胶体金技术
- 格式:doc
- 大小:158.78 KB
- 文档页数:11
胶体金法各种方法法原理胶体金(colloidal gold)是一种常见的纳米材料,广泛应用于生物医学、光电子学以及化学分析等领域。
胶体金法则是制备胶体金纳米颗粒的一种常用方法,它包括了各种不同的制备方法。
本文将详细介绍胶体金法的各种方法和原理。
一、胶体金法的概述胶体金法是指利用化学还原或还原剂将金离子还原成金原子并使其聚集形成胶体金颗粒的过程。
胶体金颗粒具有良好的可控性和活性,可以通过调节制备条件来控制其形状、尺寸和表面性质,便于在各个领域的应用中发挥优越性能。
二、化学还原法化学还原法是制备胶体金的一种常见方法。
其原理是通过将金离子与还原剂反应,使金离子还原为金原子,形成胶体金颗粒。
常用的还原剂有氨水、柠檬酸等。
这种方法制备的胶体金颗粒形状和尺寸较均匀,可以通过调节还原剂浓度、反应时间和温度等参数来控制颗粒的大小和形状。
三、光化学法光化学法是一种利用光照射来控制胶体金纳米颗粒形成的方法。
在该方法中,金离子在紫外光照射下被激发产生自由电子,然后与还原剂发生反应,形成胶体金颗粒。
这种方法具有反应速度快、颗粒形状可调控等优点。
光化学法的适应范围广,可以制备不同形状和尺寸的胶体金颗粒。
四、微乳液法微乳液法是一种利用乳化剂将金离子包裹在微乳液中,通过还原剂将金离子还原为金原子,最终生成胶体金颗粒的方法。
微乳液具有稳定性好、溶剂消耗少等特点,在胶体金制备中广泛应用。
该方法不受金离子浓度的限制,能够制备出较大尺寸的胶体金颗粒。
五、溶胶-凝胶法溶胶-凝胶法是一种将金离子逐渐转化为胶体金的方法。
首先,将金离子转化为胶态溶胶,然后通过加热或干燥使其凝胶,最终形成胶体金凝胶。
该方法可以制备出较大尺寸的胶体金颗粒,也可用于制备具有复杂结构的胶体金材料。
六、电化学法电化学法是一种利用电化学反应制备胶体金的方法。
在电化学细胞中,金阳极上的金离子被还原为金原子,并在阴极表面聚集形成胶体金颗粒。
该方法具有较高的纯度和良好的控制性能,可用于制备高质量的胶体金。
胶体金技术总结Ⅱ一、胶体金技术原理胶体金技术的基本原理是将金金属离子还原成金纳米颗粒并通过其中一种方法使其分散在溶液中。
金纳米颗粒可以通过改变反应条件来调控其形貌和大小,以及表面性质。
其中,分散性是胶体金技术的重要特点,因为金纳米颗粒只有在分散状态下才能充分发挥其特殊性质。
二、胶体金技术制备方法化学还原法是最常用的制备胶体金的方法之一、它通过将金离子还原为金金属颗粒,并通过表面活性剂、电解质等调控分散性。
化学还原法制备的胶体金颗粒粒径较小且分散性好,但对条件要求较高。
溶胶-凝胶法是一种将溶胶中的颗粒逐渐转变为凝胶的制备方法。
通过控制凝胶形成的条件,可以调节金纳米颗粒的形貌和大小。
沉积法是通过将预制的胶体金颗粒沉积到底物表面,制备具有特定功能的薄膜或涂层。
该方法可以制备出均匀、稳定的胶体金薄膜,并且可以调控颗粒的形貌和密度。
光化学法是通过光化学反应将金离子还原为金颗粒。
光化学法制备的胶体金颗粒分散性好,并且可以调控颗粒的形貌和大小。
三、胶体金技术应用1.材料科学方面,胶体金可以用于制备纳米尺度的电子材料,如导电薄膜、导电纳米线等。
此外,胶体金还可以作为催化剂、催化剂载体、光催化材料等。
2.生物医学方面,胶体金颗粒具有良好的生物相容性和生物活性,可以用于制备药物载体、生物传感器、光热治疗等。
胶体金的表面还可以修饰生物分子,用于生物成像、生物分析等应用。
3.传感器方面,胶体金可以用于制备高灵敏度、高选择性的传感器。
通过修饰胶体金表面的功能分子,可以实现对特定分子的检测,并且可以通过纳米尺度的效应提高传感器的性能。
4.光电子方面,胶体金颗粒具有优异的光学性质,可以用于制备光电器件,如光伏器件、光探测器等。
胶体金颗粒的表面还可以修饰光子晶体,制备具有特殊光学性质的材料。
总之,胶体金技术是一种具有广泛应用前景的技术。
通过调控金纳米颗粒的形貌、大小和表面性质,可以制备出具有特殊功能的材料,并用于材料科学、生物医学、传感器、光电子等领域。
胶体金免疫层析技术原理介绍胶体金免疫层析技术(Colloidal Gold Immunochromatography Test)是一种常用于快速、便捷地检测生物体内特定分子的方法。
该技术基于免疫层析原理,利用胶体金颗粒作为信号指示剂,实现对目标分子的高灵敏检测。
原理胶体金免疫层析技术主要依赖于抗原-抗体的专一性识别和相互结合。
当胶体金颗粒与特异性抗体结合后,形成颗粒/抗体/抗原复合体。
通过将样品与含有抗原的试剂盒进行反应,可使目标分子与胶体金颗粒上的特异性抗体结合,形成颗粒/抗体/抗原/目标分子复合体。
操作步骤使用胶体金免疫层析技术进行检测通常需要以下步骤:1.样品处理–收集待测样品,并进行必要的前处理,例如离心、稀释等。
–如果样品是固体,需要先进行溶解或悬浊处理。
2.反应溶液的制备–根据试剂盒的说明书,将试剂溶解或稀释到适当的浓度。
3.准备试剂盒–打开试剂盒包装,并将提供的试剂按照指示加入到试剂盒中。
4.加样–使用专用的吸管或滴管,将处理好的样品滴入试剂盒的样品孔中。
5.反应–让样品与试剂盒中的抗体共反应一定时间,通常为几分钟。
6.拍照解读–将试剂盒放置在专门的解读器上,并对结果进行解读。
–解读器会对胶体金颗粒的颜色进行分析和判断,从而得出检测结果。
7.结果判读–根据解读器显示的结果,确定样品中目标分子的存在与否。
–通常,胶体金免疫层析技术结果可分为阴性、阳性或无效,具体判读标准需根据试剂盒说明书确定。
优势和应用领域胶体金免疫层析技术具有以下优势和应用领域:1.快速:检测时间短,通常在几分钟内可以得出结果。
2.简便:操作简单,无需复杂的设备和专业技术人员。
3.准确:具备高灵敏性和特异性,可以有效地识别目标分子。
4.可视化:结果直接显示在试剂盒上,无需显微镜等设备。
5.应用广泛:可以用于临床医学、环境检测、食品安全等多个领域。
局限性和发展趋势胶体金免疫层析技术虽然具有许多优点,但也存在一些局限性:1.灵敏度限制:相比于其他方法,如PCR和ELISA,胶体金免疫层析技术的灵敏度相对较低。
免疫胶体金技术原理
免疫胶体金技术是一种基于胶体金纳米颗粒的免疫学方法,被广泛用于生物医学研究
与临床诊断。
其原理是利用胶体金颗粒的特殊性质和免疫学反应的特异性,通过抗原-抗
体相互作用将胶体金颗粒定向固定在目标分子表面,从而实现对目标分子的定性定量检
测。
制备胶体金颗粒。
胶体金颗粒具有纳米级尺寸,呈现酒红色溶液。
制备过程中,通过
还原剂将金盐还原成纳米级金粒子,同时通过表面修饰分子对金颗粒进行稳定处理,使其
分散在溶液中且具有良好的分散性和稳定性。
接下来,制备抗原-抗体复合物。
抗原是待检测的分子,抗体是针对抗原的特异性免
疫反应产物。
在一般的实验中,抗原与抗体分别与胶体金颗粒进行孵育,使其发生特异性
结合。
抗原-抗体复合物的形成在一定程度上改变了胶体金颗粒的表面性质,导致颗粒之
间出现簇集或聚集现象。
通过观察胶体金颗粒的聚集程度来评估目标分子的存在量。
胶体金颗粒在溶液中呈现
酒红色散乱光谱,其最大吸收峰位于520-550nm。
当胶体金颗粒与抗原-抗体复合物结合后,由于胶体金颗粒的聚集导致溶液呈现紫色,吸收峰会发生红移和增强。
利用紫外-可见吸
收光谱仪等仪器可以测量和分析胶体金溶液的吸收光谱,从而可定性和定量地获得目标分
子的存在量。
胶体金免疫层析技术胶体金免疫层析技术是一种重要的生物分析技术,它在医学诊断、生物学研究、环境监测等领域有着广泛的应用。
本文将介绍胶体金免疫层析技术的原理、方法、应用及发展前景等方面,以帮助读者深入了解这一技术的重要性和特点。
一、胶体金免疫层析技术的原理胶体金免疫层析技术是一种基于抗原与抗体特异性结合原理的生物分析技术。
其原理基于胶体金颗粒的特殊性质,当胶体金颗粒与特定的抗体或抗原结合时,会产生颜色变化。
这种颜色变化可以通过裸眼观察或仪器测定来定量分析目标物质的含量,从而实现对目标分子的快速、灵敏、特异性检测。
二、胶体金免疫层析技术的方法1. 样品预处理在进行胶体金免疫层析技术前,需要对样品进行一定的预处理工作,以获得高纯度的检测目标。
这包括样品的收集、提取、稀释、清洁等操作,以确保样品的纯度和稳定性。
2. 抗原抗体结合在胶体金免疫层析技术中,首先将抗原或抗体与胶体金颗粒结合,形成胶体金-抗原或胶体金-抗体复合物。
这一步是整个技术的关键,其特异性结合决定了最终结果的准确性和可靠性。
3. 层析纸制备将样品和复合物应用于层析纸上,经过升温、冷却和其他特殊处理,使复合物在层析纸上呈现出清晰的条带,以便进行后续的观察和分析。
4. 结果分析通过裸眼观察或仪器测定,分析样品中的目标分子的含量,从而得出最终的检测结果。
三、胶体金免疫层析技术的应用1. 医学诊断胶体金免疫层析技术在临床医学中被广泛应用,例如对传染病、肿瘤标志物、生化指标等的快速检测,为疾病的早期诊断和治疗提供了重要的支持。
2. 食品安全该技术可以用于食品中有害物质的检测,如农药残留、重金属污染等,确保食品的安全和健康。
3. 环境监测胶体金免疫层析技术也可以用于环境监测领域,检测水质、土壤质量等环境参数,为环境保护和生态平衡提供数据支持。
四、胶体金免疫层析技术的发展前景随着生物技术和纳米技术的不断发展,胶体金免疫层析技术将得到更广泛的应用和改进。
未来,可以预见该技术在药物筛选、基因检测、个性化医疗等领域将发挥越来越重要的作用。
一、胶体金的一般性状(一) 胶体金的颜色溶胶的颜色取决于分散相物质的颜色、分散相物质的分散度和入射光线的种类,是散射光线还是透射光,粒子越小,分散度越高,则散射光的波长越短。
对同一种物质的水溶胶来说,粒子大小不同,呈现的颜色亦不同。
如胶体金颗粒在5~20nm之间,吸收波长520nm,呈红色的葡萄酒色;20~40nm之间的金溶胶主要吸收波长530nm的绿色光,溶液呈深红色;60nm的胶体金溶胶主要吸收波长600nm的橙黄色光,溶液呈蓝紫色。
一般应用于免疫组织化学的胶体金颗粒为5~60nm范围内,溶液呈现红色。
在相当的一段时期内保持其溶胶不变性,称为胶体金的稳定性。
影响其稳定性的因素主要是电解质,其次是胶体金本身的浓度、温度及其他非电解质等。
(二) 胶体金的稳定性溶胶的稳定性介于小分子离子溶液和粗分散相之间,其颗粒作布朗运动,不易受重力影响而下沉。
然而,溶胶又是不稳定体系,它的胶粒溶剂化作用很弱,总面积较大、因在胶粒相互碰撞时,有自动合并为较大、较重的颗粒倾向。
当胶体颗粒直径变大,超出胶体范围而从介质中沉淀出来的现象叫聚沉。
影响其稳定性的主要原因有三点。
(1) 胶粒间的相互吸引力当胶粒相距很近时,这种吸引力可能导致胶体颗粒合并而变大。
(2) 胶粒及其溶剂化层胶粒及其溶剂化层(溶剂是水时就是水化层)的带电情况。
一种溶胶的各个胶粒都带有相同的电荷。
同性电荷相斥,双电子层变厚,胶粒带电量愈大,排斥力愈大,愈能阻止胶粒合并聚结,溶胶愈稳定。
(3) 胶体接口的溶剂膜当二个固体间夹有一厚层液体时,这层液体膜有一个反抗二固体接近的排斥力。
两个胶粒要进一步接近,只有克服它们之间的溶剂化膜的斥力才有可能,因此溶剂膜的斥力是使溶胶稳定的原因之一。
(三) 溶胶的聚沉现象胶粒之间存在吸引力与排斥力这对矛盾,在溶胶胶粒带电及溶剂化的情况下,排斥力成为矛盾的主要方面,溶胶稳定而不聚沉。
因为某种原因使溶胶粒带电量减到很小,甚至中和其所带电荷并能去溶剂化膜,胶粒之间可在更近的距离互相接近,引力成为主要矛盾,引力超过斥力时胶粒便聚结发生聚沉。
引起溶胶聚沉的原因有。
(1)少量电解质对溶胶的聚沉作用少量电解质即可使溶胶聚沉,但各种电解质的聚沉能力可用聚沉值来表示。
聚沉值是在一定时间内使1L某浓度的溶胶产生聚沉所需电解质的最小物质的量(mm01)。
显然,聚沉值愈小,聚沉能力愈大。
聚沉值从实验中得出如下的规则:①电解质负离子对带正电的溶胶起主要聚沉作用,正离子对带负电的溶胶起主要聚沉作用;②同价离子聚沉能力几乎相等,不同价离子的聚沉能力随离子价增加而显著增加。
电解质能使溶胶聚沉是由于电解质与胶粒带相反电荷离子的作用,中和了胶粒所带的一部分电荷,使胶粒电量减少,扩散层缩小,溶剂化层变薄,而当双电子层厚度缩至很小和溶剂化层变得很薄时,两个质粒间便可以更加接近,即不产生斥力,两个胶粒间因引力加大而合并的趋势增强,甚至引力占绝对优势以致使胶粒聚结而发生聚沉。
胶粒的双电子层结构图(2)温度对溶胶稳定性的影响一般影响不大。
当温度升高时,吸附能力减弱,溶剂化程度降低,溶剂化层变薄,胶粒聚结,不稳定性增加。
(3)浓度对溶胶的稳定性的影响浓度增大时,粒子间距离缩小,引力增加,容易聚结而发生聚沉,所以制备比较稳定的溶胶,要有一定的合适浓度。
二、胶体金制备前的准备制备胶体金的方法很多,其中应用较为广泛的是还原法,而分散法和其他凝聚法都不合乎要求。
还原法的基本原理是在氯化金溶液中加入一定量的还原剂,使金离子还原为金原子。
在医学研究中最常用的还原剂有白磷、乙醇、过氧化氢、抗坏血酸、硼氢化钠、柠檬酸钠及鞣酸等。
本节将重点介绍应用上述还原剂制备胶体金的具体方法和步骤,还可根据各实验室的条件及所需合成颗粒的大小,来选择合适的方法。
现将常用的几种方法介绍如下:①白磷还原法(Isigmondy,1905年)可合成3nm左右大小的金颗粒;②白磷还原法(1sigmondy 及IsigmondyThiessen,1925年)经改良后,可合成5~12nm大小的金颗粒;③抗坏血酸还原法(Statis和Fabrikanos,1958年)可合成6~13nm大小的金颗粒;④柠檬酸三钠还原法(Frens,1973年)可合成5nm、15nm、30nm、60nm大小的金颗粒;⑤乙醇—超声波还原法(Baigent和Muller,1980年)可合成6~10nm大小的金颗粒;⑥硼氢化钠还原法(Trchopp 等,1982年)可合成3—17nm大小的金颗粒;⑦单宁酸—柠檬酸三钠还原法(Slot等,1985年)可合成3~17nm大小的金颗粒。
作者实验室主要用单宁酸—柠檬酸三钠还原法、柠檬酸三钠还原法及硼氢化钠还原法,主要根据合成颗粒大小来选择。
(一)玻璃器皿的清洁还原法可以认为是重结晶过程,颗粒的大小取决于结晶核形成的速度及结晶核生长的速度。
因此,用于制备胶体金的玻璃器皿应绝对清洁。
因为玻璃表面性状对还原过程的启动有重要作用,少量的污染会影响胶体金的生成,造成颗粒大小不一或液体浑浊。
处理方法是将玻璃器皿清洁晾干后,人清洁液内浸泡24h,取出后依次用自来水和蒸馏水洗净,凉干,硅化,也可不经硅化。
第一次生成胶体金稳定玻璃器皿表面,然后弃去,再用蒸馏水洗后即可再用。
最好是所有的玻璃器皿专用化,以减少污染。
玻璃器皿表面应无明显的划痕,否则也会影响胶体颗粒的均一度。
(二)试剂的配制要求(1)配制试剂均用双蒸馏水或三蒸馏水,或用去离子水。
(2)氯化金水溶液的配制氯金酸(AuCl3·HCl)每支为1g装,用时用蒸馏水一次全部稀释成l%水溶液,呈现黄色的透明状,应无任何沉淀,未用完部分可保存在4℃冰箱内,长期使用。
(3)SPA纯晶、特异性抗体或第二抗体必须经亲和层析,琼脂免疫双扩散效价为1:64以上才可选用,其他蛋白及受体也需高度纯化。
(4)白磷或黄磷乙醚溶液的配制白磷在空气中易燃烧,操作时要小心。
把白磷放在蒸馏水中切成小块,放在滤纸上吸干水分后,迅速放入已准备好的乙醚中,轻轻摇动,等完全溶解后即得到饱和溶液,并贮藏于棕色密闭瓶内,阴凉处保存。
(5)其他试剂配制后最好用一定规格的超滤膜过滤,以去除大分子聚合物。
三、白磷还原法制备胶体金分散颗粒胶体金可用多种方法制备,其中应用较为广泛的是化学还原法。
这一方法的基本原理是在氯化金水溶液中加入一定量的还原剂,使金离子还原为金原子,可用于制备胶体金的还原剂有50余种,但在生物医学领域内最为常用的还原剂是白磷、柠檬酸三钠以及鞣酸等。
白磷还原法的建立已有近百年的历史,由于此法操作较为简便,制备出来的胶体金颗粒大小较一致,因而应用较为广泛,现以Faulk和Taylor(1971)的报道为基础介绍这一方法。
(1)取1%氯化金1.5mL、0.1mol/LK2CO3 1.2mL,加入120mL双蒸水。
(2)上述溶液充分搅拌混匀3min以上。
(3)在搅拌条件下将lmL新鲜配制的20%饱和白磷乙醚溶液加入上述混合液中,约在5min内溶液变为棕红色。
(4)将上述混合液加热煮沸,直至变成鲜明的橙红色为止,一般约需l0min。
橙红色的出现表明氯化金的还原反应终止,胶体金制备成功。
按上述法制备的金颗粒直径为(5.6土0.9)nm。
白磷还原法一般只能制备出单一颗粒直径的胶体金。
因此,用于电镜双重标记或多重标记时此法显得有些不足,还需结合其他方法。
Henegouwen等(1986)发展了传统的白磷还原法,可制备出多种不同直径的胶体金,取得了良好的效果,具体方法如下。
(1)取0.5mL新鲜配制的20%饱和白磷乙醚溶液,加入到60mL用上述方法制备的胶体金中(5.6nm土0.9nm)充分振摇5min以上。
(2)将1%氯化金0.75m1及0.1mol/LK2C030.6mL加到上述溶液内,振摇数分钟溶液变成棕红色。
(3)将上液煮沸加热,直至变成鲜明的红色,一般需l0min。
上述还原过程使胶体金颗粒直径增大,随着还原次数的增加,胶体金颗粒的直径亦越来越大,二者之间的关系见表。
胶体金颗粒大小与还原次数之间的关系(白磷还原法)还原次数颗粒直径/nm SD0 16 0.91 6.7 0.92 7.9 0.94 9.8 1.35 12 1.0这一方法的特点是通过循环还原的引入使原白磷还原法的适用范围得到扩大,其次,在循环还原过程中氯化金不再形成新的金颗粒,而只与原先的金颗粒结合,使它直径变大。
原先加人的胶体金颗粒起着“晶核”的作用。
因此可以利用这一方法制备出一系列颗粒直径不同但具有相同颗粒密度的胶体金来。
四、柠檬酸钠还原法制备胶体金分散颗粒柠檬酸钠还原法(Frens,1973)制备过程十分简单,制备出的金颗粒均匀一致,因此广为采用。
取0.01%氯化金溶液l00mL加热至沸腾,迅速加入4mL 1%柠檬酸钠水溶液,可见溶液很快变蓝,然后继续加热至溶液由蓝变为橙红色为止。
通过改变柠檬酸钠的用量可以制得不同颗粒大小的胶体金,因而显得十分方便。
各种颗粒的胶体金制备详见表。
柠檬酸钠用量与胶体金颗粒直径的关系0.0l%氯化金用量/m 1%柠檬酸钠用量/mL 胶体金颗粒直径/nm50 2.00 10.050 1.50 15.050 1.00 16.050 0.75 24.550 0.50 41.050 0.30 71.550 0.21 97.550 0.16 147.0表并不表明按照Frens法只能制备出上述几种颗粒的胶体金,大量研究已表明该法制备胶体金时,颗粒的大小是柠檬酸钠用量的函数,即在一定的范围内任意给定一个柠檬酸钠的量,总有一定大小的胶体金颗粒与它相对应,因而这种方法可很好地满足电镜双重标记和多重标记的要求。
五、制备胶体金分散颗粒的其他方法(一)乙醇—超声波还原法(Baigent和Muller,1980)(1)取1%AuCl3·HCl水溶液lmL加入100mL双重蒸馏水。
(2)用0.2m01/LK2C03调pH至7.2,再加入lmL无水乙醇。
(3)用20KC、135W超声波探头浸入溶液内进行超声振荡,此法制备的颗粒为6-10nm。
硼氢化钠还原法(Tschopp等,1982)(1)取0.6mL 1%氯化金水溶液,加入40mL预冷(4℃) 双蒸馏水。
(2)再加入0.2mol/LK2C030.2mL。
(3)边搅拌边加入新鲜配制的硼氢化钠水溶液(0.5mg/m1)2mL,至溶液由蓝紫色变为橙红色为止。
然后继续搅拌5min,获得的金颗粒直径在2-5nm之间。
(二)放射性胶体金制备法(Kent等,1981)(1)取0.01%AuCl3·HCl水溶液100mL,加热至沸腾。
(2)加入40ul195Au。
(3)迅速加入4mLl%柠檬酸三钠水溶液,搅拌5-7min,至出现透明的橙红色。