一类非线性变系数中立型微分方程振动的充分条件
- 格式:pdf
- 大小:124.66 KB
- 文档页数:3
一阶非线性中立型微分方程的振动性定理摘要论证一类具有变系数和变偏差的一阶非线性中立型微分方程的振动性的一个基本定理,并将所得结果成功地应用于进一步讨论该方程的振动性和线性化振动性。
关键词非线性中立型微分方程;振动;变系数;变偏差1引言泛函微分方程的振动理论作为泛函微分方程定性理论的一部分,在最近30多年中有了迅速的发展。
这一领域已有多本专著[1]和许多研究论文,例如本文比较关注的[2-3],等等。
本文考虑一阶非线性中立型微分方程:(1.1)其中在本文中,将给出这类具有变系数和变偏差的一阶非线性中立型微分方程的振动性的一个基本定理,并将所得结果成功地应用于进一步讨论该方程的振动性和线性化振动性。
2基本定理定理1.在(1.1)中,假设最终不恒等于0,设(1)最终成立;或(2)τi(t)=τi>0,每个Pi(t)有界,存在一个τ>0,自然数ki(i=1,2,…,n)和t*≥t0,使得τi=kiτ,若x(t)是(1.1)的最终正解,且,(2.1)则有。
证明由(1.1)和(2.1)易得y’(t)≤0且最终不恒等于0。
下面证明y(t)>0。
假设y(t)最终为负,那么,存在一个充分大的T,对t≥T,有y(t)T使得t1-τi(t1)≥T,且当s∈[T,t1]时,有x(s)≤x(t1)-β。
特别地,β+max{x(t1-τi(t1)):i=1,2…,n}≤x(t1) (2.3)显然,(2.3)和(2.2)是矛盾的。
由(2)根据[4,引理1]的证明,我们可得x(t*+kτ)→—∞(k→+∞),这与x(t)最终为正相矛盾。
证毕。
3应用定理 2.在(1.1)中, 设(1)成立,且(3)存在的非空子集J和Nj>0,使得xfj(x)≥Njx2,x∈R,j∈J。
若微分不等式没有最终正解,则(1.1)所有的解都是振动的。
证明设(1.1)有一个最终正解x(t),由(2.1)和定理1,有,且,即。
在定理2的条件下,上述不等式没有最终正解,与y(t)>0相矛盾。
Value Engineering1研究背景自1988年Stefan Hilger 在他的博士论文中首次提出测度链上的微分方程理论以来,测度链上时滞动力方程的研究成为目前国际上关注的一个新课题,对其研究具有重要的理论价值和实际应用价值。
而对于许多情况,只需考虑测度链的一种特殊情形———时标,时标指的是实数R 的任意一个非空闭子集,以符号表示。
详细的有关时标的理论见文献[2,5,6]。
本文考虑时标上二阶非线性中立型微分方程(x(t)+n i =1∑p i (t)x(τi (t)))ΔΔ+mj =1∑q j (t)f j (x(r j (t)))=0,t ⩾t 0>0(1)的振动性,其中p i (t),q j (t)∈C rd ([t 0,∞),R +),0⩽τi (t)<t ,0⩽r j (t)<t,r j (t)非减,q j (t)不最终恒为零,f j (x)/x ⩾εj >0,i=1,2,…n ,j=1,2,…m,本文中记ε=min{εj },r(t)=min{r j (t)},z(t)=x(t)+ni =1∑p i(t)x(τi (t))。
2主要结果引理1设x(t)为(1)的非振动解,若x(t)最终为正(负),则最终有z Δ(t)>0(z Δ(t)<0)。
证明假设x(t)为(1)的最终正解(最终负解同样可证),即存在充分大的t 1⩾t 0>0,当t ⩾t 1时,x(t)>0,x(τi (t))>0,x(r i (t))>0,易知z(t)=x(t)+ni =1∑p i (t)x(τi (t))⩾0且z ΔΔ(t)=-m j =1∑q j (t)f j (x(r i (t)))⩽0(2)故知z Δ(t)单调递减,且z Δ(t)>0。
若不然,则z Δ(t)⩽0,因为q j (t)不最终恒为零,故z Δ(t)不最终恒为零,故存在t 2,当t ⩾t 2⩾t 1,有z Δ(t)⩽z Δ(t 2)(3)对(3)式从t 2到t 积分,有z(t)-z(t 2)⩽t t ∫z Δ(t 2)ΔS=z Δ(t 2)(t-t 2),当t→∞时,得z(t)→-∞。