二次函数的应用复习
- 格式:ppt
- 大小:631.00 KB
- 文档页数:22
专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。
九年级数学下册《二次函数的应用》期末专题复习【基础知识回顾】一、二次函数与一元二次方程:二、二次函数解析式的确定:1、设顶点式,即:设2、设一般式,即:设3、设交点式,即:设【提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:2、与一次函数或直线形图形结合的综合性问题【提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1 (呼和浩特)已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A.有最大值,最大值为 B.有最大值,最大值为C.有最小值,最小值为 D.有最小值,最小值为对应训练1.已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定考点二:确定二次函数关系式例2 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.对应训练2.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.考点三:二次函数与x轴的交点问题例3 若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.3对应训练3.(株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0) B.(-2,0) C.x=-3 D.x=-2考点四:二次函数的实际应用例4 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是 m.例5 (重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:月份x 1 2 3 4 5 6输送的污水量y1(吨)12000 6000 4000 3000 2400 20007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=x-x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)对应训练4.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行 m才能停下来.考点五:二次函数综合性题目例6 如图,抛物线交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线沿y轴翻折得抛物线.(1)求的解析式;(2)在的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.对应训练6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【聚焦中考】1.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.92.抛物线y=-3x2-x+4与坐标轴的交点个数是()A.3 B.2 C.1 D.03.(济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.4.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…20 30 40 50 60 …每天销售量(y件)…500 400 300 200 100 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)洛阳市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?5.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.6.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【备考真题过关】一、选择题1、如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A. B. C.3 D.42、已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.(资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x>5 C.x<-1且x>5 D.x<-1或x>53、如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①② B.①④ C.②③ D.③④4、如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.45、若二次函数y=(x+1)(x﹣m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>16、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3C.﹣6 D.9二、解答题7、如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h= (t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?8、某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)9、某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)20 30出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?10、抛物线y= x2+x+m的顶点在直线y=x+3上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.11、如图,一次函数y=- x+2分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大第 11 页 共 11 页 值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.14.已知抛物线y= x 2+1(如图所示).(1)填空:抛物线的顶点坐标是( , ),对称轴是 ;(2)已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;(3)在(2)的条件下,点M 在直线AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.。
二次函数复习知识点总结二次函数是高中数学中常见且重要的一个内容。
它的一般形式可以表示为y=ax^2+bx+c,其中a、b、c为实数且a≠0。
在二次函数中,x的次数最高为2,因此该函数的图像是一个抛物线。
以下是二次函数的复习知识点总结。
一、基本概念:1. 定义:二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为实数,且a≠0。
2.首项系数:a是二次函数中x^2的系数,决定了抛物线的开口方向。
-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
3.y-截距:c是二次函数的常数项,表示抛物线与y轴的交点的纵坐标。
4. 零点:二次函数的零点是使得函数值为0的x值。
可以通过求解二次方程ax^2+bx+c=0来找到零点。
二、性质和图像的特征:1.对称轴:二次函数的对称轴是抛物线的对称轴,可以通过求解x=-b/2a来找到对称轴的方程。
2.最值:当抛物线开口向上时,抛物线的最小值为对称轴的纵坐标;当抛物线开口向下时,抛物线的最大值为对称轴的纵坐标。
3. 判别式:判别式Δ=b^2-4ac可以用来判断二次方程ax^2+bx+c=0的根的情况。
-当Δ>0时,方程有两个不相等实数根;-当Δ=0时,方程有两个相等实数根;-当Δ<0时,方程没有实数根。
4.开口方向:抛物线开口的方向由首项系数a决定。
5.图像:二次函数的图像是一个抛物线,可以通过首项系数a的正负和抛物线的其他特征来确定图像的形状、方向和位置。
三、函数的变换:对于二次函数y=ax^2+bx+c,可以进行水平平移、垂直平移、水平缩放等操作来得到其他的二次函数。
1. 水平平移:将函数y=ax^2+bx+c的图像沿x轴平移h个单位得到函数y=a(x-h)^2+b(x-h)+c。
平移后的抛物线的顶点坐标为(h, k),其中k是原抛物线的纵坐标。
2. 垂直平移:将函数y=ax^2+bx+c的图像沿y轴平移k个单位得到函数y=a(x^2+bx+c)+k。
初三中考复习时关于二次函数应用的专题复习30题 1、徒骇河大桥是我市第一座特大型桥梁,大桥桥体造型新颖,气势恢宏,两条拱肋如长虹卧波,极具时代气息极具时代气息((如图①).大桥为中承式悬索拱桥,大桥的主拱肋ACB 是抛物线的一部分是抛物线的一部分((如图②),跨径AB 为100m ,拱高OC 为25m ,抛物线顶点C 到桥面的距离为17m .(1)请建立适当的坐标系,求该抛物线所对应的函数关系式;(2)七月份汛期来临,河水水位上涨,假设水位比AB 所在直线高出1.96m ,这时位于水面上的拱肋的跨径是多少?在不计桥面厚度的情况,一条高出水面4.6m 的游船是否能够顺利通过大桥?2、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x 元,,商场一天可获利润y 元.元.①求出y 与x 之间的函数关系式;.②商场经营该商品,每件商品应降价多少元时,可获得最大利润,最大利润是多少?3通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元?元? 3、某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数)元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),,且进货量为1吨时,销售利润为1.4万元;进货量为2吨时,销售利润为2.6万元.万元.(1)求(万元)与(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?多少?4、北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查这种水果在北方市场上的销售量(吨)与每吨的销售价(万元)之间的函数关系如下图所示:(1)求出销售量与每吨销售价之间的函数关系式;(2)如果销售利润为(万元),请写出与之间的函数关系式;(3)当每吨销售价为多少万元时,销售利润最大?最大利润是多少?5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.元的各种费用. 设每个房间每天的定价增加元.求:(1)房间每天的入住量(间)关于(元)的函数关系式.(2分)分)(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.(3分)分)(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?(5分)分)6、某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表x(元)15 20 30 … y(件)25 20 10 …若日销售量y 是销售价x 的一次函数(1)求出日销售量y (件)与销售价x(元)的函数关系式;的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?7、右图是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,桥洞两侧壁上各有一盏距离水面4m 的景的景 观灯.若把拱桥的截面图放在平面直角坐标系中(如下图)(1)求抛物线的解析式.(2)求两盏景观灯之间的水平距离.8、某电视机生产厂家去年销往农村的某品牌电视机每台的售价某电视机生产厂家去年销往农村的某品牌电视机每台的售价(元)(元)与月份之间满足函数关系,去年的月销售量(万台)与月份之间成一次函数关系,其中两个月的销售情况如下表:月份月份1月 5月 销售量销售量3.9万台万台4.3万台万台 (1)、求(万台)与月份之间成一次函数关系式(2)、该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?9、如图,一座抛物线型的拱桥,正常水位时桥下水面宽度AB 为29m ,拱顶离水面4m ,桥下水深2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于16m,求水深超过多少米时,就会影响过往船只在桥下顺利航行?10、日照市是中国北方最大的对虾养殖产区,日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;被国家农业部列为对虾养殖重点区域;被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.贝类产品西施舌是日照特产.贝类产品西施舌是日照特产.沿沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)吨)品种品种先期投资先期投资 养殖期间投资养殖期间投资 产值产值 西施舌9 3 30 对虾对虾4 10 20.养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?11、一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;,求抛物线的解析式;(2)求支柱的长度;)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.12、利达经销店为某工厂代销一种建筑材料利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,(这里的代销是指厂家先免费提供货源,(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,待货物售出后再进行结算,待货物售出后再进行结算,未售未售出的由厂家负责处理)。
《二次函数的应用》教学设计35321212++-=x x y 3532121-2++=x x y 教学环节教学内容 学生活动环节目标 创设情境问题引入 1.已知二次函数 ,求出抛物线的顶点坐标与对称轴。
2.已知二次函数图象的顶点坐标是(6,2.6),且经过点(0,2),求这个二次函数的表达式 。
3.抛物线 c bx x y ++=261-经过点(0,4)经过点(3,217),求抛物线的关系式。
问题:(1)求二次函数顶点坐标的方法 (2)设表达式的思路(3)如何求二次函数与x 轴及y 轴的交点坐标课前布置,独立完成,上课时没完成的继续完成,之后组内批阅,找学生上台板演,并回答老师提出的问题。
这三个小题是后面实际应用问题的答案,学生在复习二次函数基础知识的同时,把后面的计算提到前面来,便于后面把教学重点放在解题思路的分析与掌握上,减少学生的计算量。
探索交流获得新知1例题解析例 1 :这是王强在训练掷铅球时的高度y (m)与水平距离x(m)之间的函数图像,其关系式为 ,则铅球达到的最大高度是_____米,此时离投掷点的水平距离是____米。
铅球出手时的高度是_____米,此次掷铅球的成绩是____米。
2、跟踪练习:如图,排球运动员站在点O 处练习发球,将球从1、学生独立思考后回答问题答案。
2、根据图像回答解题思路。
(前面已经求过前两个空,只计算后面两个即可)引导学生得到解决问题的方法:这四个问题都是求线段的长度,共同点为已知点的一个坐标,可将其代入表达式求另一个坐标,再把坐标转化成线段的长。
O点正上方2 m的A处发出,把球看成点,出手后水平运行6米达到最大高度2.6米,(1) 运行的高度记为y(m),运行的水平距离记为x(m),建立平面平面直角坐标系如图,求y 与x的函数表达式(不要求写出自变量x的取值范围);(2) 若球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m。
二次函数应用题专题复习含答案例1、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y毫克/百毫升与时间x时的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后包括1.5小时y与x可近似地用反比例函数y=k>0刻画如图所示.1根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值最大值为多少②当x=5时,y=45,求k的值.2按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班请说明理由.例2、2016•葫芦岛某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y本与每本纪念册的售价x元之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.1请直接写出y与x的函数关系式;2当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元3设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少例3、某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1元/台与采购数量x1台满足y1=﹣20x1+15000<x1≤20,x1为整数;冰箱的采购单价y2元/台与采购数量x2台满足y2=﹣10x2+13000<x2≤20,x2为整数.1经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案2该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在1的条件下,问采购空调多少台时总利润最大并求最大利润.例4、九年级3班数学兴趣小组经过市场调查整理出某种商品在第x天1≤x≤90,且x为整数的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y单位:元/件,每天的销售量为p单位:件,每天的销售利润为w单位:元.时间x天 1 30 60 90 每天销售量p件198 140 80 201求出w与x的函数关系式;2问销售该商品第几天时,当天的销售利润最大并求出最大利润;3该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.例5、2016•绥化自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为0,0和5,0.画出二次函数y=x2﹣5x的大致图象如图所示,由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1上述解题过程中,渗透了下列数学思想中的和.只填序号①转化思想②分类讨论思想③数形结合思想2一元二次不等式x2﹣5x<0的解集为.3用类似的方法解一元二次不等式:x2﹣2x﹣3>0.例6、2016•黄石科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间分钟,纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.1请写出图中曲线对应的函数解析式;2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟对应练习:1.一个小球被抛出后,如果距离地面的高度h米和运行时间t秒的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y单位:万元与销售量x 单位:辆之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x 轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为A.y=x+32B.y=x+32C.y=x﹣32 D.y=x﹣325.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h米和飞行时间t秒满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为A.3s B.4s C.5s D.6s8.某车的刹车距离ym与开始刹车时的速度xm/s之间满足二次函数y=x>0,若该车某次的刹车距离为5m,则开始刹车时的速度为A.40 m/s B.20 m/s C.10 m/s D.5 m/s9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶拱桥洞的最高点离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣x﹣62+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元20≤x≤30,且x为整数出售,可卖出30﹣x件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为0,1、4,2、2,6.如果Px,y是△ABC围成的区域含边界上的点,那么当w=xy取得最大值时,点P的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y米关于水平距离x米的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w元与降价x元的函数关系如图.这种工艺品的销售量为_________件用含x的代数式表示.15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.1若公司每天的现售价为x元时则每天销售量为多少2如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y千克与销售价x元/千克之间的函数关系如图所示:1求y与x之间的函数关系式,并写出自变量x的取值范围;2求每天的销售利润W元与销售价x元/千克之间的函数关系式.当销售价为多少时,每天的销售利润最大最大利润是多少3该经销商想要每天获得150元的销售利润,销售价应定为多少17.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=x﹣602+m部分图象如图所示,当x=40时,两组材料的温度相同.1分别求y A、y B关于x的函数关系式;2当A组材料的温度降至120℃时,B组材料的温度是多少3在0<x<40的什么时刻,两组材料温差最大18.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.1求出每天的销售利润y元与销售单价x元之间的函数关系式;2求出销售单价为多少元时,每天的销售利润最大最大利润是多少3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内每天的总成本=每件的成本×每天的销售量19.某种商品每天的销售利润y元与销售单价x元之间满足关系:y=ax2+bx﹣75.其图象如图所示.1销售单价为多少元时,该种商品每天的销售利润最大最大利润为多少元2销售单价在什么范围时,该种商品每天的销售利润不低于16元参考答案与点评例1、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y毫克/百毫升与时间x时的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后包括1.5小时y与x可近似地用反比例函数y=k>0刻画如图所示.1根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值最大值为多少②当x=5时,y=45,求k的值.2按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班请说明理由.考点:二次函数的应用;反比例函数的应用分析:1①利用y=﹣200x2+400x=﹣200x﹣12+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;2求出x=11时,y的值,进而得出能否驾车去上班.解答:解:1①y=﹣200x2+400x=﹣200x﹣12+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,y=k>0,∴k=xy=45×5=225;2不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.例2、2016•葫芦岛某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y本与每本纪念册的售价x元之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.1请直接写出y与x的函数关系式;2当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元3设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少分析1设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;2根据题意结合销量×每本的利润=150,进而求出答案;3根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.解答解:1设y=kx+b,把22,36与24,32代入得:,解得:,则y=﹣2x+80;2设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:x﹣20y=150,则x﹣20﹣2x+80=150,整理得:x2﹣60x+875=0,x﹣25x﹣35=0,解得:x1=25,x2=35不合题意舍去,答:每本纪念册的销售单价是25元;3由题意可得:w=x﹣20﹣2x+80=﹣2x2+120x﹣1600=﹣2x﹣302+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣228﹣302+200=192元,答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.点评此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.例3、某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1元/台与采购数量x1台满足y1=﹣20x1+15000<x1≤20,x1为整数;冰箱的采购单价y2元/台与采购数量x2台满足y2=﹣10x2+13000<x2≤20,x2为整数.1经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案2该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在1的条件下,问采购空调多少台时总利润最大并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.菁优网分析:1设空调的采购数量为x台,则冰箱的采购数量为20﹣x台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;2设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:1设空调的采购数量为x台,则冰箱的采购数量为20﹣x台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;2设总利润为W元,y2=﹣10x2+1300=﹣1020﹣x+1300=10x+1100,则W=1760﹣y1x1+1700﹣y2x2,=1760x﹣﹣20x+1500x+1700﹣10x﹣110020﹣x,=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30x﹣92+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=3015﹣92+9570=10650元,答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,1关键在于确定出两个不等关系,2难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.例4、九年级3班数学兴趣小组经过市场调查整理出某种商品在第x天1≤x≤90,且x为整数的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y单位:元/件,每天的销售量为p单位:件,每天的销售利润为w单位:元.时间x天 1 30 60 90 每天销售量p件198 140 80 201求出w与x的函数关系式;2问销售该商品第几天时,当天的销售利润最大并求出最大利润;3该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.分析1当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p 与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;2根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;3令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.解答解:1当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+bk、b为常数且k≠0,∵y=kx+b经过点0,40、50,90,∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+nm、n为常数,且m≠0,∵p=mx+n过点60,80、30,140,∴,解得:,∴p=﹣2x+2000≤x≤90,且x为整数,当1≤x≤50时,w=y﹣30•p=x+40﹣30﹣2x+200=﹣2x2+180x+2000;当50<x≤90时,w=90﹣30﹣2x+200=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.2当1≤x≤50时,w=﹣2x2+180x+2000=﹣2x﹣452+6050,∵a=﹣2<0且1≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.3当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21天;当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3天.综上可知:21+3=24天,故该商品在销售过程中,共有24天每天的销售利润不低于5600元.点评本题考查了二次函数的应用、一元一次不等式的应用、一元二次不等式的应用以及利用待定系数法求函数解析式,解题的关键:1根据点的坐标利用待定系数法求出函数关系式;2利用二次函数与一次函数的性质解决最值问题;3得出关于x的一元一次和一元二次不等式.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据给定数量关系,找出函数关系式是关键.例5、2016•绥化自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为0,0和5,0.画出二次函数y=x2﹣5x的大致图象如图所示,由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1上述解题过程中,渗透了下列数学思想中的①和③.只填序号①转化思想②分类讨论思想③数形结合思想2一元二次不等式x2﹣5x<0的解集为0<x<5.3用类似的方法解一元二次不等式:x2﹣2x﹣3>0.分析1根据题意容易得出结论;2由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;3设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.解答解:1上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;2由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.3设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为3,0和﹣1,0.画出二次函数y=x2﹣2x﹣3的大致图象如图所示,由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.点评本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.例6、2016•黄石科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间分钟,纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.1请写出图中曲线对应的函数解析式;2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟分析1构建待定系数法即可解决问题.2先求出馆内人数等于684人时的时间,再求出直到馆内人数减少到624人时的时间,即可解决问题.解答解1由图象可知,300=a×302,解得a=,n=700,b×30﹣902+700=300,解得b=﹣,∴y=,2由题意﹣x﹣902+700=684,解得x=78,∴=15,∴15+30+90﹣78=57分钟所以,馆外游客最多等待57分钟.点评本题考查二次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会用方程的思想思考问题,属于中考常考题型.反馈练习参考答案与试题解析一.选择题共8小题1.一个小球被抛出后,如果距离地面的高度h米和运行时间t秒的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是A.1米B.3米C.5米D.6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5t2﹣2t+1=﹣5t﹣12+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y单位:万元与销售量x 单位:辆之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售15﹣x量,根据题意得出:W=y1+y2=﹣x2+10x+215﹣x=﹣x2+8x+30,∴最大利润为:==46万元,故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x 轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为A.y=x+32B.y=x+32C.y=x﹣32D.y=x﹣32考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为1,1,由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为﹣3,0,于是得到右边抛物线的顶点C 的坐标为3,0,然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为1,1,∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为﹣3,0,∴右边抛物线的顶点C的坐标为3,0,设右边抛物线的解析式为y=ax﹣32,把D1,1代入得1=a×1﹣32,解得a=,故右边抛物线的解析式为y=x﹣32.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A.2s B.4s C.6s D.8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度hm与飞行时间ts的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h米和飞行时间t秒满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是A.2米B.5米C.6米D.14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5t2﹣4t﹣14=﹣5t2﹣4t+4+20﹣14=﹣5t﹣22+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为A.3s B.4s C.5s D.6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离ym与开始刹车时的速度xm/s之间满足二次函数y=x>0,若该车某次的刹车距离为5m,则开始刹车时的速度为A.40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.。
中考数学总复习《二次函数的实际应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是( )A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点A(3,32的坐标是.3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务三还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.请根据活动过程完成任务一、任务二和任务三.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y随x的增大而增大时,求x的取值范围.Ⅱ.若关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解,求t的取值范围.Ⅲ.若在函数图象上有点P,Q(P与Q不重合).P的横坐标为m,Q的横坐标为-m+1.小明对P,Q之间(含P,Q两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m的变化而变化时,直接写出m的取值范围.参考答案【A层·基础过关】1.(2024·遵义红花岗一模)如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是(D)A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.(2024·青海中考改编)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,32)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点的坐标是(74,4916).3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE= 6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.【解析】设该果商定价x万元时每天的“利润”为w万元w=(x-2)[100+50(5-x)]=-50(x-4.5)2+312.5∵-50<0∴w随x的增大而减小∴当x=4.5时,w有最大值,最大值为312.5万元.答:该果商定价为4.5万元时才能使每天的“利润”或“销售收入”最大,其最大值为312.5万元.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【解析】(1)设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元由题意得{x-y=10x+2y=100,解得{x=40 y=30∴每盒猪肉粽的进价为40元,每盒豆沙粽的进价为30元;(2)w=(a-40)[100-2(a-50)]=-2(a-70)2+1 800,∵-2<0,∴当a=70时,w有最大值,最大值为1 800元.∴该商家每天销售猪肉粽获得的最大利润为1 800元.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.【解析】(1)由题意,根据抛物线过原点,设抛物线解析式为y =ax 2+bx 把x =2,y =0.88和x =6,y =2.16代入y =ax 2+bx 得:{4a +2b =0.8836a +6b =2.16解得{a =-0.02b =0.48∴抛物线解析式为y =-0.02x 2+0.48x. (2)由题意,当x =8时,y =-0.02×82+0.48×8=2.56. ∵2.56>2.3∴喷水头喷出的水柱能越过这棵树. (3)∵喷水头喷出的水柱能够越过这棵树 ∴当x =8时,y >2.3 即-0.04×82+8b >2.3 ∴b >243400∵喷水头喷出的水柱不会浇到墙外 ∴当x =18时,y <2.2 即-0.04×182+18b <2.2,∴b <379450抛物线对称轴为x =-b2×(-0.04)=b2×0.04∵喷水头喷出的水柱能够越过这棵树,且不会浇到墙外 ∴对称轴所在直线在围墙与喷水头中点的左侧. ∴b 2×0.04<182=9,∴b <1825.∴243400<b <1825.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值. 【解析】(1)当0≤t ≤10时,设y 2=kt ∵(10,40)在其图像上,∴10k =40,∴k =4 ∴y 2与t 的函数关系式为y 2=4t ; 当10≤t ≤30时,设y 2=mt +n 将(10,40),(30,60)代入得{10m +n =4030m +n =60,解得{m =1n =30∴y 2与t 的函数关系式为y 2=t +30综上所述,y 2与t 的函数关系式为y 2={4t (0≤t ≤10且为整数)t +30(10<t ≤30且为整数);(2)依题意得y =y 1+y 2,当0≤t ≤10时,y =-15t 2+6t +4t =-15t 2+10t =-15(t -25)2+125,∴t =10时,y最大=80;当10<t ≤30时,y =-15t 2+6t +t +30=-15t 2+7t +30=-15(t -352)2+3654∵t 为整数,∴t =17或18时,y 最大=91.2∵91.2>80,∴当t =17或18时,日销售总量y 达到最大,最大值为91.2百件.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B 的坐标. (2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由. 【解析】∵运动员在空中最高处A 点的坐标为(34,916),∴A 点为抛物线的顶点,∴设该抛物线的解析式为y =a (x -34)2+916∵该抛物线经过点(0,0),∴916a =-916∴a =-1∴抛物线的解析式为y =-(x -34)2+916=-x 2+32x. ∵跳水运动员在10米跳台上进行跳水训练 ∴令y =-10,则-x 2+32x =-10∴x =4或x =-52,∴B (4,-10);(2)该运动员此次跳水不会失误,理由:∵运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,点E 的坐标为(-1,-10),∴运动员在空中调整好入水姿势时的点的横坐标为3当x=3时,y=-32+3×32=-92∴运动员距水面高度为10-92=5.5(米)∵5.5>5,∴该运动员此次跳水不会失误.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.三请根据活动过程完成任务一、任务二和任务三.【解析】任务一:∵AB∥x轴,AB=5 cm,点B为水流抛物线的顶点,∴抛物线的对称轴为x=5.∴-b=5.∴b=-10a.2a把点M(15,0)代入抛物线y=ax2+bx+15得:15a+b+1=0把b=-10a代入15a+b+1=0 得:15a-10a+1=0,解得a=-1,∴b=25x2+2x+15.∴水流抛物线的函数表达式为y=-15任务二:圆柱形水杯最左端到点O的距离是15-3=12,当x=12时×122+2×12+15=10.2,∵11>10.2y=-15∴水流不能流到圆柱形水杯内.任务三:2+3√5<OP<8+3√5.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程ax 2+bx +3-t =0(t 为实数),在0<x <4时无解,求t 的取值范围. Ⅲ.若在函数图象上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为-m +1.小明对P ,Q 之间(含P ,Q 两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m 的变化而变化时,直接写出m 的取值范围. 【解析】(1)∵x =-2<0 ∴将x =-2,y =1代入y =kx +3 得-2k +3=1,解得k =1. ∵x =2>0,x =3>0∴将x =2,y =3,x =3,y =6代入 y =ax 2+bx +3得{4a +2b +3=39a +3b +3=6,解得{a =1b =-2. (2)Ⅰ.∵k =1,a =1,b =-2∴一次函数解析式为y =x +3,二次函数解析式为y =x 2-2x +3. 当x >0时,y =x 2-2x +3,对称轴为直线x =1,开口向上 ∴当x ≥1时,y 随x 的增大而增大; 当x ≤0时,y =x +3,k =1>0∴当x ≤0时,y 随x 的增大而增大. 综上,x 的取值范围为x ≤0或x ≥1.Ⅱ.∵ax 2+bx +3-t =0∴ax 2+bx +3=t 在0<x <4时无解∴问题转化为抛物线y =x 2-2x +3与直线y =t 在0<x <4时无交点.∵对于y=x2-2x+3,当x=1时,y=2∴顶点为(1,2),如图:∴当t=2时,抛物线y=x2-2x+3与直线y=t在0<x<4时正好有一个交点;当t<2时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点.当x=4时,y=16-8+3=11∴当t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点∴当t<2或t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点即当t<2或t≥11时,关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解.Ⅲ.∵x P=m,x Q=-m+1∴m+(-m+1)2=1 2∴点P,Q关于直线x=12对称.当x=1时,y最小值=1-2+3=2,当x=0时,y最大值=3.∵图象对应函数的最大值与最小值均不随m的变化而变化,而当x=2时,y=3,当x=-1时,y=2∴①当m>12时,如图:由题意得{-1≤-m+1≤01≤m≤2∴1≤m≤2;时,如图:②当m<12由题意得{-1≤m≤01≤-m+1≤2∴-1≤m≤0.综上,-1≤m≤0或1≤m≤2.。