材料物理(18-2)-材料研究方法
- 格式:pdf
- 大小:6.68 MB
- 文档页数:109
五、热分析热分析法是利用热学原理对物质的物理性能或成分进行分析的总称。
热分析是在程序控制温度下,测量无知的物理性质随温度变化的一类技术。
TG:热重法。
DTA:差热分析。
DSC:差示扫描量热法。
DTA原理:将温差热电偶的一个热端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,试样和参比物同时升温,测定升温过程中两者的温度差,就构成了DTA的基本原理。
优点:量程宽,可变温。
差热分析仪:加热炉、试样容器、热电偶、温度控制系数及放大、记录系统。
管状炉使用最广泛为提高抗腐蚀,可在炉内抽真空或通保护气体。
要求:热电偶材料能产生较高的温差电动势并与温度呈线性关系,测温范围广,且在高温下不受氧化及腐蚀。
电阻随温度变化要小,导电率要高,物理稳定性好,能长期使用,便于制造,机械强度高,价格便宜。
差热分析曲线:纵坐标表示温度差,向下的峰表示吸热,放热向上。
试样对差热曲线影响:1.热容量和热导率变化。
2.试样的颗粒度、用量及装填密度(用量大峰宽,小—窄)3.试样的结晶度、纯度。
4.参比物。
DSC:在程序控制温度下,测量输入到试样和参比物的能量差随温度或时间变化的一种技术。
按测量方式分为补偿型、热流型。
优点:就确定量,保温。
补偿型原理:试样吸热时,补偿系统流入式样侧加热丝的电流增大;放热时,补偿系统流入参比物侧加热丝的电流增大,制止试样和参比物二者热量平衡,温差消失。
这就是零点平衡原理。
TG:在程序控制下测量获得物质的质量与温度关系的一种技术。
包括静态法,动态法。
微熵热重分析法又称导数热重分析,是记录热重曲线对温度或时间的一阶导数的一种技术。
DTG与DSC区别:DTG表明的是质量变化速率,峰的起止点对应TG曲线台阶的起止点,峰的数目和TG曲线的台阶数相等,峰位为失重或增重速率的最大值,与TG曲线拐点对应。
DTA与DSC区别:差热分析 (DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关系的一种热分析方法。
绪论1材料研究方法中,研究物相组成的主要有哪些方法?研究结构特征主要有那些方法?物相组成分析:非图像分析-成分谱分析(色谱分析;热普分析;能谱分析;光谱分析);衍射法(X射线衍射法;电子衍射法;中子衍射法)结构特征分析:图像分析法-显微术(光学显微术;透射电子显微术;场离子显微术;扫描电子显微术;扫描隧道显微术)X射线衍射1试述X射线的定义、性质,X射线的产生、特点?定义:X射线是一种波长为0.01纳米到10纳米之间的电磁波。
性质:具有波粒二象性。
波动性:以一定的频率和波长在空间传播;粒子性:由大量的不连续粒子流(光子)构成,每个光子具能量。
产生:高速运动的电子与物体碰撞时,发生能量转换,电子运动受阻失去动能,小部分-X射线,大部分-热能。
特点:1)穿透力强。
2)能使底片感光。
3)能使荧光物质发光。
4)能使气体电离。
5)对生物细胞有杀伤作用。
2、X射线定性相分析的目的和原理是什么?步骤是什么?目的:判定物质中的物相组成。
原理:1)每种结晶物质具有特定的衍射花样。
2)多相试样的衍射花样是由所含各物相的衍射花样机械叠加。
基本步骤:1)通过用粉末衍射法或粉末照相法等获取被测试物质的衍射图像。
2)计算或查找出衍射图谱上每根峰的d值与I值。
3)利用I值最大的三根强线的对应d 值查找索引,找出基本符合的物相名称及卡片号。
4)将实测的d、I值与卡片上的数据--- 对照,若基本符合,就可定为该物相。
3、X射线谱一一X射线随波长而变化的关系曲线。
4、连续X射线一一波长连续变化的X射线5、标识X射线一一具有特定波长的X射线。
透射电镜和扫描电镜1分辨本领一一显微镜能分辨的样品上两点间的最小距离。
2、景深一一透镜对高低不平的试样各部位能同时聚焦成像的一个能力范围。
3、二次电子被入射电子轰击出来的样品核外电子。
4、背散射电子 - 被固体样品中院子反射回来的一部分入射电子。
5、衍射衬度一一晶体中各部分因满足衍射条件的程度不同而引起的衬度。
材料研究方法1.如何理解材料研究方法的综合应用,为什么有时必须应用多种测试方法才能解决问题?解答:不论哪一种研究方法都有其相应的应用领域,即在应用上有一定的局限性。
而作为材料基本研究内容的材料结构与性能往往随时间与外界环境的变化而变化,是十分复杂的,单凭一种仪器分析方法难以确定,一般要综合运用多种测试手段在不同层次和不同侧面对材料进行分析描述,这些方法相互补充,互相验证,从而得到较为准确和全面的结论。
所以在材料的研究领域中,经常涉及到多种测试方法的综合运用。
2、何谓化学位移?它有什么重要性?影响化学位移的因素有哪些?答:某一质子吸收峰出现的位置与标准物质质子吸收峰出现的位置之间的差异称为该质子的化学位移。
它是分析分子中各类氢原子所处位置的重要依据。
影响化学位移的因素有:原子与分子的磁屏蔽、诱导效应、共轭效应、磁各向异性效应、范德华效应、氢键效应、溶剂效应、介质磁化率效应、顺磁效应。
1、什么是弛豫?答:由于核磁共振中氢核发生共振时吸收的能量是很小的,因而跃迁到高能态的氢核不可能通过发射谱线的形式失去能量而返回到低能态,这种由高能态回复到低能态而不发射原来所吸收的能量的过程称为弛豫过程2、产生红外吸收的原因是什么?阐述分子振动的形式原因:(1)辐射具有刚好能满足物质跃迁时所需的能量,分子中某个基团的的振动频率和红外辐射的频率一致就满足了(2)辐射与物质之间有相互作用,分子的偶极距必须发生变化的振动,分子振动的形式:1.伸缩振动2.面外变形振动8、简述热重分析的特点和影响因素。
答:热重分析的特点:热重分析就是在程序控制温度下测量获得物质的质量与温度关系的一种技术。
其特点是定量性强,能准确地测量物质的质量变化及变化的速率。
影响因素:1)热重曲线的基线漂移:基线漂移是指试样没有变化而记录曲线却指示出有质量变化的现象,它造成试样失重或增重的假象。
这种漂移主要与加热炉内气体的浮力效应和对流影响、Knudsen力及温度与静电对天平机构等的作用紧密相关。
本书介绍了材料研究常用的分析测试方法,包括X射线衍射分析、电子衍射分析、电子显微分析、热分析、光谱分析、核磁共振分析、色谱分析、质谱分析、穆尔斯堡谱仪分析以及这些方法在材料测试中的综合应用。
本书着重论述分析测试方法的基本原理、样品制备及应用,内容力求简明实用,具有适应口径宽的教学特点,并尽可能展现*的分析测试方法,如环境扫描电镜何原子力显微镜等。
[1-2]目录前言第1章绪论1.1材料研究的意义和内容1.2材料结构和研究方法的分类第2章光学显微分析2.1概述2.2晶体光学基础2.3光学显微分析方法2.4特殊光学显微分析法2.5光学显微分析样品的制备2.6光学显微分析技术的突破——近场光学显微镜2.7光学显微分析在材料科学中的应用第3章x射线衍射分析3.1x射线的物理基础3.2x射线衍射原理3.3x射线衍射束的强度3.4实验方法及样品制备3.5x射线粉末衍射物相定性分析3.6x射线物相定量分析3.7晶体结构分析3.8x射线衍射技术在其他方面的应用第4章电子显微分析4.1概述4.2透射电镜4.3扫描电镜4.4电子探针仪4.5电镜的近期发展4.6电子光学表面分析仪第5章热分析5.1概述5.2热分析技术的分类5.3差热分析5.4差示扫描量热分析法5.5热重分析5.6热膨胀和热机械分析5.7热分析技术的应用5.8热分析技术的发展趋势第6章光谱分析6.1吸收光谱分类及基本原理6.2紫外光谱6.3红外吸收光谱分析6.4激光拉曼散射光谱法第7章核磁共振分析7.1概述7.2核磁共振的基本原理7.3质子的化学位移7.4自旋偶合7.5核磁共振的信号强度7.6图谱解释7.7构造和样品制备7.8nmr技术的进展7.9核磁共振谱在材料分析研究中的应用第8章质谱分析8.1概述8.2质谱技术基本原理-8.3离子的类型8.4质谱定性分析及图谱解析8.5质谱定量分析8.6气相色谱一质谱联用技术8.7质谱分析在材料研究中的应用第9章材料测试方法的综合应用9.1材料结构的测试9.2材料显微术及其样品制备方法的选择9.3材料形成过程研究9.4材料剖析主要参考文献。
材料测试与研究方法材料测试和研究方法是材料科学和工程领域中的关键技术,用于评估和了解材料的性能、结构、制备方法和应用。
在材料测试和研究方法领域,有各种各样的技术和方法可以用于测试和研究材料的各种特性。
本文将介绍一些常见的材料测试和研究方法。
一、材料测试方法:1.机械测试:机械测试是评估材料力学性能的一种常见方法。
常用的机械测试方法包括拉伸测试、压缩测试、硬度测试和冲击测试。
通过这些测试方法,可以得到材料的杨氏模量、屈服强度、断裂韧性等重要力学性能参数。
2.热性能测试:热性能测试是评估材料导热性和热膨胀性的一种方法。
常见的热性能测试方法包括热导率测试、热膨胀系数测试和热稳定性测试。
通过这些测试方法,可以得到材料在不同温度下的热性能参数,为材料的热应用提供数据支持。
3.电性能测试:电性能测试是评估材料导电性和介电性的一种方法。
常见的电性能测试方法包括电导率测试、介电常数测试和剪切模量测试。
通过这些测试方法,可以得到材料的电性能参数,用于材料在电器、电子领域的应用中。
4.化学性能测试:化学性能测试用于评估材料与化学物质的相容性和耐腐蚀性。
常见的化学性能测试方法包括溶解性测试、腐蚀性测试和耐久性测试。
通过这些测试方法,可以得到材料与不同化学物质之间的相互作用情况,为材料的选材和应用提供参考。
5.非破坏性测试:非破坏性测试是一种不破坏材料的测试方法,常用于评估材料的缺陷、内部结构和性能。
常见的非破坏性测试方法包括超声波检测、磁粉检测和红外热像仪检测。
通过这些测试方法,可以检测到材料的缺陷或异常,帮助确定材料的可靠性和可用性。
二、材料研究方法:1.显微结构分析:显微结构分析是研究材料微观结构的重要方法。
常见的显微结构分析方法包括光学显微镜、扫描电子显微镜和透射电子显微镜。
通过这些方法,可以观察到材料的微观形貌、晶体结构和组织状态。
2.表面分析:表面分析是研究材料表面性质和组成的方法。
常见的表面分析方法包括原子力显微镜、X射线光电子能谱分析和扫描电子显微镜能谱分析。