2-3.1计数原理(家教版)
- 格式:doc
- 大小:358.50 KB
- 文档页数:4
1.1分类加法计数原理和分步乘法计数原理课标要求:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理).教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解.授课类型:新授课.课时安排:2课时.教具:多媒体、实物投影仪.教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识•排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理•这节课, 我们从具体例子出发来学习这两个原理•1分类加法计数原理(1 )提出问题问题1.1 :用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2 :从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2 )发现新知分类加法计数原理完成一件事有两类不同方案,在第i类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N = m + n种不同的方法.(3 )知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在A,B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件•解:这名同学可以选择A , B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法•又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9 (种).变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学•那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有m-i种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n类办法,在第1类办法中有叶种不同的方法,在第2类办法中有m2 种不同的方法”在第n类办法中有m n种不同的方法•那么完成这件事共有N 二 g m2 爲圧m n种不同的方法• 理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2分步乘法计数原理(1 )提出问题问题2.1 :用前6个大写英文字母和1—9九个阿拉伯数字,以A,, A2,,,B, , B2,, 的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:字母得到的号码&Z2AtA*巻A,A*&ya2我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6 X 9 = 54个不同的号码.探究:你能说说这个问题的特征吗?(2 )发现新知分步乘法计数原理完成一件事有两类不同方案,在第i类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N = m汉n种不同的方法.(3 )知识应用例2.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤•第I步选男生•第2步选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30 X 24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有m种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,,做第n步有m n种不同的方法.那么完成这件事共有N 二 g m2 ::m n种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成•3 综合应用例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理•②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理•③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4种方法;第2类方法是从第2层取1本文艺书,有3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N =m, m2 m3=4+3+2=9;(2 )从书架的第1 , 2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N = mi m2 m3 =4X 3X 2=24(3)N =4 3 4 2 3 2 = 26。
高中数学学习材料金戈铁骑整理制作第一章计数原理2016.4(时间∶120分钟满分∶150分)一、选择题(本大题共10小题,每小题5分,共50分)1.将5封信投入3个邮筒,不同的投法有( )A.53种B.35种C.3种D.15种2.从5位男教师和4位女教师中选出3位教师,派到三个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的派选方法有()A.210种B.420种C.630种D.840种3.从1,2,3,…,100中任取2个数相乘,其积能被3整除的有( ) A.33组B.528组C.2 111组D.2 739组4.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A.288种B.264种C.240种D.168种5.杨辉三角为:杨辉三角中的第5行除去两端数字1以外,均能被5整除,则具有类似性质的行是( )A .第6行B .第7行C .第8行D .第9行 6.在5311n x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中,所有奇数项系数之和为1 024,则第六项的系数是( )A .330B .462C .682D .7927.在8312x x ⎛⎫- ⎪⎝⎭的展开式中,常数项是( ) A .-28 B .-7 C .7 D .288.若(3x -13x 2)n 的展开式中各项系数之和为128,则展开式中含1x 3项的系数是( )A .7B .-7C .21D .-21 9.已知()()()()4324123451111a x a x a x a x a x -+-+-+-+=,则234a a a ++的值为( )A.12B.14C.15D.1610.三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为凹数,如524,746等都是凹数,那么,各个数位上无重复数字的三位凹数有( )A .72个B .120个C .240个D .360个二、填空题(本大题共5小题,每小题5分,共25分)11.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有________个.12.过三棱柱任意两个顶点的直线共15条,其中异面直线有________对.13.若62a x x ⎛⎫- ⎪ ⎪⎝⎭展开式的常数项为60,则常数a 的值为 .14. 若n xx )3(-展开式的各项系数绝对值之和为1024,则展开式中x 项的系数为_______.15.对于二项式(1-x )1 999,有下列四个命题:①展开式中T 1 000=-C 9991 999x 999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1 000项和第1 001项;④当x =2 000时,(1-x )1 999除以2 000的余数是1.其中正确命题的序号是________.(把你认为正确命题的序号都填上).三、解答题(本大题共6小题,共75分)16.从{}3,2,1,0,1,2,3,4---中任选三个不同元素作为二次函数2y a x b x c=++的系数,问能组成多少条图象为经过原点且顶点在第一象限或第三象限的抛物线?17.(12分)用0,1,2,3,4,5共6个数字,(1)可以组成多少个没有重复数字的六位偶数?(2)可以组成多少个没有重复数字且被3整除的数?18.(12分)有9本不同的课外书分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本.19.(12分) 4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,求a 的值.20.已知二项式828012812x a a x a x a x ⎛⎫+=++++ ⎪⎝⎭.(1)求5a 的值; (2)求01238a a a a a -+-++的值.21.(14分)已知(3x 2+3x 2)n 展开式中各项系数和比二项式系数和大992,求展开式中二项式系数最大的项和系数最大的项.。
第一讲分类加法计数原理与分步乘法计数原理【教材扫描】1.分类加法计数原理2.分步乘法计数原理3.两个原理的区别【知识运用】题型一:分类加法计数原理的应用【例1】在所有的两位数中,个位数字大于十位数字的两位数的个数为__________.[解析] (1)法一:根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二:分析个位数字,可分以下几类:个位是9,则十位可以是1,2,3,…,8中的一个,故共有8个;个位是8,则十位可以是1,2,3,…,7中的一个,故共有7个;同理,个位是7的有6个;……个位是2的有1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).[答案] 36[一题多变]1.[变条件]若本例条件变为个位数字小于十位数字且为偶数,那么这样的两位数有多少个.解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).2.[变条件,变设问]用1,2,3这3个数字可以写出没有重复数字的整数________个.解析:分三类:第一类为一位整数,有3个;第二类为两位整数,有12,21,23,32,13,31,共6个;第三类为三位整数,有123,132,231,213,321,312,共6个,∴共写出没有重复数字的整数3+6+6=15个.答案:15【变式】1某校高二共有三个班,各班人数如下表:(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?【解析】(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高二(1)班中选出1名学生,有50种不同的选法;第2类,从高二(2)班中选出1名学生,有60种不同的选法;第3类,从高二(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165种不同的选法.(2)从1)班、(2)班男生或高3)班女生中选1名学生任有3类不第1类,1)班男生中选出1名学生,有30种不同的选法;第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;第3类,从高二(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.2.从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人、5人、6人、7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?分四类:从一班中选一人,有4种选法.从二班中选一人,有5种选法.从三班中选一人,有6种选法.从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.3. 一个科技小组有3名男同学,5名女同学,从中任选一名同学参加学科竞赛,共有不同的选派方法________种.【解析】任选一名同学参加学科竞赛,有两类办法:第一类:从男同学中选取一名参加学科竞赛,有3种不同的选法;第二类:从女同学中选取一名参加学科竞赛,有5种不同的选法.由分类加法计数原理,不同的选派方法共有3+5=8(种).【答案】8题型二:分步乘法计数原理的应用类型一:涂色A B C D四个区域涂色,有5种不同的颜色可供选择,规定一个区域只涂一种颜色,相【例2-1】如图,将图中的,,,邻区域必须涂不同的颜色,不同的涂色方案有______种.⨯⨯⨯=种.【解析】由分步乘法计数原理,可得不同的涂色方案有5433180【名师点睛】解答涂色问题有两种方法:(1)选择正确的涂色顺序,按步骤逐一涂色,这时用分步乘法计数原理进行计数;(2)根据涂色时所用颜色数的多少,进行分类处理,这时用分类加法计数原理进行计数.注意:“相邻区域不得使用同一种颜色”,找好不相邻的区域是解题的关键.一般地,在分步涂色时,要注意尽量让相邻区域多的区域先涂色.【变式】用6种不同颜色为如图所示的广告牌着色,要求有公共边界的区域不能用同一种颜色,问一共有多少种不同的方法着色?【解】由分步乘法计数原理知第1步,涂①区有6种方法;第2步,涂②区有5种方法;第3步,涂③区有4种方法;第4步,涂④区有4种方法.由分步乘法计数原理知,共有N=6×5×4×4=480(种)方法.类型二:数字问题【例2-2】一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?解析:按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.【变式】1、从1,2,3,4中选三个数字,组成无重复数字的整数,则分别满足下列条件的数有多少个?(1)三位数;(2)三位数的偶数.[解] (1)三位数有三个数位,百位十位个位故可分三个步骤完成:第1步,排个位,从1,2,3,4中选1个数字,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.依据分步乘法计数原理,共有4×3×2=24个满足要求的三位数.(2)分三个步骤完成:第1步,排个位,从2,4中选1个,有2种方法;第2步,排十位,从余下的3个数字中选1个,有3种方法;第3步,排百位,只能从余下的2个数字中选1个,有2种方法.故共有2×3×2=12个三位数的偶数.2.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A.24 B.18C.12 D.6解析:选B 由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种;如果是第二种情况偶奇奇:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种.因此总共有12+6=18种情况.故选B.3.某商店现有甲种型号电视机10台,乙种型号电视机8台,丙种型号电视机12台,从这三种型号的电视机中各选1台检验,有多少种不同的选法?解:从这三种型号的电视机中各选1台检验可分三步完成:第一步,从甲种型号中选1台,有10种不同的选法;第二步,从乙种型号中选1台,有8种不同的选法;第三步,从丙种型号中选1台,有12种不同的选法.根据分步乘法计数原理,不同的选法共有10×8×12=960种.题型三、两个计数原理的综合应用【例3】用0,1,2,3,4五个数字,①可以排出多少个三位数字的电话号码?②可以排成多少个三位数?③可以排成多少个能被2整除的无重复数字的三位数?【解析】①三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).②三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).③被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因为0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法,即可以排成30个能被2整除的无重复数字的三位数.【变式】1.在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现在从7人中选2人同时参加象棋比赛和围棋比赛,共有多少种不同的选法?解析:选参加象棋比赛的学生有两种方法:在只会下象棋的3人中选或在既会下象棋又会下围棋的2人中选;选参加围棋比赛的学生也有两种选法:在只会下围棋的2人中选或在既会下象棋又会下围棋的2人中选.互相搭配,可得四类不同的选法.从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛有3×2=6种选法;从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛有3×2=6种选法;从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛有2×2=4种选法;2名既会下象棋又会下围棋的学生分别参加象棋比赛和围棋比赛有2种选法.∴共有6+6+4+2=18种选法.所以共有18种不同的选法.2. 某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?【解】依题意得既会英语又会日语的有7+3-9=1人,6人只会英语,2人只会日语.第一类:从只会英语的6人中选一人有6种方法,此时会日语的有2+1=3种.由分步乘法计数原理可得N1=6×3=18种.第二类:不从只会英语的6人中选,只有1种方法,此时会日语的有2种.由分步乘法计数原理可得N2=1×2=2种综上可知,共有18+2=20种不同的选法.【强化练习】1.甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有( )A.6种 B.12种C.30种 D.36种解析:选B ∵甲、乙两人从4门课程中各选修1门,∴由分步乘法计数原理,可得甲、乙所选的课程不相同的选法有4×3=12种.2.由数字1,2,3组成的无重复数字的整数中,偶数的个数为( )A.15 B.12C.10 D.5解析:选D 分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成3位整数,其中偶数有2个.由分类加法计数原理知共有偶数5个.3.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种 B.5种C.6种 D.12种解析:选C 若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.4.现给如图所示的4个区域涂色,要求相邻区域不得使用同一颜色,共有3种颜色可供选择,则不同的涂色方法共有A.4种B.6种 C.8种D.12种B 【解析】首先给下面一个涂色,有三种涂色方法,再给上面的最左边涂色,有两种涂色方法,中间一块只有一种涂色方法,右边的一块只有一种涂色方法,根据分步计数原理,得共有种不同的涂色方法.5.由错误!未找到引用源。
人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。
一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。
2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。
3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。
教学重点是两个基本计数原理的内容。
难点是如何正确是用两个基本计数原理来解决实际问题。
二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。
三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。
采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。
四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。
1
11--++=⋅+=m n m n m n m m m n m n mA
A C A A A 选修2-3 第一章:计数原理(教案)
1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按.照一定顺序.....
排成一列,叫做从n 个不同元素中取出m 个元素的一个排列
4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n
个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。
),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=
+--=
5、公式:
,
11--=m n m n nA A 6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n
-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== ;m n n m n C C -=
m n m n m n C C C 11+-=+ 8、二项式定理:
()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r n
r n r r +-==101() 10、二项式系数C n
r 为二项式系数(区别于该项的系数) 11、杨辉三角:
()
()对称性:,,,……,1012C C r n n r n n r ==- ()系数和:…2C C C n n n
n n 012+++= (3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第
n C n n n n
2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式()
系数最大即第项及第项,其二项式系数为n n C C n n n n +++=-+1212
1121
2 1.将3个不同的小球放入4个盒子中,则不同放法种数有( )
A .81
B .64
C .12
D .14
1.B 每个小球都有4种可能的放法,即44464⨯⨯=
2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机
各1台,则不同的取法共有( )
A .140种 B.84种 C.70种 D.35种
2.C 分两类:(1)甲型1台,乙型2台:1245C C ;(2)甲型2台,乙型1台:2145C C
1221454570C C C C += 3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )
A .33A
B .334A
C .523533A A A -
D .2311323233A A A A A +
3.C 不考虑限制条件有55A ,若甲,乙两人都站中间有2333A A ,523533A A A -为所求
4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,
不同的选法总数是( )
A.20 B .16 C .10 D .6
4.B 不考虑限制条件有25A ,若a 偏偏要当副组长有14A ,215416A A -=为所求
5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、
物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )
A .男生2人,女生6人
B .男生3人,女生5人
C .男生5人,女生3人
D .男生6人,女生2人.
5.B 设男学生有x 人,则女学生有8x -人,则2138390,x x C C A -=
即(1)(8)30235,3x x x x --==⨯⨯=
6.在8
2
x ⎛- ⎝的展开式中的常数项是( ) A.7 B .7- C .28 D .28-
6.A 148888833
188811()((1)()(1)()222r r r r
r r r r r r r r r x T C C x C x ------+==-=- 令6866784180,6,(1)()732r r T C --
===-= 7.5(12)(2)x x -+的展开式中3x 的项的系数是( )
A.120 B .120- C .100 D .100-
7.B 555332255(12)(2)2(12)(12)...2(2)(2)...x x x x x C x xC x -+=-+-=+-+-+
233355(416)...120...C C x x =-+=-+
8.22n
x ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .45 D .360
8.A 只有第六项二项式系数最大,则10n =,
551021101022()2r r r r r r r T C C x x --+==,令2310550,2,41802r r T C -==== 二、填空题
1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.
1.(1)10 3510C =;(2) 5 455C =;(3)14 446414C C -=
2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法.
2.8640 先排女生有46A ,再排男生有44A ,共有44648640A A ⋅=
3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.
3.480 0既不能排首位,也不能排在末尾,即有14A ,其余的有55A ,共有1545480A A ⋅=
4.在10(x 的展开式中,6
x 的系数是 .
4.1890 10110(r r r r T C x -+=,令466510106,4,91890r r T C x x -==== 5.在220
(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,
则r = ,4r T = .
5.1530204,C x - 41115215152020162020,41120,4,()r r C C r r r T C x C x -+=-++===-=- 6.在1,2,3, (9)
九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?
6.840 先排首末,从五个奇数中任取两个来排列有25A ,其余的27A ,共有2257840A A ⋅=
7.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x .
7.2 当0x ≠时,有4424A =个四位数,每个四位数的数字之和为145x +++
24(145)288,x x +
++==;当0x =时,288不能被10整除,即无解 8.从1
,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________
个?
8.11040不考虑0的特殊情况,有325
55512000,
C C A=若0在首位,则314
544960,
C C A=
325314 5555441200096011040
C C A C C A
-=-=
三、解答题
1.判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
1.解:(1)①是排列问题,共通了2
11110
A=封信;②是组合问题,共握手2
1155
C=次。
(2)①是排列问题,共有2
1090
A=种选法;②是组合问题,共有2
1045
C=种选法。
(3)①是排列问题,共有2
856
A=个商;②是组合问题,共有2
828
C=个积。