河南省周口市郸城县第一高级中学2014-2015学年高一下学期第三次月考数学试题
- 格式:doc
- 大小:331.50 KB
- 文档页数:3
设集合,集合,则B. C. D.【答案】D【解析】所以设全集B. C. D.【解析】由题意得。
选C。
4. 集合B. C. D. 【答案】C【解析】,则带入表达式得到包含于,故成立;,包含,故不成立;,,∴。
由得所以函数的定义域为(a, bB. abC.B. C. 9 D. 2]=,即=的定义域为即方程2等价于真数能取遍所有的正实数,理解对数函数的图像与性质是问题的关键【解析】因为偶函数,+∞)上是增函数,且,所以在上是减函数,且。
等价于①或②,由①得,由②得,故原不等式的解集。
选已知在则实数B. C. D.【答案】,解得所以实数a的取值范围是[1,2].二、填空题(本大题共4小题,每小题5分,共20分)13. 某校高一某班共有40人,摸底测试数学成绩23人得优,语文成绩20人得优,两门都不得优者有6人,则两门都得优者有________人。
【答案】9解得已知函数上不具有单调性,则实数【答案】【解析】函数图象的对称轴为,因为函数在区间,解得。
故实数的取值范围为。
答案:。
15. 已知集合∴,时,,当时,得,解得。
综上实数若函数的定义域为,值域为,则【答案】【解析】因为函数的对称轴为x=[-,结合图像可知,,故答案为。
小题,共70分,解答应写出文字说明、证明过程或演算步骤)2))的值;a=B={x|y=B={x|x≥﹣B={x|y=时,C≠,由题意得<a≤﹣;a的取值范围是。
已知函数)单调增区间为,根据二次函数图象的画法画出图)结合函数的图象写出单调区间;(3)根据偶函数的性质求出函数的最值即可。
,画出函数的图象如图所示;的图象可得,函数的单调增区间为,单调减区间为)当时,,故当时;因为函数时,。
综上,.(【解析】试题分析:(1)分别求出当∈(0,+∞),且x1<x2,通过作差证明=.=,=.元的商品,在市场销售中发现,此商品的销售单价销售单价(元)日销售量对应的点,并确定;)设经营此商品的日销售利润为元,根据上述关系式写出关于并指出销售单价(当销售单价,解得:当销售单价为40元时,所获利润最大。
郸城一高东校区14-15高一下期第三次月考地理试卷一、选择题(本大题有35小题,每小题2分,共70分。
请选出各题中一个符合题意的正确选项,并将该选项所对应的字母填涂在答题..卡.上。
不选、多选、错选均不得分。
) 1.大量燃烧煤炭,最容易产生的环境问题是A .臭氧层破坏B .酸雨C .光化学烟雾事件D .水体污染 2.现代物流业可以①提高经济效益 ②减少企业库存 ③增加运营成本 ④使物流速度减慢A .①②B .②③C .③④D .①④ 3.仓储式超市是一种以批发为主的大型超市,其选址的主要依据是①位于城市中心 ②环境优美 ③交通便利 ④地价较低 ⑤与文化区相连 A .①③ B .③④ C .③⑤ D .②④2010年8月31日,国务院发布“关于中西部地区承接产业转移的指导意见”,提出中西部要发挥其自身的优势,积极承接国内外产业转移。
据此回答14~16题。
4.中西部地区可以承接产业转移,其优势是A .劳动力素质高B .科技实力强C .矿产等资源丰富D .市场潜力小 5.中西部地区目前不适合大量承接的产业是A .劳动密集型产业B .能源矿产开发和加工业C .农产品加工业D .高新技术产业 6.中西部地区主动承接产业转移,其积极意义叙述错误的是 A .制约区域协调发展B .推动东部沿海地区经济转型升级C .在全国范围内优化产业分工格局D .有利于加速中西部地区新型工业化和城镇化进程7.图1示意我国某企业集团生态产业园区的生产联系。
该生态产业园区造纸厂纸浆厂制糖厂发电厂酿造厂化肥厂蔗 田养鱼场 水泥厂废酒精 化肥 废糖渣 废糖浆甘蔗、糖渣甘蔗、糖渣蔗杆蒸汽飞灰甘蔗废糖浆图1A .核心企业布局的主导因素是能源B .企业彼此间形成了生产工序上的联系C .实现资源的充分利用和清洁生产D .生产重点是对废弃物的综合利用 图2为某工业城市从中心城区到远郊区的地价变化示意图。
读图,完成18~21题。
8.该城市的地价,2007年比2000年A .整体下降B .整体上涨C .变化不大D .远郊区上涨幅度大 9.2007年地价变化曲线中,在近郊区又出现了一个峰值,原因是该地可能新建了A .游泳池B .奶牛场C .美术馆D .高新技术开发区 10.2000年以来,该城市人口迅速增加,最可能的原因是A .人口出生率大幅度降低B .人口死亡率明显减少C .外来劳动人口大量涌入D .环境优美吸引生态移民 11.地理环境随着城市规模的扩大变化明显的是A .城市热岛效应增强B .年降水量大量减少C .土壤日趋贫瘠D .地下水水位抬高北京平谷区历史上就以出产“北京贡桃”而闻名。
2015—2016学年度郸城一高高一上学期第三次周练数学试卷注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,时间120分钟,满分150分;2.答卷前请将自己姓名,班级,考号在答题卡上准确填涂;3.选择题答案用2B 铅笔涂到答题卡指定位置,非选择题答案用0.5mm 黑色签字笔答题,全部答案均答到答题卡上, 在本试卷上答题无效。
第Ⅰ卷(选择题)一.选择题:本大题共14小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
1.下列四个关系式中,正确的是A .{}a ∅∈B .{}a a ∉C .{}{},a a b ∈D .{}b a a ,∈ 2.已知全集U R =,集合21{|2},{|1}2A x xB x x =-<<=<,则()U A B ð= A .{|2}x x ≥ B .1{|1}2x x x ≤-≥或C .{|12}x x x ≤-≥或D .1{|2}2x x x ≤-≥或3.函数0()(2)f x x =-的定义域为 A. }41|{≤<x x B. }2,41|{≠≤<x x x 且C. }241|{≠≤≤x ,x x 且D. }4|{≥x x4.函数()|2|(1)f x x x =-+-的值域为A .[0,)+∞B .[2,2]-C .[0,2]D .(,2]-∞5. 设全集U =R ,集合M ={x |-1≤x ≤7},N ={x |y =x -2+2-x },则下图中阴影表示的集合为A .{0}B .{2}C .φD .{x |2≤x ≤7} 6.下列所给4个图象中,与所给3件事吻合最好的顺序为(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发太晚后来为了赶时间开始加速行走。
A .(1)(2)(4) B.(4)(2)(3) C.(4)(1)(3) D.(4)(1)(2) 7.下列函数中,既是奇函数又是增函数的为A.1y x =+B.2y x =-C.1y x=-D.||y x x = 8.已知函数2()8f x kx x =--在[-1,1]上是单调函数,则k 的取值范围是A.11[,]22-B. 11[,0)(0,]22-C. 11(,][,)22-∞-+∞ D.[1,1]-9.已知)(x f 满足)()(x f x f -=-,且当0>x 时,2)(-=x x x f ,则当0<x 时,)(x f 的表达式为A .2)(+=x x x fB .2)(-=x x x fC .2)(+-=x x x fD .2)(--=x x x f10.已知[0,1]x ∈,则函数y =的值域是A .]13,12[--B .]3,1[C .]3,12[-D .]12,0[-11.下列说法中正确的说法个数为①函数()g x =()f x =-表示同一函数; ②集合11{|,},{|,}623n M x x m m Z N x x n Z ==+∈==-∈,则M N ⊆; ③定义在R 上的函数f (x ),若满足f (0)=0,则函数f (x )为奇函数;④定义在R 上的函数f (x )满足f (1)>f (2),则函数f (x )在R 上一定不是增函数.A .1B .2C .3D .412.给定全集∪,若非空集合A 、B 满足A ,U B U ⊆⊆且集合A 中的最大元素小于B 中的最小元素,则称(A ,B )为U 的一个有序子集对,若{}=1,2,3,4U ,则U 的有序子集对的个数为 A. 16 B. 17 C. 18 D. 1913.已知函数y f x =+()1定义域是[]-23,,则(|21|)y f x =-的定义域是A. 5[0,]2B. 35[,]22-C. 3[1,]2-D. 13[,]22- 14.设函数1()f x x x=-,对任意[1,)x ∈+∞,()()0f ax af x +<恒成立,则实数a 的取值范围是 A .(,1)-∞- B .(1,0)- C .(1,1)- D .(0,1)第Ⅱ卷(非选择题)二.填空题:本大题共4小题,每小题5分。
2014年周口市高一数学下第三次月考试卷一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的. 1.︒600cos =( )A.23 B. -23 C.21 D.-212.函数y =cos ⎝⎛⎭⎪⎫x +π2(x ∈R)是( ). A .奇函数 B .偶函数 C .非奇非偶函数D .无法确定3. 要得到函数y =sin ⎝⎛⎭⎪⎫2x -π4的图象,可以把函数y =sin 2x 的图象 ( )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位4.已知角α的终边经过点P (-1,2),则cos α的值为( )A .-55 B .- 5 C.255D.525.若函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( ) A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6 B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2 C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 6. 设向量a =(-1,2),b =(1,-1),c =(3,-2),用a ,b 作基底可将c 表示为c =pa +qb ,则实数p ,q 的值为( ).A .p =4,q =1 B. p =1,q =4 C .p =0,q =4 D.p =1,q =-47若a =(2,3),b =(-4,7),则a 在b 方向上的投影为( ).A.655 B.65C.135D.138.如果sin x +cos x =15,且0<x <π,那么tan x 的值是( ).A .-43B .-43或-34C .-34D .43或-349.点O 是△ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( ).A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点10.如图,在四边形ABCD 中,下列各式中成立的是( ).A.BC →-BD →=CD →B.CD →+DA →=AC →C.CB →+AD →+BA →=CD →D.AB →+AC →=BD →+DC → 11. 函数)23cos(xy --=π的单调递增区间是( ) A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππC .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ12. 函数y=Asin(ωx+φ)(A >0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于( ) A.2 B.22+C.222+D.222--二.填空题 本大题共4小题,每小题5分,满分20分.13. 设点P 是函数f (x )=sin ωx 的图象C 的一个对称中心,若点P 到图象C 的对 称轴的最小值是π8,则f (x )的最小正周期是________.14.若向量=(2,3),=(4,7),则=______.15.函数)1lg(tan tan 3)(--=x xx f 的定义域是___________16.关于平面向量a ,b ,c ,有下列三个命题:①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°. 其中真命题的序号为_______.(写出所有真命题的序号)三.解答题(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知求,,,的坐标18.(本小题满分12分)已知α为第二象限角,)()()()()()()(α-2π-sin α-πtan απ3sin π-α-tan α-π23cos απ23sin α-π5sin )α(++=f (1)化简)α(f (2)若)π23-αcos(=31, 求)α(f 的值(3)若α=-1380°,求)α(f 的值19. (本小题满分12分)已知函数cos 2(0)6y a b x b π=-+>⎛⎫⎪⎝⎭的最大值为23,最小值为21-. (1)求b a ,的值;(2)已知函数)3sin(4)(π--=bx a x g ,当1)(-≥x g 时求自变量x 的集合.20. (本小题满分12分)已知tan α=3,求下列各式的值:(1)3cos -π-α-sin π+α3cos ⎝ ⎛⎭⎪⎫π2+α+sin ⎝ ⎛⎭⎪⎫3π2-α;(2)2sin 2α-3sin αcos α-1.21. (本小题满分12分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.22.(本小题满分12分) 已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.三.解答题:17.解=(-1,5)=(5,-3)=(-6,19)20. 解 (1)原式=-3cos α+sin α-3sin α-cos α=-3+tan α-3tan α-1=3-3-33-1=6-5313.(2)原式=2sin 2α-3sin αcos α-sin 2α-cos 2αsin 2α+cos 2α=2tan 2α-3tan α-tan 2α-1tan 2α+1=18-9-9-19+1=-110. 21.解 解 (1)∵(2a -3b )·(2a +b )=61,∴4a 2-4a ·b -3b 2=61,即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×-6+9=13, |a -b |=a 2-2a ·b +b 2=16--+9=37.22.解 (1)观察图象,得A =2,T =⎝⎛⎭⎪⎫11π12-π6×43=π.∴ω=2πT=2,∴f (x )=2sin(2x +φ).∵函数经过点⎝⎛⎭⎪⎫π6,2,∴2sin ⎝ ⎛⎭⎪⎫2×π6+φ=2, 即sin ⎝ ⎛⎭⎪⎫π3+φ=1.又∵|φ|<π2,∴φ=π6,∴函数的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.(2)∵0<x <π,∴f (x )=m 的根的情况,相当于f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6与g (x )=m 的交点个数情况,且0<x <π,∴在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R)的图象.由图可知,当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根.∴m 的取值范围为-2<m <1或1<m <2;当-2<m <1时,此时两交点关于直线x =23π对称,两根和为43π;当1<m <2时,此时两交点关于直线x =π6对称,两根和为π3.。
河南省郸城一高2013—2014学年度高三月考(12月) 数学试题(文) 命题:郸城一高 杨培军 一、选择题(每题5分,共12小题,满分60分) 1.已知集合A={x|-1≤x≤2,x∈Z},集合B={0,2,4},则A∪B等于 ( ) A.{-1,0,1,2,4} B.{-1,0,2,4} C.{0,2,4} D.{0,1,2,4} 2.已知设i是虚数单位,若=a+bi(a,b∈R),则的值是 ( ) A.8 B.10 C.3 D.2 3.条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.为了得到函数y=sin2x的图象,只需把函数y=cos2x的图象 ( ) A.向左平移 B.向右平移 C.向左平移 D.向右平移 5.已知公差不为零的等差数列{}的前n项和为,若是a3与a7的等比中项,且S10=60,则S20等于 ( ) A.80 B.160 C.320 D.640 6.已知x>0,y>0,且9x+y=xy,不等式ax+y≥25对任意正实数x,y恒成立,则正实数a的最小值为 () A.3 B.4 C.5 D.6 7.已知向量a=(cosα,sinα),b=(sinβ,-cosβ),则|a+b|的最大值为 ( ) A. B.2 C.2 D.4 8.已知a是函数f(x)=+的零点,若0<<a,则f()的值满足 ( ) A.f()>0 B.f()=0 C.f()<0 D.f()符号不确定 9.给出如下四个命题: ①若“p∧q”为假命题,则p,q均为假命题; ②命题“若a>b,则>-1”的否命题为“若a≤b,则≤-1”; ③“∈R,+1≥1”的否定是“∈R,+1≤1” ④给出四个函数y=,y=x,y=,y=,则在R上是增函数的有3个. 其中不正确的命题个数是 ( ) A.4 B.3 C.2 D.1 10.已知数列{}的通项公式为=2n(n∈N),把数列 {}的各项排列成如图所示的三角形数阵:记M(s,t) 表示该数阵中第s行的第t个数,则数阵中的偶数2010 对应于( ) A.M(45,15) B.M(45,25) C.M(46,16) D.M(46,25) 11.已知双曲线(a>0,b>0),过其右焦点且垂直于实轴的直线与双曲线交于M,N 两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为 ( ) A. B. C. D. 12.对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是 [m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“梦想区间”.若函数f(x)=a-(a>0)存在“梦想区间”,则a的取值范围是 ( ) A.(,2) B.(,+∞) C.(,) D.(2,+∞) 二、填空题(每小题5分,共4小题,满分20分) 13.在△ABC中,a,b,c分别是角A,B,C的对边,且a,b,c成等差数列,sinA,sinB,sinC成等比数列,则三角形的形状是_______________. 14.在平面直角坐标系xOy中,设D是由不等式组表示的区域,E是到原点的距离不大于1的点构成的区域,向E中随机投一点,则所投点落在D中的概率是_______. 15.函数f(x)对任意正整数a,b满足条件f(a+b)=f(a)·f(b)且f(1)=2,则+++…+=______________ 16.给出下列命题: ①若a>b,则<成立的充要条件是ab>0; ②若不等式+ax-4<0对任意x∈(-1,1)恒成立,则a的取值范围为(-3,3); ③数列{}满足:a1=2068,且++=0(n∈N),则=2013; ④设0<x<1,则+的最小值为 其中所有真命题的序号是______________. 三、解答题(共6小题,满分70分) 17.(本题满分10分))已知α为锐角,sinα=,tan(α-β)=,求cos2α和tanβ 的值. 18.(本题满分12分)已知各项均为正数的等比数列{}的首项为a1=2,且4a1是2a2,a3的等差中项. (1)求数列{}的通项公式; (2)若=,=b1+b2+…+,求. 19.(本题满分12分)在锐角三角形中,三个内角A,B,C的对边分别为a,b,c,满足条件+sin2BsinB+cos2B=1. (1)求角B的值; (2)若b=3,求a+c的最大值. 20.(本题满分12分)已知函数f(x)=,m∈R. (1)当m=1时,求曲线y=f(x)在点(2,f (2))处的切线方程; (2)若f(x)在区间(-2,3)上是减函数,求m的取值范围. 21.(本题满分12分)已知点A(0,-2),B(0,4),动点P(x,y)满足·= -8. (1)求动点P的轨迹方程; (2)设(1)中所求轨迹与直线y=x+b交于C,D两点,且OC⊥OD(O为原点),求b的值. 22.(本题满分12分)已知a∈R,函数f(x)=ax-lnx,g(x)=,x∈(0,e],其中e是自然对数的底数,为常数. (1)当a=1时,求f(x)的单调区间与极值; (2)在(1)的条件下,求证:f(x)>g(x)+; (3)是否存在实数a,使得f(x)的最小值为3?若存在,求出a的值;若不存在,说明理由.。
2014-2015学年高一下学期期中考试数学试卷-Word版含答案2014——2015学年下学期高一年级期中考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 不等式0121≤+-x x 的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞) B.⎣⎢⎡⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) D. ⎝ ⎛⎦⎥⎤-12,12. 若0<<b a ,则下列不等式不能成立的是 ( ) A.ba11> B .b a 22> C .b a > D .b a )21()21(> 3. 不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( )A .297B .144C .99D .665. 已知直线1l :01)4()3(=+-+-y k x k 与2l :032)3(2=+--y x k 平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或26. 在△ABC 中,80=a ,70=b ,45=A ,则此三角形解的情况是 ( ) A 、一解 B 、两解 C 、一解或两解 D 、无解7. 如果0<⋅C A ,且0<⋅C B ,那么直线0=++C By Ax 不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知点()5,x 关于点),1(y 的对称点为()3,2--,则点()y x p ,到原点的距离为( )A .4B .13C .15D .179. 计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数(11…114个01)2转换成十进制数是( )A .216-1B .216-2C .216-3D .216-4 10. 数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( ) A.61B .61- C .6 D .6- 11. 已知0,0>>y x ,且112=+yx,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-2,4)C .(-∞,-4]∪[2,+∞)D .(-4,2) 12. 设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( ) A .2012 B .2013 C .2014 D .2015第Ⅱ卷(非选择题 共90分)19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。
郸城一高东校区14-15高一下期第三次月考英语试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试时间100分钟。
2.答卷前考生务必将自己的班级、姓名、考号和考试科目用钢笔分别填在答题卷密封线内。
3.第Ⅰ卷和第Ⅱ卷的答案务必答在答题卷中,否则不得分;答题卷用0.5毫米的黑色墨水签字笔答在上面每题对应的答题区域内,在试题卷上作答无效.........。
4.考试结束后,只把答题卷交回(试题卷自己保留好,以备评讲.............)。
I 卷I. 阅读理解(共20小题;每小题2分,满分40分)ACats are the most popular pets among Americans. So it is not surprising that there are many expressions about cats.Some cats like to catch small birds, like canaries(金丝雀). If someone looks very proud of himself or satisfied with himself, we say, “He looks like the cat that ate the canary.”Sometimes, a cat likes to play with a small animal it catches. So if you play cat and mouse with someone, you change between different kinds of behavior when dealing with another person. For example, a child might offer something sweet to her little brother and then take it away when he reaches for it.Children might call a child who is easily frightened a fraidy cat or a scaredy cat. A copycat is someone who acts just like someone else or copies another person's work. A fat cat is a person with a lot of money.If you tell about something that is supposed to be a secret, we say you “let the cat out of the bag”. If you are not able to speak or answer a question, someone might ask, “Has the cat got your tongue?”Have you ever watched children in a classroom when their teacher leaves for a few minutes? “When the cat's away, the mice will play.” means people sometimes misbehave when there is no supervision(监督).You may have heard of this expression-curiosity killed the cat. This means being too concerned about things that are not your business might cause problems.If your home is very small, you might say there is not enough room to swing a cat. But you probably should not try this at home!If you've ever had cats as pets, you know it is difficult to train them or to get them to do something. Cats are not like sheep or cows that can be moved in a group. So we say a difficult or an impossible job is like herding cats.21. What's the passage mainly about?A. The popularity of cats in America.B. The origin of AmericanEnglish.C. The importance of cats to Americans.D. Some interesting expressions about cats.22. If Bob offers something to Amy, and then takes it back, we would say, “________”.A. Bob plays cat and mouse with AmyB. When the cat's away, the mice will playC. Bob looks like the cat that ate the canaryD. The cat has got Bob's tongue23 If one always does what others do, people may call him________.A. a fraidy catB. a copycatC. a fat catD. a scaredy cat24. When someone says “Don't let the cat ou t of the bag”, it means that________.A. you can't answer the questionB. you must keep your promiseC. you must keep something secretD. you should do as others sayBIn the past, agriculture is not based on science. Farmers knew little about how to make soil rich. They threw away manure (粪便) instead of spreading it back on the fields to keep soil rich. Repeatedly grow the same crops on any given field until that field would fail to produce that crop, then give up that field for a decade or so, and go right back to grow the same crop.Premodern agriculture did not understand why certain crops did very poorly on certain fields, but they did observe it, and they tried something different. They grew certain crops on land that grew an oak tree, other crops on lands that grew pine trees.Knowledge of the needs of given crops for soil drainage(排水) was developing prescience. Farmers learned that grain would die if the ground stayed too wet for too long. This kind of reasoning of course is the starting base of the science of agriculture. We should understand that a lot ofobservation took place well before serious scientific study of agriculture began.There have been problems with modern agriculture. When we send a tractor operator out to drive heavy equipment over soft soil, do we call it modern agriculture or stupidity to leave the tire traction spot unchanged? Soil compaction(压紧) from the use of heavy machinery on soil too wet to properly support that machinery is often known as a problem of modern agriculture. But knowledge of the problem and its avoidance has been widely known for 70 years.In general it is not the use of science in agriculture that has caused problems but the failure of farmers to apply the detailed knowledge available to them, failure to use real science that has caused the problem.25. For lack of knowledge of science, farmers in the old days ________.A. didn't know how to make soil richB. only spread manure to the fieldC. grew the same crop in the same field every other yearD. grew various crops in the same field repeatedly26. Which of the following is NOT true about the period of premodern agriculture?A. Farmers learned to observe the growing of crops.B. Farmers have known why some crops grow poorly on certain fields.C. Farmers realized the importance of keeping field from being too wet.D. Farmers learned to grow different crops on different fields.27. In the eyes of the writer, modern agriculture ________.A. has solved all the problems of the pastB. develops greatly and fast for the use of scienceC. brings about some new problems tooD. makes it possible for farmers to keep away from any problems28. What is mainly discussed in this passage?A. Farmer's life.B. Farming conditions.C. Problems of each farming period.D. Farming machines.CScientists have learned a great deal about the kinds of food people need. They say that there are seven kinds of food that people should eat every day. There are:(1)green and yellow vegetables of all kinds;(2)citrus(柑橘类) fruits and tomatoes;(3)potatoes and other fruits and vegetables;(4)meat of all kinds, fish and vegetables;(5)milk and foods made from milk,such as cheese and icecream;(6)bread or cereal(谷类); rice is also in this kind of foods;(7)butter, or something like butter, containing fat.People in different countries and different areas of the world eat different kinds of things. Foods are prepared, cooked and eaten in many different kinds of ways. People in different countries eat in different times of the day. In some places people eat three or four times a day. Scientistssay that none of these differences is really important. It doesn't matter whether foods are eaten raw (生的) or cooked,canned(罐装的) or frozen(冷冻的). It doesn't matter if a person eats dinner at 4 o'clock in the afternoon or at eleven o'clock at night. The important thing is that every day a person should eat something from each of the seven kinds of food.There are two problems, then, in feeding the large number of people on earth. The first is to find some way to feed the world population so that no one is hungry. The second is to make sure that people everywhere have the right kinds of food to make them grow to be strong and healthy.29. It is important that people should ________.A. eat three times a dayB. eat cooked foodC. eat dinner at seven o'clockD. eat something from each of the seven kinds of food every day30. From the passage we can know that ________.A. peopl e should eat icecream every dayB. oranges belong to the second kind of foodC. we should eat chicken every dayD. we should never eat out31. What's going to be talked about in the paragraph afterthe passage?A. How can we cook the seven kinds of food?B. How can people be strong and healthy?C. How can we solve the two problems?D. Why should we eat the seven kinds of food every day?DYour smile is a sign of how you're feeling, and who you are. People with brighter smiles and white teeth appear youthful, healthy, open to conversation and sure of themselves. A smile sends good messages about yourself to others-it tells them you look good and feel good. A beautiful smile adds more to confidence than almost anything else. Get back your confidence, feel younger and healthier, be friendlier and be easy to talk to. Smile brightly at the world and you'll look and feel great about yourself!There's a simple way that makes whitening your teeth fast and easy-that is really something to smile about! Hollywood Sexy Smile is sure to whiten your teeth in just 14 days!We even offer a guarantee of paying 100% money back without asking any questions! Most of our competitors won't give you your money back if you're dissatisfied with the results,but we certainly will.Don't let a lack of white teeth get you down. Even after years of caffeine(咖啡因), red wine, soft drinks or smoking you can have amazing white teeth. That charming smile of your favorite star is no longer out of your reach. It is possible to get a wonderful smile that makes you look and feel fantastic. We all know that a famous star's smile is worth a million dollars so why not get your own smile too? Don't delay a minute longer. Give your appearance and even your selfesteem(自尊) an increase and get Hollywood Sexy Smile now!We're so sure that Hollywood Sexy Smile will work for you.32. Why does the author talk about a person's smile in Paragraph 1?A. To explain the relationship between smiling and health.B. To tell us the importance of white teeth while smiling.C. To prove that a person with a smile has more chances of becoming a star.D. To advise us to keep positive by smiling.33. According to the author, the method of whitening teeth mentioned in the passage is________.A. fast but expensiveB. easy but expensiveC. fast and easyD. easy and cheap34. If you aren't satisfied with the results after trying the teeth whitener, ________.A. you won't get any money backB. you will get back double what the product has cost youC. you will get back all your moneyD. you have to explain the reasons35 What can be inferred from the passage?A. Caffeine, red wine and soft drinks are usually bad for people's teeth.B. It takes at least a month to whiten your teeth.C. People who appear healthy must often smile.D. Most stars in the world often whiten their teeth.七选五根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
2013-2014学年度下学期联考试卷高一数学试题本试题卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效考试结束后,将本试题卷和答题卡一并交回第I卷选择题一、选择题:本大题共l2小题,每小题5分在每小题给出的四个选项中,只有一项是符合题目要求的.(l)某人从甲地到乙地有A,B,C三条路可走,走A路的概率为0.2,不走C路的概率为0.8,则该人走B路的概率是(A)0. 6 (B)0.3 (C)0.1 (D)0. 5(2)执行如图所示的程序语句过程中,循环体执行的次数是(A)0 (B)1 (C)2 (D)3(3)学校为了了解高二年级教学情况,对清北班、重点班、普通班、艺术班的学生做分层抽样调查,假设学校高二年级总人数为N,其中清北班有学生144人,若在清北班、重点班、普通班、艺术班抽取的人数分别为18,66,53,24,则总人数N为(A)801 (B)1 288 (C)853 (D)912(4)甲、乙两种农作物品种连续5季的单位面积平均产量如下(单位:t/hm),根据这组数据,下列说法正确的是_(A)甲品种的样本平均数大于乙品种的样本平均数( B)甲品种的样本平均数小于乙品种的样本平均数(C)甲品种的样本方差大于乙品种的样本方差(D)甲品种的样本方差小于乙品种的样本方差(5)如果执行下面的算法语句后输出结果是8,则输入的值是(A)3 (B)5或12- (C)12 (D)4或12(6)在由l,2,3,4四个数字组成(允许重复)的四位数中,千位上的数字比个位上的数字小的概率为(A) (B) (C) (D)(7)在区间[0,2]和[1,2]上分别取一个数x,y,则对应的数对(x,y)是不等式x -y≤0的解的概率为(A) (B) (C) (D)(8)执行下面的程序框图,如果输入的,则输出的y的范围是(A)[0,1] (B).(1,2] (C)[0,3] (D)[1,3](9)某校甲、乙两位学生在连续5次的月考中,成绩(均为整数)统计如下茎叶图所示,其中一个数字被墨迹污染了,则甲的平均成绩不超过乙的平均成绩的概率是(A) (B) (C) (D)(10)运行如图所示的程序框图,输出A,B,C的一组数据为,-1,2,则在两个判断框内的横线上分别应填(A)垂直、相切 (B)平行、相交 (C)垂直、相离 (D)平行、相切(11)将一个质点随机投放在以A(1,1),B(5,1),C(1,4)为顶点的三角形内(含边界),若该质点到此三角形的三个顶点的距离均不小于d的概率为,则d=(A)1 (B) (C)2 (D)412.样本的平均数为x,样本的平均数为,样本的平均数,若直线,则下列叙述不正确的有①直线恒过定点(1,1);②直线与圆相交;③直线到原点的最大距离为;④直线与直线垂直。
郸城一高东校区14-15高一下期第三次月考数学试题一.选择题〕. A.3cos 5π B.3cos 5π- C.3cos 5π±2cos 5π 2.cos tan 0θθ⋅<,那么角θ是 〔 〕A.第一或者第二象限角 B.第二或者第三象限角C.第三或者第四象限角 D.第一或者第四象限角3.以下函数中, 最小正周期为π的是( )A. |sin |y x =B.sin y x =C. tan 2xy = D. cos 4y x = 4.以下函数中,既为偶函数又在(0,π)上单调递增的是 ( ) .A .tan y x =B .cos()y x =-C .sin()2y x π=-- D .|tan |y x = 2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位 C .向左平移3π个单位 D .向右平移3π个单位 6.假设A 、B 、C 分别为ABC ∆的内角,那么以下关系中正确的选项是( )A.C B A sin )sin(=+B.A C B cos )cos(=+C.C B A tan )tan(=+D.A C B sin )sin(-=+7.sin 210= ( )A .21B .21-C .23D .23- α的终边过点()34,-P ,那么ααcos sin 2+的值是〔 〕A .1或者-1B .52或者52- C .1或者52- D . 52 9.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 〔 〕A .2°B .2C .4°D .4 10.)(cos R x x y ∈= 图像的一个对称中心 〔 〕A. ()10, B. ⎪⎭⎫ ⎝⎛0,2πC. ()0,π D. ()02,π P 在角α的终边的反向延长线上,且1=OP ,那么点P 的坐标为〔 〕)(A );sin ,cos (αα- )(B );sin ,(cos αα )(C );sin ,(cos αα- )(D );sin ,cos (αα--α的终边经过点0p 〔-3,-4〕,那么)2cos(απ+的值是〔 〕 A.54- B.53 C.54 D.53- 二.填空题:13.在扇形中,半径为8,弧长为12,那么圆心角是 弧度,扇形面积是 . 1sin 2x x =的解的个数为__________. π316化为)20,(2παπα<<∈+Z k k 的形式是 y =sin(x +π3),x ∈[0,2π]的单调减区间是______ 。
绝密★启用前2014-2015学年度郸城三高学校6月月考卷考试范围:人教A 版必修四 平面向量;考试时间:120分钟;考试时间: 2015年6月18日第I 卷(选择题)一、选择题(本大题工12小题,每小题5分,共60分。
每小题只有一个选项符合题意)1.化简AB BD AC CD +--=( )A .ADB .0C .ACD .DA2.已知向量→a ,→b 满足2==→→b a ,→a 与→b 的夹角为0120,则→→-b a 的值为( )A .1B .3C .32D .233.已知向量()1,2a =-,()3,0b =,若()()2//a b ma b +-,则m 的值为 A .2- B .2 C .12- D .124.设4=⋅b a ,若a 在b 方向上的投影为23, 且b 在a 方向上的投影为3, 则a 和b 的夹角等于( )A .3πB .6πC .32πD .323ππ或5.在四边形ABCD 中,若+=,则四边形ABCD 是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 6.已知菱形ABCD 的对角线AC 长为1,则AD AC ⋅=( ) A .4 B .2 C .1 D .217.已知|a|=1,|b|=2, a 与b 的夹角为1200,且a +b +c=0,则a 与c 的夹角为( )A .300B .600C .900D .1500 8.己知P 1(2,-1)、P 2(0,5)且点P 在P 1P 2的延长线上,12||2||PP PP =, 则P 点坐标为( )A .(-2,11)B .()3,34C .(32,3) D .(2,-7)9.已知向量)4,2(=,)1,1(-=,则=-2( )A .(3,7)B .(3,9)C .(5,7)D .(5,9)10.已知平面直角坐标系内的两个向量)2,1(=→a ,)23,(-=→m m b ,且平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数),则实数m 的取值范围是( )A .(,2)-∞B .(2,)+∞C .(,)-∞+∞D .(,2)(2,)-∞+∞11.在△ABC 中,点G 是△ABC 的重心,若存在实数,λμ,使AG AB AC λμ=+,则( ) (A )11,33λμ== (B )21,33λμ==(C )12,33λμ==(D )22,33λμ==12.对任意两个非零的平面向量α和β,定义.若两个非零的平面向量a 和b ,满足a 与b 的夹角,42ππθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A.52 B. 32 C.1 D.12第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量(2,1),(,1)a b x ==-,且a b -与b 共线,则x 的值为14.设向量(3,1),(2,2)a b ==-,若()()a b a b λλ+⊥-,则实数λ= .15.已知向量,满足6)()2(-=-∙+a ,且21==,则a 在b 上的投影为_______________.16.已知点P 是半径为1的O 上的动点,线段AB 是O 的直径.则AB PA AB PB ⋅+⋅的取值范围为三、解答题(本大题共6小题,总分共计70分,解答题必须写出必要的文字说明,演算步骤或证明过程)17.(满分10分)已知的与→→→→==b a b a ,8,4夹角是120°. (1)求a b a b →→→→⋅+的值及的值,(2)当k 为何值时,?2⎪⎭⎫⎝⎛-⊥⎪⎭⎫ ⎝⎛+→→→→b a k b a18.(本小题12分)如图,在ABC ∆中,设AB a =,AC b =,又2BD D C =,2,1a b ==,向量a ,b 的夹角为3π.(Ⅰ)用,a b 表示AD ;(Ⅱ)若点E 是AC 边的中点,直线BE 交AD 于F 点,求AF BC ⋅. 19.(本小题12分)已知c b a,,是一个平面内的三个向量,其中a=(1,2) (1)若|c |=52,c ∥a ,求c 及a ·c. (2)若|b |=25,且a +2b 与3a -b 垂直,求a与b 的夹角.20.(本小题12分)设向量a =)sin ,2(θ,b =)cos ,1(θ,θ为锐角. (1)若∥,求tan θ的值; (2)若·=136,求sin θ+cos θ的值. 21.(本小题12分)已知)cos 3,(sin ),sin ,cos 3(x x x x ==,函数x f ⋅+⋅=)(. (1)求函数()f x 的最小正周期;(2)已知3)2(=αf ,且(0,)απ∈,求α的值.22.(本小题12分)已知2(1,2),(cos 2,cos ),2x m n x ==且x f ⋅=)(. (1)在ABC ∆中,若1)(=A f ,求A 的大小;(2)若x x x f x g sin 3cos 2)()(2+-=,将)(x g 图像上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到)(x h 的图像,求)(x h 的单调减区 间2014-2015学年度郸城三高学校6月月考卷答题卡学校:___________姓名:___________班级:___________考号:___________参考答案1.B 2.C 3.A 4.A 5.A 6.D 7.C 8.A 9.C 10.D 11.A 12.D 13.2-14.15.1216.[]4,4-17.(1)-(2)7-=k18.(Ⅰ)1233AD a b =+(Ⅱ)35- 19.(1)当c 、a 同向时,c =(2,4),当c 、a 反向时,c=(-2,-4),10a c ∙=± (2)0180a b 与的夹角为20.(1)2(221.(1)p (2)23p22.(1)3π;(2)]384,324[ππππ++k k ,Z k ∈.。
郸城一高东校区14-15高一下期第三次月考
数学试题
一.选择题
). A.3cos
5
π B.3cos
5
π- C.3cos
5
π± D.-2cos
5
π 2.已知cos tan 0θθ⋅<,那么角θ是 ( )
A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 3.下列函数中, 最小正周期为π的是( )
A. |sin |y x =
B.sin y x =
C. tan 2
x
y = D. cos 4y x = 4.下列函数中,既为偶函数又在(0,π)上单调递增的是 ( ) . A .tan y x = B .cos()y x =- C .sin()2
y x π=-- D .|tan |y x =
5.要得到2sin(2)3y x π
=-
的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23
π
个单位
C .向左平移3π个单位
D .向右平移3
π个单位 6.若A 、B 、C 分别为ABC ∆的内角,则下列关系中正确的是( )
A.C B A sin )sin(=+
B.A C B cos )cos(=+
C.C B A tan )tan(=+
D.A C B sin )sin(-=+ 7.sin 210= ( )
A .2
1
B .2
1- C .
2
3 D .2
3-
8.已知角α的终边过点()34,
-P ,则ααcos sin 2+的值是( )
A .1或-1
B .52或52-
C .1或52-
D . 5
2 9.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A .2°
B .2
C .4°
D .4
10.已知)(cos R x x y ∈= 图像的一个对称中心 ( )
A. ()10, B. ⎪⎭⎫ ⎝⎛0,2π
C. ()0,π D. ()02,
π 11.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( )
)(A );sin ,cos (αα- )(B );sin ,(cos αα )(C );sin ,(cos αα- )(D );sin ,cos (αα--
12.已知角α的终边经过点0p (-3,-4),则)2
cos(απ
+的值为( )
A.54-
B.53
C.54
D.5
3- 二.填空题:
13.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 .
14.方程1sin 2
x x =的解的个数为__________. 15.角
π3
16
化为)20,(2παπα<<∈+Z k k 的形式是 16.函数y =sin(x +π
3),x ∈的单调减区间是______ 。
三.解答题 17.已知
45
-cos =α,且α为第三象限角,求αsin 、αtan 的值.
18.化简:0
360sin 270cos 180sin 90cos 0tan r q p x m ---+
19.求函数⎪⎭⎫ ⎝
⎛
+=4sin πx y 的单调增区间以及其值域.
20.(1)若()4
1sin =+απ求 []cos()cos()
cos cos()1cos(2)cos()cos()
πααπαπααπαπα+---+-+++- 的值;
(2)已知1sin()3
3
π
α-=,求sin()6
π
α+,10sin(
)3
π
α-的值. 21.(1)已知2sin(3)cos()πθπθ+=+,求222sin 3sin cos cos θθθθ+-的值。
(2)已知3tan =α,计算
α
αα
αsin 3cos 5cos 2sin 4+- 的值
22.求解:在三角形ABC 中,已知1
sin cos 5
A A +=,求cos sin()A
B
C π---的值。