常数>1λ).一质量为m 、电荷量为q (q >0)的带电粒子以速度0v 从坐标原点O 沿x 轴正向射入磁场,此时开始计时,不计粒子重力,当粒子的速度方向再次沿x 轴正向时,求: (1)粒子运动的时间; (2)粒子与O 点间的距离.参考答案1.C 【解析】 【详解】A .如图所示,在ac 连线上,确定一b ′点,电势为17V ,将bb ′连线,即为等势线,那么垂直bb ′连线,则为电场线,再依据沿着电场线方向,电势降低,则电场线方向如下图,因为匀强电场,则有:cb U E d =,由比例关系可知:'26178cm 4.5cm 2610b c -=⨯=- 依据几何关系,则有:3.6cm b c bcd bb '⨯==='因此电场强度大小为:2617 2.5V/cm 3.6cb U E d -=== 故A 正确,不符合题意;B .根据φc -φa =φb -φo ,因a 、b 、c 三点电势分别为:φa =10V 、φb =17V 、φc =26V ,解得原点处的电势为φ0=1 V .故B 正确,不符合题意;C .因U ab =φa -φb =10-17=-7V ,电子从a 点到b 点电场力做功为:W =qU ab =-e×(-7V )=7 eV因电场力做正功,则电势能减小,那么电子在a 点的电势能比在b 点的高7eV ,故C 错误,符合题意。