微积分习题答案第五章 多元函数微积分(1)
- 格式:doc
- 大小:647.00 KB
- 文档页数:21
第五章-多元函数微分学习题参考答案第五章多元函数微分学习题练习5.11.在空间直⾓坐标系下,下列⽅程的图形是什么形状? (1) )(4222椭圆抛物⾯z y x =+ (2)圆锥⾯)(4222z y x =+(3) 椭球⾯)(19164222=++z y x (4) 圆柱⾯)(122=+z x 2.求下列函数的定义域: (1)y x z --=解:??≥-≥0y x y即??≥≥≥y x x y 200 ∴函数的定义域为{}y x y x y x ≥≥≥2,0,0|),((2) z =解:0≥-y x{}0|),(≥-∴y x y x 函数的定义域为3. ()y x f ,对于函数=yx yx +-,证明不存在),(lim 0y x f x →分析:由⼆元函数极限定义,我们只须找到沿不同路径0(0,0)p p →时,所得极限值不同即可。
证明:①(,)0,0)(0,0)p x y x x y p ≠=0当沿轴(此时趋于时,(,)(,0)1,lim (,)1x y f x y f x f x y →→===②当0(,)(0)00p x y y kx k p =≠沿直线趋于(,)时, 0011(,)lim (,)1(0)11x y x kx k kf x y f x y k x kx k k→→---=1.求下列函数的偏导数①;,,33yz x z xy y x z -=求解:23323,3xy x yz y y x x z -=??-=?? ②;,,)ln(yzx z xy z =求解:[]1211ln()2z xy y x xy -?=??=?[]1211ln()2z xy x y xy -== ③222ln(),,z z z x x y x x y=+?求解:1ln()z x y x x x y=+++ 2222)(2)(1))(ln()(y x y x y x x y x y x y x x y x x x z x x z ++=+-+++=+++??==??2221()(ln())()()z z x x yx y x y y x y x y x y x y x y ==++=-=?++++ ④;,3z y x ue u xyz=求解;22,()xyz xyz xyz xyz u u yze ze yzxze z xyz e x x y==+=+? 3222()(())(12)()xyz xyz xyzu u z xyz e xyz e z xyz xye x y z z x y z==+=+++???=)31()21(222222z y x xyz e z y x xyz xyz e xyz xyz ++=+++y x f y xy ?-?+=→?)1,2()1,2(lim,),(02则解:①22(1)200(2,1)(2,1)0lim lim ()0y y y f y f e e y y +??→?→+?--=??未定式22(1)04(1)10lim 1y y e y +??→?+??-= = 42e ②22201(2,1)(2,1)lim(2,1)24xy y x y y f y f f e xye y=?→=+?-'==?=?3.设23ln(1),111x y z ux y z u u u '''=+++++在点(,,)处求解:2311x u x y z '=+++ 2321yyu x y z '=+++ 22331z z u x y z '=+++ (1,1,1) 1233()|4442x y z u u u '''∴++=++= 4.设2,20xy z zz e xy x y=+=求证: 证明:2xy y z e y e x y-?=?=?Q 22331(2)2x xy y z e x xy e y y-?=??-=-?Q22222323122(2)22x x x xy y y y z z x y xy e ye x xy e y xy e x y y---??∴+=+??-=-?+?? = 0证毕练习5.31.求下列函数的全微分(1) 求z xy =在点(2,3)处当时的全增量与全微分与2.01.0-=?=?y x 解:全增量12.068.21.2)3,2()2.03,1.02(-=-?=--+=?f f zx y dz z dx z dy ydx xdy ''=+=+(2,3)0.10.230.12(0.2)0.1dx dy dz==-=?+?-=-(2)求时的全微分当2,1),1ln(22==++=y x y x z解:22222211z z x y dz dx dy dx dy x y x y x y ??=+=+??++++ dy dx dy dx dz323141144112)2,1(+=+++++=(3),u xy yz zx du =++求解:u u udu dx dy dz x y z=2.计算下列各式的近似值(分析运⽤公式010000000()(,)(,)(,)x y f x x y y f x y f x y x f x y y ''+?+?≈+?+?)(1)03.2)1.10(解:令03.0,2,1.0,10,),(00=?==?==y y x x x y x f y 取2.03(10.1)=00000000(,)(,)(,)(,)x y f x x y y f x y f x y x f x y y ''+?+?≈+?+?01.0ln 1.010)2,10()2,10(12?+?+=-x x yx y y9.10810ln 32100≈++= (2) )198.003.1ln(43-+解:令)1ln(),(43-+=y x y x f 取 02.0,1,03.0,100-=?==?=y y x x 原式(10.03,10.02)f =+-23(1,1)11)|(0.03)x -≈+-+34(1,1)1|(0.02)y -+-= 0+005.002.04103.031=?-(3) 0046tan 29sin解:令y x y x f tan sin ),(= 取 00,,,61804180x x y y ππ==-=?=则原式=)1804,1806(ππππ+-f(,)(,)()(,)646418064180x y f f f ππππππππ''≈+-+ =2(,)(,)646411cos tan |()sin sec |2180180x y x y ππππππ?+-+?= 0.5023练习5.41. 求下列函数的导数或偏导数。
习题 1—1 解答1.设xf (x, y ) xy,求yf(x ,y),f1(x,1),yf (xy,xy),f1(x, y)解xf (x ,y ) xy;yf1(x,1)y1xyyx; f (xy,xy)x2y ;2 f1(x, y)yxy2x2.设f (x, y ) ln x ln y ,证明:f (xy,uv ) f (x,u ) f (x,v ) f (y,u ) f (y,v)f (xy,uv ) ln(xy ) ln(uv ) (ln x ln y)(ln u ln v )ln x ln u ln x ln v ln y ln u ln y ln vf (x,u ) f (x,v ) f (y,u ) f (y,v)3.求下列函数的定义域,并画出定义域的图形:(1)f (x, y ) 1x 2 y 2 1;4x y(2)f (x, y ) ;ln(1x y )22 2x y z2 2 2(3)f (x, y ) 1;a b c2 2 2x y z(4)f (x, y, z ) .1x 2 y z2 2解(1)D {(x, y) x 1, y 1y1-1 O 1x-1(2)D (x, y) 0x y 1, y 4x2 2 y21-1 1O x-11(3)D x y z2 2 2(x, y ) 1a b c2 2 2zc-a-b O b yax(4)( , , ) 0, 0, 0, 1D x y z x y z x 2 y z2 2z1O y11x4.求下列各极限:1xy (1)limx0 x y2 2y 11 0= 1 0 1ln(x e y ln(1 e )) 0(2)lim ln 2 x 1 2 12 0x yy02 xy4 (2xy 4)(2 (3)lim limx xy xy0 0 (xy x 2xy4) 4)14y0 y0sin(xy) sin(xy)(4)lim lim x 2 x y2 x 2 xyy0 y05.证明下列极限不存在:x y (1)lim ;x 0 x yy0x y2 2 (2)limx 0 x y (xy )2 2 2y0(1)证明如果动点P(x, y) 沿y 2x 趋向(0,0)x y x 2x则lim lim 3;x 0 x 0x y x 2xy2x0如果动点P(x, y) 沿x 2y 趋向(0,0) ,则lim lim 3 3x y yy0 x y y0 yx 2 y02所以极限不存在。
练习5.11.在空间直角坐标系下,下列方程的图形是什么形状? (1) )(4222椭圆抛物面z y x =+ (2)圆锥面)(4222z y x =+(3) 椭球面)(19164222=++z y x (4) 圆柱面)(122=+z x 2.求下列函数的定义域: (1)y x z --= (2) y x e z yx -+=+3解:⎩⎨⎧≥-≥00y x y 解:0≥-y x 即⎪⎩⎪⎨⎧≥≥≥y x x y 200 {}0|),(≥-∴y x y x 函数的定义域为∴ 函数的定义域为{}y x y x y x ≥≥≥2,0,0|),((3). ()y x f ,对于函数=yx yx +-,证明不存在),(lim 0y x f x →分析:由二元函数极限定义,我们只须找到沿不同路径)0,0(0p p →时,所得极限值不同即可。
证明:①0(,)0,0)(0,0)p x y x x y p ≠=当沿轴(此时趋于时,1),(lim ,1)0,(),(00===→→y x f x f y x f y x②当)时,,趋于(沿直线00)0(),(≠=x kx y y x p)0(111),(≠≠+-=+-=k kkkx x kx x y x f综合①②可知函数极限不存在,证毕。
练习5.21. 求下列函数的偏导数 ①;,,33yz x z xy y x z ∂∂∂∂-=求解:23323,3xy x yz y y x x z -=∂∂-=∂∂ ②;,,)ln(yzx z xy z ∂∂∂∂=求解:[])ln(21.1.)ln(2121xy x y xy xy x z ==∂∂-[])ln(21.1.)ln(2121xy y x xy xy y z ==∂∂-③yx x z y x x z z ∂∂∂∂∂+=222,),ln(求解:yx x y x x z +++=∂∂1.)ln( 2222)(2)(1))(ln()(y x y x y x x y x y x y x x y x x xz x x z ++=+-+++=+++∂∂=∂∂∂∂=∂∂222)()(01)ln()(y x yy x x y x y x x y x y x z y y x z +=+-++=⎥⎦⎤⎢⎣⎡+++∂∂=∂∂∂∂=∂∂∂④;,3zy x ue u xyz∂∂∂∂=求解;2,()xyz xyz xyz z xyz u u yze ze yzxze z xyz e x x y∂∂==+=+∂∂∂ xyzxyz xyz z xye xyz z e xyz z e xyz z zy x u z z y x u )()2()()(2223+++=+∂∂=∂∂∂∂∂=∂∂∂∂=)31()21(222222z y x xyz e z y x xyz xyz e xyz xyz ++=+++2.设yf y f ey x f y xy ∆-∆+=→∆)1,2()1,2(lim,),(02则解:22(1)00(2,1)(2,1)0lim lim ()0y y y f y f e y y +∆∆→∆→+∆-=∆∆未定式22(1)0(2)10lim 1y y e y +∆∆→+∆⋅-= =4 2e3.设z y x u u u z y x u +++++=)处求,,在点(111),1ln(32解:3211z y x u x +++=3212zy x yu y +++=32213zy x z u z +++= 23434241|)1,1,1(=++=++∴z y x u u u 4.设02,2=∂∂+∂∂=yz y x z xez y x求证 证明:22221xxy y z e y e x y-∂=⋅=∂Q22331(2)2x xy y z e x xy e y y-∂=⋅⋅-=-∂Q 22222323122(2)22x x x xy y y y z z x y xy e ye x xy e y xy e x y y---∂∂∴+=+⋅⋅-=-⋅+∂∂=0 证毕 练习5.31. 求下列函数的全微分(1)求z=xy 在点(2,3)处,当时的全增量与全微分与2.01.0-=∆=∆y x 解:全增量12.068.21.2)3,2()2.03,1.02(-=-⨯=--+=∆f f z30.12(0.2)0.1x y dz z x z y y x x y =∆+∆=∆+∆=⨯+⨯-=-(2)求时的全微分当2,1),1ln(22==++=y x y x z解:dy yx y dx x z dz 2212+++∂∂=dy dx dy dx dz323141144112)2,1(+=+++++=(3),u xy yz zx du =++求 解:()()udu dx x z dy x y dz x∂=++++∂ dz y x dy z x dx z y )()()(+++++=2.计算下列各式的近似值(分析运用公式01000()(,)f x x y y f x y f xx f y y ''+∆+∆≈+∆+∆) (1)03.2)1.10(解:令03.0,2,1.0,10,),(00=∆==∆==y y x x x y x f y取 y y f x x f y x f y y x x f ∆'+∆'+≈∆+∆+=),()()1.10(0001003.2 01.0ln 1.010)2,10()2,10(12⋅+⋅+=-x x yx y y9.10810ln 32100≈++= (2) )198.003.1ln(43-+ 解:令)1ln(),(43-+=y x y x f 取 02.0,1,03.0,100-=∆==∆=y y x x 原式23(1,1)(10.03,10.02)11)|(0.02)f x -=+-≈+-+- =0+005.002.04103.031=⨯-⨯ (3) 0046tan 29sin解:令y x y x f tan sin ),(= 取 180,4,180,30000πππ=∆=-=∆=y y x x则 原式=)1804,1806(ππππ+-f(,)()64180180x y f f f ππππ''≈+-+ =2(,)(,)646411cos tan |()sin sec |2180180x y x y ππππππ⨯+-+⋅=11)2180180x x ππ+-+⋅ =0.5023练习5.41. 求下列函数的导数或偏导数。
(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
多元函数微分学习题第五部分多元函数微分学第1页共27页第五部分多元函数微分学(1)[选择题]简单问题1-36,中等问题37-87,困难问题88-99。
?x?3y?2z?1?01.设有直线l:?及平面?:4x?2y?z?2?0,则直线l()2倍?Y10z?3.0(a)平行于?。
(b)在路上?。
(c)垂直于?。
(d)然后呢?歪曲回答:C?xy,(x,y)?(0,0)?2.二元函数f(x,y)??x2?y2在点(0,0)处()? (x,y)?(0,0)? 0,(a)连续,偏导数存在(b)连续,偏导数不存在(c)不连续,偏导数存在(d)不连续,偏导数不存在a:c?x?u?v?u?()3.设函数u?u(x,y),v?v(x,y)由方程组?确定,则当时,u?v22?xy?u?v?(a)十、五、uy(b)(c)(d)u?似曾相识?似曾相识?似曾相识?答案:B4.设f(x,y)是一二元函数,(x0,y0)是其定义域内的一点,则下列命题中一定正确的是()(a)如果f(x,y)在点(x0,Y0)是连续的,那么f(x,y)在点(x0,Y0)是可微的。
(b)若f(x,y)在点(x0,y0)的两个偏导数都存在,则f(x,y)在点(x0,y0)连续。
(c)若f(x,y)在点(x0,y0)的两个偏导数都存在,则f(x,y)在点(x0,y0)可微。
(d)若f(x,y)在点(x0,y0)可微,则f(x,y)在点(x0,y0)连续。
答:d5.函数f(x,y,z)?(a)(,答:a3.x2?y2?点(1,±1,2)处Z2的梯度为()1?121?121?121?12,)(b)2(,,)(c)(,,)(d)2(,,)3333339999991第五部分多元函数微分学第2页,共27页6.函数z?f(x.y)在点(x0,y0)处具有两个偏导数fx(x0,y0),fy(x0,y0)是函数存在全微分的()。
(a)。
充分条件(b)必要和充分条件(c)必要条件(d)回答c既不充分也不必要7.对于二元函数z?f(x,y),下列有关偏导数与全微分关系中正确的命题是()。
微积分练习题一、极限与连续(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→∞) (1 + 1/x)^x(1) f(x) = |x| 1,在x = 0处(2) f(x) = (x^2 1) / (x 1),在x = 1处(3) f(x) = sqrt(x + 2) 2,在x = 1处二、导数与微分(1) f(x) = x^3 3x + 2(2) f(x) = e^x sin x(3) f(x) = ln(sqrt(1 + x^2))(1) f(x) = x^2 + 3x 5(2) f(x) = cos(2x)(3) f(x) = 1 / (1 x)三、高阶导数与微分方程(1) f(x) = x^4 2x^2 + 1(2) f(x) = e^x cos x(3) f(x) = ln(x^2 + 1)(1) y' = 2x + y(2) y'' 2y' + y = e^x(3) (1 + x^2) y'' + 2x y' = 0四、不定积分与定积分(1) ∫(x^2 + 1) dx(2) ∫(e^x x) dx(3) ∫(1 / (x^2 + 1)) dx(1) ∫_{0}^{1} (3x^2 2x + 1) dx(2) ∫_{π}^{π} (sin x) dx(3) ∫_{1}^{e} (1 / x) dx五、多元函数微分学(1) f(x, y) = x^2 + y^2(2) f(x, y) = e^(x + y) sin(x y)(3) f(x, y) = ln(x^2 + y^2)(1) f(x, y) = x^3 + y^3(2) f(x, y) = sin(x + y)(3) f(x, y) = sqrt(x^2 + y^2)六、重积分(1) ∬_D (x^2 + y^2) dxdy,其中D为圆心在原点,半径为1的圆(2) ∬_D (x y) dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 2(3) ∬_D (e^(x + y)) dxdy,其中D为三角形区域0 ≤ x ≤ 1,0 ≤ y ≤ x(1) ∭_E (x^2 + y^2 + z^2) dxdydz,其中E为立方体区域0 ≤ x ≤ 1,0 ≤ y ≤ 1,0 ≤ z ≤ 1(2) ∭_E (xyz) dxdydz,其中E为长方体区域0 ≤ x ≤ 2,0 ≤ y ≤ 3,0 ≤ z ≤ 4七、级数(1) Σ (1/n^2),n从1到∞(2) Σ (n/(n+1)^2),n从1到∞(3) Σ ( (1)^n / n ),n从1到∞(1) Σ (x^n / n),n从1到∞(2) Σ (n! x^n),n从0到∞(3) Σ ( (n^2 + 1)^n x^n ),n从0到∞八、微分方程的应用(1) 物体在空气中自由下落,其速度v与时间t的关系,已知阻力与速度成正比。
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
第五章习题5-11.求下列不定积分:(1)25)x -d x ;(2) 2⎰x ; (3)3e x x⎰d x ; (4) 2cos 2x⎰d x ; (5) 23523x xx⋅-⋅⎰d x ; (6) 22cos 2d cos sin xx x x ⎰.解5151732222222210(1)5)(5)573d d d d x x x x x x x x x x C -=-=-=-+⎰⎰⎰113222221132223522(2)(2)24235d d d d x x x x x xx x x x x x x x C--==-+=-+=++⎰⎰⎰⎰213(3)3(3)(3)ln(3)1ln 31cos 1111(4)cos cos sin 222222235222(5)[25()]25()333125225()223(ln 2ln 3)3ln()3e e d e d e e d d d d d d d d x x xxxxx x x xx xx xx x C Cx x x x x x x x x Cx x x x x C x C ==+=+++==+=++⋅-⋅=-⋅=-⋅=-⋅+=-+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222222cos 2cos sin (6)(csc sec )cos sin cos sin csc sec cot tan d d d d d x x x x x x x x x x x xx x x x x x C-==-=-=--+⎰⎰⎰⎰⎰2. 解答下列各题:(1) 一平面曲线经过点(1,0),且曲线上任一点(x ,y )处的切线斜率为2x -2,求该曲线方程; (2) 设sin x 为f (x )的一个原函数,求()f x '⎰d x ;(3) 已知f (x )的导数是sin x ,求f (x )的一个原函数;(4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即P=0时,Q =1000),已知需求量的变化率(边际需求)为Q ′(P )=-10001()3Pln3,求需求量与价格的函数关系. 解 (1)设所求曲线方程为y =f (x ),由题设有f′(x )=2x -2,2()(22)2d f x x x x x C ∴=-=-+⎰又曲线过点(1,0),故f (1)=0代入上式有1-2+C =0得C =1,所以,所求曲线方程为2()21f x x x =-+.(2)由题意有(sin )()x f x '=,即()cos f x x =, 故 ()sin f x x '=-, 所以()sin sin cos d d d f x x x x x x x C '=-=-=+⎰⎰⎰.(3)由题意有()sin f x x '=,则1()sin cos d f x x x x C ==-+⎰于是12()(cos )sin d d f x x x C x x C x C=-+=-++⎰⎰.其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为sin x -.注意 此题答案不唯一.如若取121,0C C ==得()f x 的一个原函数为sin x x --. (4)由1()1000()ln 33PQ P '=-得111()[1000()ln 3]1000ln 3()1000().333d d P P P Q P x x C =-=-⋅=⋅+⎰⎰将P =0时,Q =1000代入上式得C =0所以需求量与价格的函数关系是1()1000()3PQ P =.习题5-21.在下列各式等号右端的空白处填入适当的系数,使等式成立: (1) d x = d(ax +b )(a ≠0); (2) d x = d(7x -3); (3) x d x = d(52x ); (4) x d x = d(1-2x ); (5) 3x d x = d(3x 4-2); (6) 2e xd x = d(2e x); (7) 2ex -d x = d(1+2ex -); (8)d xx= d(5ln |x |);(9)= d(1-arcsin x ); (10)= d(11)2d 19x x += d(arctan3x ); (12) 2d 12xx +=d(arctan x );(13) (32x -2)d x = d(2x -3x ); (14) cos(23x -1)d x = dsin(23x -1).解 1(1)()(0)()d d d d ax b a x a x ax b a +=≠∴=+Q22224334222221(2)(73)7(73)71(3)(5)10(5)101(4)(1)2(1)21(5)(32)12(32)121(6)()2()2(7)(1)d d d d d d d d d d d d d d d d d e e d e d d e d e e x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ---=∴=-=∴=-=-∴=---=∴=-=⋅∴=+=Q Q Q Q QQ 22221()2(1)251(8)(5ln )(5ln )5(9)(1arcsin )(1arcsin )(10)(2)3(11)(arctan 3)19d e d d e d d d d d d d d d d x x x x x x x x x x x x x x x x x x x x --⋅-∴=-+=∴=-==--=-==-=+Q Q QQ 222322231(arctan 3)193(12)))1212(13)(2)(23)(32)(32)(2)222232(14)sin(1)cos(1)cos(1)sin(1)333323d d d d d d d d d d d d d x x x x x x x x x x x x x x x x x x x x x x ∴=+=∴=++-=-=--∴-=---=-∴-=-Q Q Q 2.求下列不定积分: (1)5e d t t ⎰; (2) 3(32)x -⎰d x ; (3)d 12xx -⎰;(4)(5)t ; (6)d ln ln ln xx x x ⎰;(7)102tan sec d x x x ⎰; (8) 2e d x x x -⎰;(9)dsin cos x x x ⎰; (10) tan ⎰(11)de e x x x-+⎰; (12)x ;(13) 343d 1x x x-⎰; (14) 3sin d cos xx x ⎰;(15)x ; (16) 32d 9x x x +⎰; (17)2d 21xx -⎰; (18) d (1)(2)xx x +-⎰;(19 2cos ()d t t ωϕ+⎰); (20) 2cos ()sin()d t t t ωϕωϕ++⎰;(21) sin2cos3d x x x ⎰; (22) cos cos d 2x x x ⎰; (23)sin5sin 7d x x x ⎰; (24) 3tansec d x x x ⎰;(25)x ; (26);(27)ln tan d cos sin xx x x ⎰; (28)21ln d (ln )xx x x +⎰;(29)2,0x a >; (30)(31)d xx⎰; (32)(33); (34),0x a >;(35)x ; (36) x ; (37)2sec ()d 1tan x x x +⎰; (38) (1)d (1e )x x x x x ++⎰(提示:令xt e =). 解 5555111(1)5(5)555e d e d e d e tt t tt t t C =⋅==+⎰⎰⎰33411(2)(32)(32)(32)(32)28d d x x x x x -=---=--⎰⎰122333111(3)(12)ln 121221221131(4)(23)(23)()(23)(23)3322(5)22sin 111(6)(ln ln )ln ln l ln ln ln ln ln ln ln ln d d d d d d d d x x C x x x x x x C x Ct t C x x x x x x x x x x-=--=-+---=---=--+=--+===-=⋅==⎰⎰⎰⎰⎰⎰⎰222210210112n 1(7)tan sec tan (tan )tan 11111(8)(2))222(9)22csc 22sin cos 2sin cos sin 2ln ln csc 2cot 2tan sin c d d e d e d e d(-e d d d d d 或x x x x Cx x x x x x x Cx x x x x Cx x xx xx x x x x C C x x x x x ----+⋅==+=-⋅-=-=-+===⋅⋅=+=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2cos 1tan ln tan os sin cos tan d d x x x Cx x x x x=⋅==+⎰⎰⎰22234(10)ln 1(11)()arctan 11()11(12)631333(13)14d d e d d e e e e e e d x x xx xx x Cx x C x x xCx x x -==-+===++++'=-=-=-==--⎰⎰⎰⎰⎰⎰⎰3444432334313(1)ln 11414sin sin 1(14)cos cos cos cos cos 2(15)1218)23812d d d d d d d x x x C x x x x x x x x x x C x x x x xx x x---=--=-+----=-=-=+=-=+-=⎰⎰⎰⎰⎰122221(94)(94)38)d x x x -+--⎰12arcsin 23x C =3322222222999(16)()9999119(9)ln(9)2922111(17)212221)1)x x x x xx x x x x x xx x x x x C x x x x xx +-==-+++=-+=-+++==--=-+⎰⎰⎰⎰⎰⎰⎰d d d d d d d2111111111(18)()(2)(1)(1)(2)32132311112ln ln ln 2133311cos(22)11(19)cos ()cos(22224C Cx x x x x x x x x x x C Cx x x t t t t t t ωϕωϕωω=-+=+++=-=--++--+-+-=-+=+-+++++==++⎰⎰⎰⎰⎰⎰ d d d d d d d 223)(2)11cos(22)(22)2411sin(22)241(20)cos ()sin()cos ()cos()1cos ()3(21)sin 2cos3t t t t t t Ct t t t t t C x x ϕωωϕωϕωωϕωωϕωϕωϕωϕωωϕω⋅=+++=+++++=-++=-++⎰⎰⎰⎰⎰d d d d 111(sin 5sin )sin 55sin 210211cos5cos 10213133(22)cos cos (cos cos )cos ()cos ()22223222213sin sin 3221(23)sin 5sin 7(cos12x x x x x x x xx x Cx x x x x x xx x x x xCx x x =-=-=-++=+=+=++=-⎰⎰⎰⎰⎰⎰⎰⎰d d d d d d d d d 2cos 2)11cos12(12)cos 2(2)24411sin12sin 2244x x xx x x x x x C-=-+=-++⎰⎰⎰⎰d d d322322(24)tan sec tan(sec)(sec1)sec1sec sec3(25)2arctan2(arctan1(26)(arcsin)d d ddddx x x x x x xx x Cx x xCx==-=-+===+=⎰⎰⎰⎰⎰1(arcsin)arcsinx Cx=-+⎰2222222ln tan1(27)ln tan seccos sin tan1ln tan(ln tan)(ln tan)21ln111(28)(1ln)(ln)(ln)ln(ln)ln(29)d ddd d ddxx x x xx x xx x x Cxx x x x x C x x x x x x x xx a=⋅⋅==++=+==-+==-⎰⎰⎰⎰⎰⎰⎰x⎰利用教材§5.2例16及公式(20)可得:原式=22211arcsin arcsin arcsin2222x a x a xa C Ca a a--=-.(30)令tan,(,)22ππx t t=∈-,则2secd dx t t=.所以2sec cos sinsecd dd dtt t t t t Ct====+⎰⎰tan,sin原式x t t C=∴=∴=+Q.(31)令3sec,(0,)2πx t t=∈,可求得被积函数在x>3上的不定积分,此时3sec tan3tand dx t t t t=⋅=故223tan3sec tan3tan3(sec1)3secd d dtx t t t t t t tt=⋅⋅==-⎰⎰⎰3tan3t t C=-+.由3sec,(0,)2πx t t=∈得tan3t=,又由3secx t=得33sec,cos,arccos3xt t tx x===,333arccos 3arccos )x C C x x∴=+=+ 又令x =3sec t ,类似地可得被积函数在x <-3上的不定积分.11333arccos 3(arccos )33arccos d π x C C x x x Cx=+=-+=+⎰综上所述有33arccos x C x=+. (32)令sin ,(,)22ππx t t =∈-,则cos d d x t t =. 11cos sin cos sin cos sin cos 2sin cos 11111(sin cos )ln sin cos 22sin cos 2211arcsin ln .22d d d d d t t t tt t tt t t tt t t t C t t t t x C x ++-=⋅=++=++=++++=++⎰⎰⎰⎰ (33)令sin ,(,)22ππx t t =∈-,则cos ,d d x t t =2cos 1(1)sec ()1cos 1cos 22tan arcsin .2d d d d t t tt t t t t t t C x C ∴==-=-++=-+=-⎰⎰⎰(34)21(2d d x a x x a =+=+⎰arcsinxa C a=⋅-. (35)令2sin ,(,),2cos 22ππd d x t t x t t =∈-=,所以2222cos 2cos cot csc 4sin d d d d tx t t t t t t t t=⋅==-⎰⎰⎰⎰cot arcsin 2x t t C C x =--+=--+.(36)2d x x x ==1(1)ln1dx Cx=+=++Q由被积函数知x≤-2或x>0,令1xt=,当x>0时,(此时t>0)221222211222(12)(12)2.d dddx t tt ttt t CC C Cxx--==-=-=-++=-=-=-+=-+⎰当x≤-2时,此时12t-≤<221233311222(12)(12).d ddx t tt ttt t t CC C Cx--==-==++===+=+⎰综上所述:原式= ln1Cx+.(37)2222sec sec11()(1tan)1tan(1tan)(1tan)1tand d dx xx x x C x x x x==+=-+ ++++⎰⎰⎰.(38)令e x=t,则x=ln t,d x=1td t.11ln1111(ln)(ln)(1)ln(1ln)ln(1ln)ln1ln11(ln)(1ln)ln lnln1lnln1lnln ln ln ln ln ln111d d d ded dee e ee xxx x xx x tx t t t t t x x t t t t t t t t t t t tt t t t Ct t t tt t t txC C x Cxx x xx ++⎡⎤=⋅==-⎢⎥++++⎣⎦=-+=-+++=-+=+-+=+++++⎰⎰⎰⎰⎰⎰习题5-31.求下列不定积分:(1) sin dx x x⎰; (2) e d x x x-⎰;(3) arcsin d x x ⎰; (4) ecos d xx x -⎰;(5) 2e sin d 2xx x -⎰; (6) 2tan d x x x ⎰; (7) 2e d t t t -⎰; (8)2(arcsin )d x x ⎰; (9)2e sin d x x x ⎰;(10) x ⎰;(11)cos(ln )d x x ⎰; (12)2(1)sin 2d x x x -⎰;(13)ln(1)d x x x -⎰; (14)22cosd 2x x x ⎰; (15)32ln d xx x⎰; (16)sin cos d x x x x ⎰;(17)2cot csc d x x x x ⎰; (18)22(1)e d xx x x +⎰; (19)1(ln ln )d ln x x x+⎰; (20)e ln(1e )d x x x +⎰; (21) 23sin d cos x x x ⎰;(22)22ln(d (1)x x x x +⎰; (23)2e d (1)x x x x +⎰; (24)arctan 322e d (1)xx x x +⎰. 解 (1)sin cos cos cos cos sin d d d x x x x x x x x x x x x C =-=-+=-++⎰⎰⎰(2)()(1)e d de e e d e e d e e e x x x x x x xxxx x x x x x x x C x C---------=-=-+=---=--+=-++⎰⎰⎰⎰21(3)arcsin arcsin arcsin (1)2arcsin d x x x x x x x x x x x C=-=+-=+⎰⎰(4)cos cos cos (sin )cos sin cos sin cos e d de e e d e de e e e d x x x x x x x x x x x x x x x x x x x x x---------=-=-+-=-+=-+-⎰⎰⎰⎰⎰12cos (sin cos )(sin cos )cos 2e d e e e d x x x xx x x x C x x x x C----∴=-+-∴=+⎰⎰22221111(5)sin sin sin cos 22222222e d de e e d x x x x x x x xx x ----=-=-+⋅⎰⎰⎰2222222211sin cos 22821111sin cos (sin )2282822111sin cos sin 2282162e de e e e d e e e d x xx x x x x x x xx x x x x x x x--------=--=--+-=---⎰⎰⎰2221221711sin sin cos 16222822sin (cos 4sin )21722e d e e e d e x x x x x x x xx C x x xx C-----∴=--+∴=-++⎰⎰222222222222221(6)tan (sec )sec 211(tan )tan tan 221tan ln cos 2111(7)2221111(2)2424d d d d de d de e e d e e d e t t t t t t t x x x x x x x x x x x x x x x x x x x x x x Cx t t t t tt t t -------=-=-=-=--=+-+=-=-+=---=--⎰⎰⎰⎰⎰⎰⎰⎰222222(8)(arcsin )(arcsin )2arcsin (arcsin )2arcsin (arcsin )2(arcsin )2e d d t Cx x x x x x xx x x x x x xx x x x -+=-⋅=+=+-=+-⎰⎰⎰⎰⎰22(arcsin )21cos 211(9)sin cos 222211cos 222e d e d e d e d e e d x x x x x x x x x x Cx x x x x x xx x=+-+-==-=-⎰⎰⎰⎰⎰而cos 2cos 2cos 22sin 2cos 22sin 2e d de e e d e de x x x x x xx x x x x x x x ==+=+⎰⎰⎰⎰cos 22sin 24cos 2e e e d x x x x x x x =+-⎰11cos 2(cos 22sin 2),511111(cos 22sin 2)(sin 2cos 2).2102510e d e 原式e e e x x x x x x x x x C x x C x x C ∴=++∴=-++=--+⎰(10)t =,则32,3d d x t x t t ==22222223336363663663(22)32)e d de e e d e de e e e d e e e e t t t t t t t t t t t t t x t t t t t tt t t t t t t C t t C C===-=-=-+=-++=-++=+⎰⎰⎰⎰⎰⎰(11)令ln x =t ,则,e d e d ttx x t ==,cos(ln )cos cos de e cos e sin e cos sin e e cos e sin e cos cos(ln )sin(ln )cos(ln )cos(ln )[cos(ln )sin(ln )]2d e d d d d d d t t t ttttttx x t t t t t t t t t t t tx x x x x xxx x x x C===+=+=+-=+-∴=++⎰⎰⎰⎰⎰⎰⎰⎰22222211(12)(1)sin 2sin 2sin 2cos 2sin 2(2)2211cos 2cos 2cos 222111cos 2cos 2sin 222211cos 2cos 2sin 222d d d d d d d x x x x x x x x x x x x x x x x x xx x x x xx x x x -=-=--=-++=-++=-++⎰⎰⎰⎰⎰⎰⎰2212sin 22111cos 2cos 2sin 2cos 2222413()cos 2sin 2222d x x xx x x x x x Cxx x x C-=-++++=--++⎰2222222221(13)ln(1)ln(1)()ln(1)2221111111ln(1)ln(1)(1)2212221111ln(1)()ln 122221(1)ln(1)2d d d d d d x x x x x x x x xx x x x x x x x x xx x x x x x Cx x x -=-=----+=--=--+---=--+-+-=--⎰⎰⎰⎰⎰⎰211.42x x C --+ 2222232321cos 11(14)cos cos 22221111sin sin sin 6262d d d d d d x x x x x x x x x x xx x x x x x x x x+=⋅=+=+=+-⎰⎰⎰⎰⎰⎰3232321111sin cos sin cos cos 626211sin cos sin .62d d x x x x x x x x x x x x x x x x x x C =++=++-=++-+⎰⎰333222323223232232ln 111(15)ln ()ln 3ln 11131ln 3ln ()ln ln 6ln 131ln ln 6ln ()1361ln ln ln 613ln ln d d d d d d d x x x x x xx x x xx x x x x xx x x x x x x x x x x x x x xx x x x x x x =-=-+=--=--+=---=---+=--⎰⎰⎰⎰⎰⎰⎰3266ln 1(ln 3ln 6ln 6) x x Cx x x x x Cx --+=-++++ 11(16)sin cos sin 2cos 22411cos 2cos 2cos 2cos 2244481cos 2sin 248d d d d d x x x x x x x x x x x x x x x x x x x x C==-=-+=-+=-++⎰⎰⎰⎰⎰()222221(17)cot csc csc csc csc 211csc csc csc cot 2222d d d d x x x x x x x x x x x x x x x x C=-=-=-+=--+⎰⎰⎰⎰222222222222222222211(18)(1)(1)(1)221111(1)2(1)()2222111(1)222e d e d de e e d e e d e e e x x x x x x x x x x x x x x x x x x x x x x C x C+=+=+=+-⋅=+-=+-+=+⎰⎰⎰⎰⎰11111(19)(ln ln )ln ln ln ln ln ln ln ln 11ln ln ln ln ln ln d d d d d d d x x x x x x x x x x x x x x xx x x x x x Cx x+=+=-⋅⋅+=-+=+⎰⎰⎰⎰⎰⎰⎰(20)ln(1)ln(1)(1)(1)ln(1)(1)1(1)ln(1)(1)ln(1)e e e d e d e e e e d e e e e d e e e xxxxxxxxxx x x x x x x x x C+=++=++-+⋅+=++-=++-+⎰⎰⎰⎰2233sin (21)tan sec tan (sec )tan sec sec cos d d d d x x x x x x x x x x x x=⋅==-⎰⎰⎰⎰ 2223323cos sin sin tan sec tan sec sec cos cos sin tan sec ln sec tan cos d d d d x x xx x x x x x x x x xxx x xx x x+=-=--=--+⎰⎰⎰⎰ 于是 213sin 2tan sec ln sec tan cos d xx x x C x x x =-++⎰, 所以 23sin 11tan sec ln sec tan cos 22d x x x x C x x x =-++⎰. 22211(22)ln(()211121ln(12(1)2d d d x x x x x x x =-++=+++=-++⎰⎰⎰令x =tan t , (,)22ππt ∈-,则d x =sec 2t dt21131sec cos sin sec d d d t t t t t C C t =⋅==+=+⎰⎰ ∴原式=2ln(2(1)x C x ++. 211(23)()(1)111111e e d e d e e d e e ee d e x x x x xxxxx x x x x x x x x x x x x x x C C x x x=-=-+⋅+++++=-+=-++=++++⎰⎰⎰⎰arctan arctan arctan arctan 322(24)(1)e e d e x x xx x x x x ==-+⎰⎰arctan arctan arctan arctan arctan 322(1)e 1e e e x x x x xx x =-=+⎰于是arctan arctan 13222(1)e e d x xx x C x =++⎰,所以arctan arctan 322(1)e e d x x x x C x =++⎰.习题5-4求下列不定积分:(1) 21d 1x x +⎰; (2)5438d x x x x x +--⎰;(3)sin d 1sin xx x +⎰; (4) cot d sin cos 1xx x x ++⎰.解 (1)令322111(1)(1)11A Bx Cx x x x x x x +==+++-++-+ 则 2331()()()11A B x B C A x A C x x +++-++=++ 从而 001A B B C A A C +=⎧⎪+-=⎨⎪+=⎩ 解得 131323A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩于是2322222123(1)3(1)1112111331612()2411ln ln 11361(1)ln 61d d d d d x x x x x x x x x x x x x x x Cx x x x Cx x -⎡⎤-=⎢⎥+-++⎣⎦-=-++-+-+=-++-++=-+⎰⎰⎰⎰⎰542233323323288(2)(1)11832111111ln 8()13221218ln 3ln 4ln 1132d d d d d x x x x x x x x x x x xx x x x xx x xx x x xx x x x x x x Cx x x +-+-=+++--=+++---=+++--++⋅--+=+++--+-+⎰⎰⎰⎰⎰ 222sin sin (1sin )1(3)cos (sec 1)1sin cos cos 1tan sec tan cos d d d d x x x x x x x x x x xx x C x x x Cx-==---+=-++=-++⎰⎰⎰⎰注 本题亦可用万能代换法(4)令tan2xt =,则 222222112sin ,cos ,cot ,2arctan ,1121d d t t t x x x x t x t t t t t--=====+++ 则222221cot 21111221sin cos 112221111111ln ln tan tan 222222d d d d d t x t t x t t t t t t x x t t t t t x x t C Ct --=⋅==--+++++++=-+=-+⎰⎰⎰⎰⎰。
练习5.11.在空间直角坐标系下,下列方程的图形是什么形状? (1) )(4222椭圆抛物面z y x =+ (2)圆锥面)(4222z y x =+(3) 椭球面)(19164222=++z y x (4) 圆柱面)(122=+z x 2.求下列函数的定义域: (1)y x z --= (2) y x e z yx -+=+3解:⎩⎨⎧≥-≥00y x y 解:0≥-y x 即⎪⎩⎪⎨⎧≥≥≥y x x y 200 {}0|),(≥-∴y x y x 函数的定义域为∴ 函数的定义域为{}y x y x y x ≥≥≥2,0,0|),((3). ()y x f ,对于函数=yx yx +-,证明不存在),(lim 0y x f x →分析:由二元函数极限定义,我们只须找到沿不同路径)0,0(0p p →时,所得极限值不同即可。
证明:①0(,)0,0)(0,0)p x y x x y p ≠=当沿轴(此时趋于时,1),(lim ,1)0,(),(00===→→y x f x f y x f y x②当)时,,趋于(沿直线00)0(),(≠=x kx y y x p)0(111),(≠≠+-=+-=k kkkx x kx x y x f综合①②可知函数极限不存在,证毕。
练习5.21. 求下列函数的偏导数 ①;,,33yz x z xy y x z ∂∂∂∂-=求解:23323,3xy x yz y y x x z -=∂∂-=∂∂ ②;,,)ln(yzx z xy z ∂∂∂∂=求解:[])ln(21.1.)ln(2121xy x y xy xy x z ==∂∂-[])ln(21.1.)ln(2121xy y x xy xy y z ==∂∂-③yx x z y x x z z ∂∂∂∂∂+=222,),ln(求解:yx x y x x z +++=∂∂1.)ln( 2222)(2)(1))(ln()(y x y x y x x y x y x y x x y x x xz x x z ++=+-+++=+++∂∂=∂∂∂∂=∂∂222)()(01)ln()(y x yy x x y x y x x y x y x z y y x z +=+-++=⎥⎦⎤⎢⎣⎡+++∂∂=∂∂∂∂=∂∂∂④;,3zy x ue u xyz∂∂∂∂=求解;2,()xyz xyz xyz z xyz u u yze ze yzxze z xyz e x x y∂∂==+=+∂∂∂ xyzxyz xyz z xye xyz z e xyz z e xyz z zy x u z z y x u )()2()()(2223+++=+∂∂=∂∂∂∂∂=∂∂∂∂=)31()21(222222z y x xyz e z y x xyz xyz e xyz xyz ++=+++2.设yf y f ey x f y xy ∆-∆+=→∆)1,2()1,2(lim,),(02则解:22(1)00(2,1)(2,1)0lim lim ()0y y y f y f e y y +∆∆→∆→+∆-=∆∆未定式22(1)0(2)10lim 1y y e y +∆∆→+∆⋅-= =4 2e3.设z y x u u u z y x u +++++=)处求,,在点(111),1ln(32解:3211z y x u x +++=3212zy x yu y +++=32213zy x z u z +++= 23434241|)1,1,1(=++=++∴z y x u u u 4.设02,2=∂∂+∂∂=yz y x z xez y x求证 证明:22221xxy y z e y e x y-∂=⋅=∂Q22331(2)2x xy y z e x xy e y y-∂=⋅⋅-=-∂Q 22222323122(2)22x x x xy y y y z z x y xy e ye x xy e y xy e x y y---∂∂∴+=+⋅⋅-=-⋅+∂∂=0 证毕 练习5.31. 求下列函数的全微分(1)求z=xy 在点(2,3)处,当时的全增量与全微分与2.01.0-=∆=∆y x 解:全增量12.068.21.2)3,2()2.03,1.02(-=-⨯=--+=∆f f z30.12(0.2)0.1x y dz z x z y y x x y =∆+∆=∆+∆=⨯+⨯-=-(2)求时的全微分当2,1),1ln(22==++=y x y x z解:dy yx y dx x z dz 2212+++∂∂=dy dx dy dx dz323141144112)2,1(+=+++++=(3),u xy yz zx du =++求 解:()()udu dx x z dy x y dz x∂=++++∂ dz y x dy z x dx z y )()()(+++++=2.计算下列各式的近似值(分析运用公式01000()(,)f x x y y f x y f xx f y y ''+∆+∆≈+∆+∆) (1)03.2)1.10(解:令03.0,2,1.0,10,),(00=∆==∆==y y x x x y x f y取 y y f x x f y x f y y x x f ∆'+∆'+≈∆+∆+=),()()1.10(0001003.2 01.0ln 1.010)2,10()2,10(12⋅+⋅+=-x x yx y y9.10810ln 32100≈++= (2) )198.003.1ln(43-+ 解:令)1ln(),(43-+=y x y x f 取 02.0,1,03.0,100-=∆==∆=y y x x 原式23(1,1)(10.03,10.02)11)|(0.02)f x -=+-≈+-+- =0+005.002.04103.031=⨯-⨯ (3) 0046tan 29sin解:令y x y x f tan sin ),(= 取 180,4,180,30000πππ=∆=-=∆=y y x x则 原式=)1804,1806(ππππ+-f(,)()64180180x y f f f ππππ''≈+-+ =2(,)(,)646411cos tan |()sin sec |2180180x y x y ππππππ⨯+-+⋅=11)2180180x x ππ+-+⋅ =0.5023练习5.41. 求下列函数的导数或偏导数。
(1).,.23,,ln 2yz x z y x v y x u v u z ∂∂∂∂-===求而 解:22223122ln 3ln(32)32x z z u z v u x y u v x y x u x v x y v y x y ⋅∂∂∂∂∂=+=⋅+⋅=-+∂∂∂∂∂- 222)23(3)23ln(2yy x x y x y x -+-= )23(2)23ln(2)2()(ln 2223222y x y x y x y x v u y x v u y v v z y u u z y z ----=-+-⋅=∂∂∂∂+∂∂∂∂=∂∂(2) dtdze y e x x y z t t 求而,1,,2-=== 解:dt dy y z dt dx x z dt dz ∂∂+∂∂= )2(122t t e x e xy -+⋅-= )2(11222t t t t e t e ee -+⋅--==t e --2(3) dxdz x y y x y x z 求而,32,2-=+-=解:方法1:222222323()()2333(22)(33)(23)3(33)dz d x x d x x dx dx x x dx x x x x x x -+-+==+------+⋅=- 22)1(312---=x x x 方法2:dxdy y f x f dx dz ∂∂+∂∂= =222222)1(3122)()()()()()(2---=⋅+--+-++--+x x x y x y x y x y x y x y x x (4) θθθ∂∂∂∂==-=zu z u y u x xy y x z ,,sin ,cos ,22求而 解:uy y z u x x z u z ∂∂∂∂+∂∂∂∂=∂∂ 22(2)cos (2)sin ,xy y x xy θθ=-+-θθθθθθθθsin )sin cos 2cos (cos )sin sin cos 2(2222u u u u u u ⋅-+-⋅= =),sin (cos cos sin 32θθθθ-uuy y z x y z z ∂∂∂∂+∂∂∂∂=∂∂θθ =θθcos )2()sin ()2(22u xy x u y xy -+--=)cos (sin )cos (sin cos sin 23333+++-θθθθθu u 2.求下列隐函数的导数或偏导数. ① .,0ln ln dxdyx y xy 求=-+ 解:两边同时对x 求导。
,011''=-++x y y xy y y xy x y -=+1)1('y x y x y 11'+-=yx x xy y y 22'+-=②dxdy xy e y x 求,0sin 2=-+ 解: 两边同时对x 求导。
02cos '2'=--+xyy y e y y xx e y xy y y -=-2')2(cosxyy y y 2cos 2'-=3.已知方程).,(,0),2(222y x f z z y x y x F ==++++所确定的函数y zx z F ∂∂∂∂,,求的两个一阶偏导数存在且解:令0),(,,2222=++=++=v u F z y x v y x u 则 ① 两边同时对x 求偏导,0=∂∂∂∂+∂∂∂∂xvv F x u u F0)22()1(''''=+++x v x u zz x F z F'''''22v u v u xzF F xF F x zz ++-=∂∂= ② 两边同时对y 求偏导,0=∂∂∂∂+∂∂∂∂yvv F y u u F0)22()1(''''=+++y v y u zz y F z F'''''22vu v u xzF F yF F y zz ++-=∂∂= 练习5.51. 的值求二元函数296922+-++-=y x y xy x z解:⎩⎨⎧=-=⎪⎩⎪⎨⎧=-+-==+-=14062092''y x y x z y x z yx 解得 2,1,0''''''==-==>==yy xy xx Z C Z B z Z A Θ又03412<-=-=-=∆AC B 是极小值1|)1,4(-=∴-Z22601222515z x y x xy y x y =+---+=2.求二元函数 在条件下的极值解:)15(5221260),,,(22-++---+=y x y xy x y x z y x F λλ⎪⎩⎪⎨⎧=-+==+--==+--=015010212002460'''y x F y x F y x F y x λλλ 解:⎪⎩⎪⎨⎧-===1896z y x因为只有唯一的一个驻点,且根据题意z 有极大值, 故极大值855|)9,6(=z112112212121212211111122222212222121212123,,,82,102532,,821025714544P Q Q Q P P Q P P C Q Q P P P P R PQ P P PP R P Q P PP P L R R C P P P P PP L =-+=+-=+==-+==+-=+-=+--+-'1212设分别为商品x ,x 的需求量而它们的需求量为总成本函数为,其中为商品x ,x 的价格.试问价格取何值时可使利润最大?解 利润函数()2111222121221212724063/214141040241040,,(63/2,14)P P P PP PP P P P P L P P A L B L C L B AC L P P =-+=⎧=⎧⎪⎨⎨'==-+=⎩⎪⎩''==-''==''==-∴-=-<=Q 解为唯一驻点有极大值.故在处取极大值.221.,(,)6424432146444403248244x yxxL x y x x xy y y L x y x L x y y A L =-+-+-'=-+=⎧⎧⎨⎨'=+-=⎩⎩''==-Q 某公司生产两种商品x 和y 利润函数为其中x,y 表示商品x,y 的产量,求x,y 各为多少时,所获利润大?最大为多少?解解得又08xy yy B L C L ''==''==-()()2320,40,2440,241650.B AC L ∴-=-<=故在取大值,即最大值()()()()3222,13,7134122505024X Y C X Y X Y XY X Y =+-++++某公司同时销售煤气和电力的销量为单位:万米,电力的销量为单位:千瓦,总函数为单位:万元()()()22,4360.,436013,,713412250436024X Y X Y C X Y X Y F X Y X Y XY X Y X Y λλ+-=+-==+-+++++-=其中满足问应如何安排销售,才能使总成本最低?解:条件极值问题,实际中有最小值,所以即求在条件下的极值.令()()()'3227134403712024360138881,6202XYF X Y F Y X F X Y Y f L K L K L K λλλ'=-+-=⎧⎪⎪'=-++=⎨⎪=+-=⎪⎩==+--382解得X=万米81千瓦即为销售安排.3:设某企业和生产函数为其中L 表示生产力,K 表示资本投入.如果这两种生产要素的单价为4和8,且希望投入的总成本为88.求满足该条件的最大可能生产量.解:条件极值问题.实际中有最大可能生产量.所以即求f 在条件4L+8K=88下的极大值.()()22'',,6202488862402048048880(6,8)32L KL K L K L K L K F L F K F L K f λλλλλ=+--++-⎧=-+=⎪'=-+=⎨⎪=+-=⎩=令F 解L=6,K=8,所求最大生产量习题五 1:选择题。