聚合物研究方法考试资料
- 格式:doc
- 大小:1.80 MB
- 文档页数:11
聚合物研究⽅法期末复习1 影响⾼分⼦材料密度的因素有哪些?影响因素:分⼦结构;元素种类与含量;含填料的;多种含C、H、O或N的⾼材;泡沫制品或试样中有汽泡2 影响⾼材溶解性的因素有哪些?1.化学组成2.分⼦量、等规度、结晶度升⾼,溶解性降低;3.分⼦链形状;4.添加剂5.温度3 “塑料王”指的是哪种⾼材?“万能溶剂”指什么?⽔溶性⾼分⼦有哪些?“塑料王”是指聚四氟⼄烯;“万能溶剂在”指THF四氢呋喃;⽔溶性⾼分⼦有PVA、聚⼄烯基甲醚,聚丙烯酸,聚丙烯酰胺,聚⼄⼆醇,(羧)甲基纤维素,未固化的酚醛树脂与氨基树脂等4 软化点?熔点?杂质、助剂、填料对⾼材的软化点和熔点有何影响?软化点:⽆定形⾼分⼦加热到玻璃化温度时开始变软,由于结构的复杂性,常是较宽的温度范围,称为熔限。
熔点:部分结晶⾼分⼦加热到结晶开始熔化时的温度。
影响因素1.杂质的存在,即使少量也会明显降低熔点,所以⼯业品的熔点值<⽂献值。
2.有机增塑剂将会降低软化点,⽆机填料将会提⾼软化点。
5 吡啶显⾊试验⽤于鉴别哪⼀类⾼分⼦?吉布斯靛酚显⾊试验和铬变酸显⾊试验分别⽤于哪⼀类⾼分⼦的鉴别?吡啶显⾊试验⽤于鉴别含氯⾼分⼦,吉布斯靛酚显⾊试验⽤于鉴别含酚⾼聚物,铬变酸显⾊试验⽤于鉴别含甲醛共聚物。
6 有⼀未知⾼分⼦试样,在燃烧试验中⽤热钉⼦可熔化,⼩颗试样可点燃,下滴,可⾃熄,有烧头发⽓味,密度试验中样品不能浮于⽔⾯上,试判断是何种⾼分⼦材料?(PA 尼龙)判断过程:⽤热钉⼦可熔化,为判断为热塑性塑料,可⾃熄,含卤素或氮原⼦,密度⼤于⽔可能为聚酰胺或聚氯⼄烯,⼜有烧头发⽓味,故判断该⾼分⼦试样为聚酰胺。
(常⽤的热7 影响⾼分⼦材料透明性的因素有哪些?影响因素(1)试样厚薄:厚时为半透明,薄时为透明,如PE、PP、PA等。
(2)颜料、填料:有机颜料对透明性影响不⼤,⽆机颜料影响明显。
玻璃纤维添加量⼤时会使透明⾼分⼦变成⽩⾊。
(3)结晶性:PET结晶度低时透明,⾼时为⽩⾊。
1.课堂讲过的所有仪器的中英文名称,及其具体概念,用途。
(1)差示扫描量热仪:DSC,在程序控制温度下,定量测量试样的热效应大小与温度之间关系的一种技术。
用途:维持样品和参比物处于相同温度所需要的能量差△W,反映了样品热焓的变化。
(2)差热分析仪:DTA,在程序控制温度下,测量试样与参比物之间的温差随温度或时间的变化。
用途:测量物品热量变化,物质的晶态转换,玻璃化转变,热容变化。
(3)热重分析仪:TG,在程序控制温度下,测量物质的质量随温度或时间的变化关系。
用途:研究聚合物的固化,聚合物中添加剂的作用,聚合物的降解反应动力学。
(4)旋转式流变仪:通过旋转来测量高分子材料流变性能的仪器。
用途:法相应力差的测定,凝胶化浓度的测定,凝胶变化时间的测定。
控制应力流变仪CS 控制速率流变仪 CR(5)偏光显微镜:POM,在普通光学显微镜上分别在试样台上各加一块偏振片,下偏振片叫起偏片,上偏振片叫检偏片。
用途:高分子结晶中球晶的观察(球晶的形态,成核生长),共聚物,共混物和复合材料的多相结构。
(6)原子力显微镜:AFM,利用原子之间的范德华力作用开呈现样品的表面特性。
用途:研究表面摩擦力,分子间作用力,纳米加工。
(7):透射电镜:TEM,主要由光源,物镜和投影镜组成,电子束代替光束,用磁透镜代替玻璃透镜。
用途:看到在光学显微镜下无法看清的小于0.2um的细微结构,这些结构称为亚显微结构或超微结构。
(8)扫描电镜:SEM,用二次电子加背景散射成像。
用途:表面形貌的研究。
2.红外光谱的谱图特点及其所能提供的信息是什么?对应不同的结构特征产生相应的吸收带。
对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。
在鉴定聚合物的主链结构、取代基位置、双键位置、侧链结构以及老化和降解机理的研究中已得到广泛的应用。
对高分子材料、黏合剂及涂料等组分的定性定量分析,红外光谱也是一种十分有效的手段。
3.红外解析的三要素是什么,分别用于给出什么信息谱峰位置:对官能团进行定性分析的基础,依照特征峰的位置,可确定聚合物的类型。
聚合物研究方法考试题型一、 名词解释二、 填空题 三、 简答题四、 图谱分析题五、材料分析与设计考试内容一、名词解释1基团特征吸收峰——不同化合物中相同的官能团近似地具有一个共同的吸收频率范围,通常将这种能代表某种基 团存在并具有较高强度的吸收峰称为基团特征吸收峰。
2、指纹区:在1300cm-1以下,谱图的谱带数目很多,很难说明其明确的归属,但一下同系物或结构相近的化合物,在这个区域的谱带往往有一定的差别,如同人的指纹一样,故称为指纹区。
3、生色基:具有双键结构的基团对紫外或可见光有吸收作用,具有这种吸收作用的基团统称为生色基。
助色基:本身不具有生色基作用,但与生色基相连时,通过非键电子的分配,扩展了生色基的共轭效应,会影响生色基的吸收波长,增大吸收系数.这些基团统称为助色基4、化学位移:在有机化合物中,各种氢核 周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
5、耦合常数:由自旋偶合产生的谱线间距叫做偶合常数,用J 表示,单位为赫兹(Hz )6、差热分析法——DTA :在程序控温条件下测量试样与参比物之间的温差随温度或时间的变化 示差扫描量热法——DSC :在程序控温下测量输入试样与参比物之间的功率差变化,得到热流dH/dt ~T(t)曲线。
二、填空题1、聚合物的结构:一次结构(近程结构)化学组成,均聚或共聚,大分子的相对分子质量,链状分子的形态等。
二次结构(远程结构)单个大分子的形态。
三次结构(聚集态结构)不同单个大分子聚集形成不同的聚集态结构。
高次结构 三次结构构成尺寸更大的结构。
2、红外区可分为三区:近红外区(800nm~2000nm)适合于测定含-OH 、-NH 、-CH 基团的水、醇、酚、胺及不饱和碳氢化合物的组成 中红外区(2000nm~25μm )有机化合物分子中原子振动的频带都位于该区远红外区(25μm~1000 μm )3、波动的几个参数:波长λ——相邻两个波峰(间)的距离( μm );波数υ——每厘米中包含的波的数目(cm-1); 频率ν——每秒钟通过某点的波数目(S-1); 光速c ——光在真空中传播的速度,3×1010cm/s频率×波长=光速 ν·λ= c频率与波长成反比: 频率与波数成正比:4、分子的振动类型六种:ν:伸缩振动s :对称振动as :不对称振动δ:弯曲振动γ:面外弯曲振动w :面外摇摆振动β:剪式振动r :面内摇摆振动 ν——频率,Hz ; k ——化学键力常数,10-5N/cm ; u ——折合质量,g ;m1,m2——每个原子的质量;c1υν=λ=以波数表示双原子分子的振动频率:5、透光度和吸光度1.透光度(透过率) 式中:I0——入射光强度 I ——入射光被样品吸收后透过的光强度。
聚合物研究⽅法考试整理⼀、红外光谱1、红外应⽤:对聚合物的化学性质、⽴体结构、构象、序态、取向等提供定性和定量的信息。
在鉴定聚合物的主链结构、取代基位置、双键位置、侧链结构以及⽼化和降解机理的研究中已得到⼴泛的应⽤。
对⾼分⼦材料、黏合剂及涂料等组分的定性定量分析,红外光谱也是⼀种⼗分有效的⼿段。
2、红外光谱的特点:(1)除少数同核双原⼦分⼦如O2,N2,Cl2等⽆红外吸收外,⼤多数分⼦都有红外活性,有机化合物的红外光谱能提供丰富的结构信息。
(2)任何⽓态、液态和固态样品均可进⾏红外光谱测定,这是其它仪器分析⽅法难以做到的。
(3)常规红外光谱仪器结构简单,价格不贵,样品⽤量少,可达微克量级。
3、红外光谱的表⽰⽅法(1)透光度T%=I/I0×100%(I0-⼊射光强度;I-⼊射光被样品吸收后透过的光强度)(2)、吸光度 A=lg(1/T)=lgI0/I(横坐标:表⽰波长或波数;波数是波长的倒数)4、红外光谱的原理(1)、能量在4,000 ~ 400cm-1的红外光不⾜以使样品产⽣分⼦电⼦能级的跃迁,⽽只是振动能级与转动能级的跃迁。
(2)、由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱也是带状光谱。
(3)、分⼦在振动和转动过程中只有伴随净的偶极矩变化的键才有红外活性。
因为分⼦振动伴随偶极矩改变时,分⼦内电荷分布变化会产⽣交变电场,当其频率与⼊射辐射电磁波频率相等时才会产⽣红外吸收。
(4)、因此,除少数同核双原⼦分⼦如O2,N2,Cl2等⽆红外吸收外,⼤多数分⼦都有红外活性。
5、红外基团特征频率4000~3000:O-H,N-H伸缩振动3300~2700:C-H伸缩振动2500~1900:-C≡C-、-C≡N、-C=C=C-、C=C=O、-N=C=O伸缩振动1900~1650:C=O伸缩振动及芳烃中C-H弯曲振动的倍频和合频1675~1500:芳环、C=C、C=N-伸缩振动1500~1300:C-H⾯内弯曲振动1300~1000:C-O、C-F、Si-O伸缩振动,C-C⾻架振动1000~650:C-H⾯外弯曲振动、C-Cl伸缩振动6、.红外光谱仪基本结构:(光源、单⾊器、吸收池、检测器)(1)、红外光谱仪与紫外可见分光光度计的⽐较(2)、傅⽴叶变换红外光谱仪的优点:a⼤⼤提⾼了谱图的信噪⽐;bFT-IR仪器所⽤的光学元件少,⽆狭缝和光栅分光器,因此到达检测器的辐射强度⼤,信噪⽐⼤;c波长(数)精度⾼(±0.01cm-1),重现性好;d分辨率⾼;e扫描速度快。
第5章聚合方法一、选择题1.下列化合物中用作自由基乳液聚合引r发剂的是()。
[北京理工大学2007研] A.路易斯酸B.AIBNC.BPOD.过硫酸钾【答案】C【解析】乳液聚合需要水溶性引发剂。
A项是阳离子聚合的引发剂,不属于自由基聚合的引发剂选用范围;B项,AIBN是自由基聚合的油溶性引发剂;D项,过硫酸钾只属于氧化剂组分,还需要还原剂组分组成氧化-还原体系才能引发自由基聚合。
2.不属于乳液聚合基本组分的是()。
[杭州师范大学2011研]A.乳化剂B.单体C.引发剂D.溶剂【答案】D【解析】乳液聚合配方的主要成分有:单体、水、水溶性引发剂、水溶性乳化剂,不需要溶剂。
溶液聚合配方的主要成分有:单体、引发剂、溶剂。
3.制备分子量分布较窄的聚苯乙烯,应选择()。
[杭州师范大学2011研]A.配位聚合B.阳离子聚合C.自由基聚合D.阴离子聚合【答案】D【解析】活性阴离子聚合有以下四大特征:①大分子具有活性末端,有再引发单体聚合的能力;②聚合度与单体浓度/起始引发剂浓度的比值成正比;③聚合物分子量随转化率线性增加;④所有大分子链同时增长,增长链数不变,聚合物分子量分布窄。
4.对单体纯度要求最高的逐步聚合方法是:()。
[中科院研究生院2012研]A.界面聚合B.溶液聚合C.熔融聚合【答案】C【解析】A项,界面缩聚:静态界面缩聚与单体溶度无关,动态界面缩聚,对单体浓度要求较高;B项,溶液缩聚:希望在单体浓度尽可能高的情况下进行,但浓度太高会使反应物料变得粘稠影响正常反应;C项,熔融缩聚:对原料单体纯度的数值要求精确,否则,投入原料的比例有误差,直接影响产物的分子量;单官能团的杂质易引起封端作用;有些杂质影响反应速度,产物结构,分子量分布等。
二、名词解释1.界面聚合[中国科学技术大学2010研]答:界面聚合是指将两种互相作用而生成高聚物的单体分别溶于两种互不相溶的液体(通常是水和有机溶剂)中,形成水相和有机相,当两相接触时,在界面处发生聚合而生成高聚物的一种聚合方法。
聚合物研究方法考试题型一、 名词解释 二、 填空题 三、 简答题 四、 图谱分析题五、材料分析与设计考试内容一、名词解释1基团特征吸收峰——不同化合物中相同的官能团近似地具有一个共同的吸收频率范围,通常将这种能代表某种基 团存在并具有较高强度的吸收峰称为基团特征吸收峰。
2、指纹区:在1300cm-1以下,谱图的谱带数目很多,很难说明其明确的归属,但一下同系物或结构相近的化合物,在这个区域的谱带往往有一定的差别,如同人的指纹一样,故称为指纹区。
3、生色基:具有双键结构的基团对紫外或可见光有吸收作用,具有这种吸收作用的基团统称为生色基。
助色基:本身不具有生色基作用,但与生色基相连时,通过非键电子的分配,扩展了生色基的共轭效应,会影响生色基的吸收波长,增大吸收系数.这些基团统称为助色基4、化学位移:在有机化合物中,各种氢核 周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
5、耦合常数:由自旋偶合产生的谱线间距叫做偶合常数,用J 表示,单位为赫兹(Hz )6、差热分析法——DTA :在程序控温条件下测量试样与参比物之间的温差随温度或时间的变化示差扫描量热法——DSC :在程序控温下测量输入试样与参比物之间的功率差变化,得到热流dH/dt ~T(t)曲线。
二、填空题1、聚合物的结构:一次结构(近程结构)化学组成,均聚或共聚,大分子的相对分子质量,链状分子的形态等。
二次结构(远程结构)单个大分子的形态。
三次结构(聚集态结构)不同单个大分子聚集形成不同的聚集态结构。
高次结构 三次结构构成尺寸更大的结构。
2、红外区可分为三区:近红外区(800nm~2000nm)适合于测定含-OH 、-NH 、-CH 基团的水、醇、酚、胺及不饱和碳氢化合物的组成 中红外区(2000nm~25μm )有机化合物分子中原子振动的频带都位于该区远红外区(25μm~1000 μm )3、波动的几个参数:波长λ——相邻两个波峰(间)的距离( μm );波数υ——每厘米中包含的波的数目(cm-1); 频率ν——每秒钟通过某点的波数目(S-1); 光速c ——光在真空中传播的速度,3×1010cm/s频率×波长=光速 ν·λ= c频率与波长成反比: 频率与波数成正比: 4、分子的振动类型六种:ν:伸缩振动s :对称振动as :不对称振动δ:弯曲振动γ:面外弯曲振动w :面外摇摆振动β:剪式振动r :面内摇摆振动ν——频率,Hz ; k ——化学键力常数,10-5N/cm ; u ——折合质量,g ;m1,m2——每个原子的质量; 以波数表示双原子分子的振动频率:5、透光度和吸光度1.透光度(透过率) 式中:I0——入射光强度 I ——入射光被样品吸收后透过的光强度。
《聚合物结构分析》基础习题第一篇波谱分析1、要求记住划分成光谱区的电磁总谱,知道不同光谱法研究的是分子中的哪一种运动形式。
在对聚合物进行各种光谱分析时,红外光谱主要来源于分子振动-转动能级间的跃迁;紫外-可见光谱主要来源于分子的电子能级间的跃迁;核磁共振谱主要来源于置于磁场中的原子核能级间的跃迁,它们实际上都是吸收光谱。
在高分子常用的研究方法和分析仪器中:IR是指红外光谱分析;NMR是指核磁共振谱分析;SAXS是指小角X射线分析;;DSC是指差示扫描量热仪;TG是指热重分析;DMA是指动态粘弹谱仪;SEM是指扫描电镜分析;TEM是指透射电镜第二章红外光谱1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法?对于粘稠的低聚物和黏合剂可以采用哪种方法制样?1)流延薄膜法:将样品溶解在低沸点易挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发后成膜(10-30μm)。
2)热压成膜法:将热塑性和不易溶解的树脂样品在热压机上,加压加热压制成膜。
3)溴化钾压片法:将不溶性或者脆性树脂,一些橡胶,粉末状样品与溴化钾研磨压片。
①热塑性树脂:溶解流延成膜、热压成膜或溶解涂片;②热固性树脂:如固化环氧树脂、酚醛树脂等,可采用洁净的小钢锉,锉取样品的粉末,然后再用KBr压片。
③轻度交联的聚合物:在溶剂中不溶解只溶胀的样品,可以在溶胀(含有溶剂)的情况下与KBr研磨,然后,再烘干溶剂并研磨压片。
④纤维样品:如果单丝直径在10微米以下,可用单丝排列整齐(或剪碎)后,用KBr压片,测定透射光谱,若直径太大或不是单丝,只能整齐的缠绕在薄铝片上,或压扁后用ATR(衰减全反射光谱)测定。
2、红外光谱法对试样的要求(1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。
一、填空1、影响热重曲线的因素有仪器方面、操作条件和试样方面。
2、多原子分子的基本振动类型可分为伸缩振动和弯曲振动。
3、NMR的产生条件为ν0=γH0/2Π.4、X射线可分为连续X射线和特征X射线。
5、XRD在高聚物中的应用主要有高聚物的物相分析、结晶度的测定、微晶尺寸的测定、取向度的研究。
二、名词解释1、差热分析:在程序控制温度下,测量物质与参比物之间温度差与温度关系的一种技术。
2、基频峰:当分子吸收一定频率的红外线后,振动能级从基态(V=0)跃迁到第一激发态(V=1)时所产生的吸收峰称为基频峰。
3、自选偶合:在同一分子中,核自旋与核自旋间相互作用的现象叫做“自旋-自旋偶合”。
4、连续X射线谱:连续X射线谱为一系列具有连续波长的X射线,也称为“白色”X射线。
三、简答题1、简述DSC的测定原理。
答:当试样在程序升温中产生热效应,且热量变化速率为ΔP时,则在S与R值之间产生温差dT,dT送差热放大器,放大后送功率补偿单元。
由功率补偿单元输出信号,改变S 与R下面补偿加热丝的加热功率比,从而消除S与R之间的温差dT,达到S与R之间始终无温差,无热交换,并保持与炉子的线性升温。
另一方面,功率补偿单元又自动把补偿的功率送记录仪,记录下DSC曲线。
与此同时,从差热电偶参比物一侧取出温度信号,经热电偶冷端补偿后送记录,记录下温度曲线。
2、简述红外光谱的产生条件。
答:第一个条件:若光量子的能量为E L=hγL(是红外辐射频率),当发生振动能级跃迁时,必须满足:ΔE振=E L、ΔE振=ΔVhγ、E L=hγ即,γL=ΔVγ振第二个条件:分子在振动过程中必须有瞬间偶极矩的改变,这种振动方式称为红外活性的振动。
3、何为化学位移?有何重要性?答:(1)在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
(2)化学位移是分析分子中各类氢原子所处位置的重要依据。
聚合物研究方法考试题型一、 名词解释 二、 填空题 三、 简答题 四、 图谱分析题五、材料分析与设计考试内容一、名词解释1基团特征吸收峰——不同化合物中相同的官能团近似地具有一个共同的吸收频率范围,通常将这种能代表某种基 团存在并具有较高强度的吸收峰称为基团特征吸收峰。
2、指纹区:在1300cm-1以下,谱图的谱带数目很多,很难说明其明确的归属,但一下同系物或结构相近的化合物,在这个区域的谱带往往有一定的差别,如同人的指纹一样,故称为指纹区。
3、生色基:具有双键结构的基团对紫外或可见光有吸收作用,具有这种吸收作用的基团统称为生色基。
助色基:本身不具有生色基作用,但与生色基相连时,通过非键电子的分配,扩展了生色基的共轭效应,会影响生色基的吸收波长,增大吸收系数.这些基团统称为助色基4、化学位移:在有机化合物中,各种氢核 周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
5、耦合常数:由自旋偶合产生的谱线间距叫做偶合常数,用J 表示,单位为赫兹(Hz )6、差热分析法——DTA :在程序控温条件下测量试样与参比物之间的温差随温度或时间的变化示差扫描量热法——DSC :在程序控温下测量输入试样与参比物之间的功率差变化,得到热流dH/dt ~T(t)曲线。
二、填空题1、聚合物的结构:一次结构(近程结构)化学组成,均聚或共聚,大分子的相对分子质量,链状分子的形态等。
二次结构(远程结构)单个大分子的形态。
三次结构(聚集态结构)不同单个大分子聚集形成不同的聚集态结构。
高次结构 三次结构构成尺寸更大的结构。
2、红外区可分为三区:近红外区(800nm~2000nm)适合于测定含-OH 、-NH 、-CH 基团的水、醇、酚、胺及不饱和碳氢化合物的组成 中红外区(2000nm~25μm )有机化合物分子中原子振动的频带都位于该区远红外区(25μm~1000 μm )3、波动的几个参数:波长λ——相邻两个波峰(间)的距离( μm );波数υ——每厘米中包含的波的数目(cm-1); 频率ν——每秒钟通过某点的波数目(S-1); 光速c ——光在真空中传播的速度,3×1010cm/s频率×波长=光速 ν·λ= c频率与波长成反比: 频率与波数成正比: 4、分子的振动类型六种:ν:伸缩振动s :对称振动as :不对称振动δ:弯曲振动γ:面外弯曲振动w :面外摇摆振动β:剪式振动r :面内摇摆振动ν——频率,Hz ; k ——化学键力常数,10-5N/cm ; u ——折合质量,g ;m1,m2——每个原子的质量; 以波数表示双原子分子的振动频率: c1υν=λ=ukc c πνλυ211===5、透光度和吸光度1.透光度(透过率) 式中:I0——入射光强度 I ——入射光被样品吸收后透过的光强度。
2.吸光度3.波长与波数的换算关系为 6电子跃迁的方式各种跃迁所需能量比较:σ→σ*> n →σ*>π→π*> n →π* 7吸收带的类型在紫外光谱带分析中,往往将谱带分成四种类型,即:R 吸收带、K 吸收带、 B 吸收带和E 吸收带 8、X 射线基本原理:满足衍射的条件是n λ=2b=2dsin θ 式中n 为正整数,称衍射级数。
9、根据测量方式不同,DSC 可分为两类:功率补尝型DSC 和热流型DSC 三、 简答题1、影响频率位移的因素 答:内部因素化学键的振动频率不仅与其性质有关,还受分子的内部结构影响。
各种化合物中相同基团的特征吸收并不总在一个固定频率上 1)电子效应诱导效应:吸电子基团使吸收峰向高频方向移动 共轭效应:共轭效应使吸收峰向低频方向移动 2)氢键效应氢键(分子内氢键/分子间氢键)对峰位,峰强产生极明显影响,使伸缩振动频率向低波数方向移动 外部因素 1)物理状态同一样品处于不同相态时,由于分子间作用力不同,红外光谱有很大差别。
2)溶剂同一样品在不同溶剂中,由于溶质与溶剂的相互作用,其红外光谱特征吸收峰的频率会不同。
3)粒度由于光散射作用,大粒度样品的基线较高、峰变宽而强度低。
通常要求粒度要小于测定的波长。
2、原子核产生核磁共振吸收的条件1.原子核的自旋量子数I 不能为零2.有自旋的原子核必须置于一外加磁场H0中,使核磁能级发生分裂。
3.必须有一外加频率为ν的电磁辐射,其能量正好是作拉莫尔运动的原子核的两能级之差,才能被原子核吸收,使其从低能态跃迁到高能态,从而发生核磁共振吸收。
3、影响化学位移的因素核外电子云密度的影响-电负性的作用与质子相连元素的电负性越强,吸电子作用越强,价电子偏离质子,屏蔽作用减弱,化学位移较大,信号峰在低场出现。
质子在分子中所处的空间位置不同,屏蔽作用的不同的现象称为磁各向异性效应。
在外磁场作用下,环电子流所产生的感应磁力线是闭合的,与外磁场反向的磁力线部位起屏蔽作用,而同向的磁力线部位起去屏蔽作用。
处于屏蔽区的氢核,其化学位移在高场处于去屏蔽区的氢核,其化学位移在低场。
氢键:形成氢键后1H 核屏蔽作用减少,氢键属于去屏蔽效应,使化学位移向低场移动。
如-OH 、 -NH2 凡是能影响氢键形成的因素,如溶剂的性质、PH 值、浓度、温度等均会影响活泼氢的化学位移。
通常活泼氢会使化学位移在较大的范围内变化,为了鉴别可加入几滴重水或者提高样品测试温度%100I I %T 0⨯=II lgT 1lg A 0==λ=ν410溶剂效应在核磁共振谱测定中,由于采用不同的溶剂,某些质子的化学位移发生改变的现象,往往是由于溶剂的磁各向异性效应或溶剂与被测样品分子间的氢键作用引起的。
-OH 、-NH2、-COOH 等活泼质子加D2O 消失。
Van der Waals 效应当两个质子在空间结构上非常靠近时,具有负电荷的电子云就会互相排斥,从而使这些质子周围的电子云密度减少,屏蔽作用下降,共振信号向低磁场位移 4、结晶度的测定a.选取处于物质结晶谱带范围的特征吸收峰为分析谱带b.选取与结晶度无关的吸收峰作为内标c.利用已知结晶度的纯样求的比例系数标准曲线d.利用公式求的结晶度 Xc —质量结晶度;Ic ——晶态部分衍射强度; Ia-非晶态部分衍射强度;k ——单位质量非结晶态与单位质量晶态的相对射线系数。
5、端基分析法使用端基分析法测定聚合物分子量的条件:1)聚合物必须是已知化学结构的线型或支链型大分子; 2)大分子链端带有可供定量分析的基团; 3)每个分子链上所含的基团数量是一定的; 端基分析法测定聚合物分子量的程序1) 精确称量出试样重量W ;2) 测出重量为W 的试样中端基的摩尔数nt ;3) 根据每个大分子链所带有的端基数X ,得到试样的摩尔数4) 计算出聚合物的分子量端基分析法测定聚合物分子量的特点: 1)端基分析法测定的是数均分子量;2)方法适用于一些缩聚产物(尼龙、聚酯)分子量的测定;3)当聚合物分子量较高时实验误差比较大,其测量分子量的上限为二万左右; 6、质均相对分子质量的测定以上二式是光散法测定聚合物分子量的基础。
配制4~5个聚合物稀溶液,先测定每个溶液在不同散射角处的散射强度,以kc/R θ对sin2θ/2作图,外推至θ◊0,得到 ;然后以其对浓度C 作图,外推至c ◊0,其截距 。
数据处理tn n XW N W M ==w M /10)/(→θθR kc C A 2M 1)R kc (20+=→θθ)2sin h 38311(M 1)R kc (22220c θλπ+=→θ使用光散射法测定分子量的实验步骤配制4~5个不同浓度的聚合物稀溶液;使用LALLS 测定纯溶剂和每个溶液的R θ值;使用折光指数仪测定不同浓度溶液的△n ,以△n/c 对c 作图,外推至c ◊0,得到dn/dc 值; 由dn/dc 值计算出k 值;以kc/R θ对c 作图,得一直线,截距为 ,斜率为2A2; 7、粘度法测定聚合物分子量1. 选择适当的毛细管使溶剂的流出大于100s ,即可忽略动能修正项;2. 使用稀溶液,使溶液密度与溶质密度相差很小(ρ≈ρo );3.用毛细管粘度计先测定出纯溶剂的流出时间to ,然后再测出不同浓度C 的聚合物溶液的流出时间 t ,由此可以得到不同浓度C 下的ηr 和ηsp ;分别以ηsp/C 和ln ηr/C 为纵坐标,溶液浓度C 为横坐标作图,得到两条直线,将直线外推至C=0,得到的共同截距就是特性粘数[η]。
如果已知 K 、α,就可以从Mark – Houwink 公式计算出聚合物的粘均分子量:“一点法”测定粘均分子量——在一个浓度下测定ηsp 或者ηr ,然后直接求出特性粘度 8、凝胶渗透色谱分离原理和应用(就是作业题) GPC 分离原理——体积排除理论——根据溶质分子尺寸(分子量、有效体积、流体力学体积)的差别进行分离。
聚合物溶液进入色谱柱后,由于浓度差,所有溶质分子都力图向凝胶表面孔穴渗透。
体积较小的分子——既能进入较大的孔穴,也可以进入较小的孔穴,向孔内扩散的较深; 体积较大的分子——只能进入较大的孔穴;体积更大的分子——不能进入孔穴,只能从凝胶的空隙流过。
按照淋出的先后顺序,依次收集到分子量从大到小的各个级分,从而达到对聚合物分级的目的。
GPC 在高分子研究中的应用高分子材料中低分子物质的测定 聚合物中助剂的测定高分子材料生产或加工过程中的监测 高分子材料老化过程研究 弹性体双键分布测定 制备窄分布的高聚物 研究支化高分子 共聚物分析9、热重分析仪的基本原理(见课本) 10、TG 曲线失重量表示方法(见课本) 11、DTG 曲线的意义(见课本)12、四种电子显微镜的原理与特点比较• 透射电子显微镜(TEM ):电子枪发射电子束 → 经聚光镜聚焦 → 照射样品 → 电子束穿过样品 →α=ηM k ][C ][k ][C /2sp η'+η=ηC ][][C /ln 2r ηβ-η=ηw M /1在物镜的背焦面上形成衍射花样 经物镜放大成像在物镜的像平面上形成显微图像→图像被中间镜和投影镜逐步放大 → 在荧光屏或感光底片上成像•扫描电子显微镜(SEM ):在扫描电镜中,电子枪发射出来的电子束,一般经过三个电磁透镜聚焦后,形成直径为0.02~20 m 的电子束。
末级透镜(也称物镜,但它不起放大作用,仍是一个会聚透镜)上部的扫描线圈能使电子束在试样表面上作光栅状扫描。
试样在电子束作用下,激发出各种信号,信号的强度取决于试样表面的形貌、受激区域的成份和晶体取向,置于试样附近的探测器和试样接地之间的高灵敏毫微安计把激发出来的电子信号接收下来,经信号处理放大系统后,输送到显像管栅极以调制显像管的亮度。