自动判卷初二年级数学下学期反比例函数试题5
- 格式:xls
- 大小:496.00 KB
- 文档页数:8
初二数学反比例函数试题答案及解析1.喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?【答案】(1)当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为(1)y=100(8<x≤9);y=(9<x≤45);(2)从烧水开到泡茶需要等待3.25分钟.【解析】(1)将D点的坐标代入反比例函数的一般形式利用待定系数法确定反比例函数的解析式,然后求得点C和点B的坐标,从而用待定系数法确定一次函数的解析式;(2)将y=80代入反比例函数的解析式,从而求得答案.试题解析:(1)停止加热时,设y=,由题意得:50=,解得:k=900,∴y=,当y=100时,解得:x=9,∴C点坐标为(9,100),∴B点坐标为(8,100),当加热烧水时,设y=ax+20,由题意得:100=8a+20,解得:a=10,∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为(1)y=100(8<x≤9);y=(9<x≤45);(2)把y=80代入y=,得x=11.25,因此从烧水开到泡茶需要等待3.25分钟.【考点】1、待定系数法;2、反比例函数的应用2.如图,过反比例函数图象上的一点A,作x轴的垂线,垂足为B点,则.【答案】4.【解析】根据反比例函数k的几何意义可得:S=k=4.△AOB故答案是4.【考点】反比例函数系数k的几何意义.3.已知反比例函数,当x<0时,y随x的增大而减小,则k的范围()A.B.C.D.【答案】A【解析】根据反比例函数图象的性质可得到2k﹣1>0,然后解不等式即可得到k的范围.解:∵反比例函数,当x<0时,y随x的增大而减小,∴2k﹣1>0,解得,.故选A.点评:本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.4.已知反比例函数的图象经过点(1,2),则此函数图象所在的象限是()A.一、三B.二、四C.一、三D.三、四【答案】A【解析】根据反比例函数图象的性质先求出k的取值范围,再确定图象所在的象限.解:由反比例函数y=的图象经过点(1,2),可得k=2>0,则它的图象在一、三象限.故选A.点评:此题主要考查反比例函数y=的图象性质:(1)k>0时,图象是位于一、三象限.(2)k<0时,图象是位于二、四象限.5.如图,双曲线在第一象限内如图所示作一条平行y轴的直线分别交双曲线于A、B两点,连OA、OB,则S=。
八年级数学下册?反比例函数?测试卷含答案反比例函数检测卷(总分:100分时间:60分钟)得分:_________一、选择题(本大题共8小题,每题2分,共16分) 1.以下函数是反比例函数的为()A.y=2x33C.y=2D.y=3x B.y=23xx2.在同一坐标系中,函数y=k和y=kx+3的图象大致是()x3.点A(2,y1)、B(1,y2)、C(3,y3)都在反比例函数y=3的图象上,那么()2xA.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y34kA、B分别作ACx轴.过双曲线y=(k是常数,k>0,x>0)的图象上两点x于C,BD x轴于D,△AOC的面积S1和△BOD 的面积S2的大小关系为()A.S1>S2B.S1一S2C.S1<S2D.S1和S2的大小无法确定5.如果P(a,b)在函数y=k的图象上,那么在此图象上的点还有()xA.(a,b)B.(a,b)C.(a,b)D.(0,0)6.力F所做的功10焦,那么力F与物体在力的方向上通过的距离s的图象大致是()17.假设点M(2,2)和N(b, 1 n2)是反比例函数y=k的图象上的两个点,那么一次函数y=kx+b的x图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.在反比例函数y=4的图象中,阴影局部的面积等于4的有()xA.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每题2分,共20分)9.y与x成反比例,当x=3时,y=1,那么y与x间的函数关系式为_________.10.点P在反比例函数y=6P的纵坐标是2,那么的图象上,且点x P的横坐标是_________.11.假设反比例函数y=k的图象过点A(1,2),那么k=_________.k x12.反比例函数(x>0)图象如下列图,那么y随x的增大_________.y=x 13.假设反比例函数y=1的图象上有两点A(1,y1),B(2,y2),那么y1_________y2(填“>〞、“<〞x或“=〞).14.在△ABC的三个顶点A(2,3),B(4,k 5),C(3,2)中,可能在反比例函数y=(k>0)x的图象上的点是_________.215.有反比例函数y=kx 1,(x 1,y 1)、(x 2,y 2)其象上的两点,假设x 1<0<x 2,y 1>y 2,k 的取范是_________.l6.如,反比例函数y= 5 的象与直y=kx(k>o)相交于A 、B 两点,AC ∥y ,BC ∥x ,x△ABC 的面等于_________个面位.17.假设一次函数y=2xk 的象与反比例函数y=k5的象相交,其中一个交点坐4,x此交点坐_________.18.如所示,P 1(x 1,y 1)、P 2(x 2,y 2)、⋯、P n (x n ,y n )在函数y=9 (x>o)的象上,△OP l A 1、△xP 2A 1A 2、△P 3A 2A 3、⋯、△P n A n1A n 都是等腰直角三角形,斜 O 1A l 、A 1A 2、⋯、A n 1A n 都在x 上,y 1+y 2+⋯+y n =_________.三、解答(本大共10小,共64分)519.(本小5分)正比例函数y=kx 与反比例函数 y=的象都 A(m ,1)点,求此正比x例函数解析式.20.(本小5分)点 A(2, k+2)在双曲 y=k上.求常数 k 的.x21.(本小5分)y=y 1 y 2,y 1与x 成正比例,y 2与x+3成反比例,当x=0,y= 2;当3x=3时,y=2;求y与x的函数关系式,并指出自变量的取值范围.22.(本小题5分)一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10 m3时,kg/m3.求与V的函数关系式;(2)求当V=2m3时,求氧气的密度.23.(本小题5分)一次函数y=kx+b(k≠o)和反比例函数y=k的图象交于点A(1,1).2x求两个函数的解析式’(2)假设点B是x轴上一点,且△AOB是直角三角形,求B点的坐标.24.(本小题7分)反比例函数y=k的图象与一次函数y=kx+m的图象相交于点(2,1).x分别求出这两个函数的解析式’试判断点P(1,5)关于x轴的对称点P’是否在一次函数y=kx+m的图象上.25.(本小题7分)假设反比例函数y1=6与一次函数y2=mx 4的图象都经过点A(a,2)、B(1,b).x求一次函数y2=mx4的解析式;(2)在同一直角坐标系中,画出两个函数的图象,并求当x取何值时有y2<y1;(3)求△AOB的面积.426.(本小题7分)反比例函数y=2的图象与一次函数y=kx+b的图象交于点A(m,2)、点B(2,x,一次函数的图象与y轴的交点为C.求一次函数解析式;求C点的坐标;求△AOC的面积.k27.(本小题9分)如图,直线y=kx+b与反比例函数y= (x<0)的图象相交于点A、点B,与x轴x交于点C,其中点A的坐标为( 2,4),点B的横坐标为4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.28.(本小题9分)假设一次函数y=2x 1和反比例函数y=k的图象都经过点(1,1).2x求反比例函数的解析式;(2)点A在第三象限,且同时在两个函数的图象上,求点A的坐标。
八年级数学下册《第六章反比例函数》练习题-附答案(浙教版) 一、选择题1.反比例函数y=15x中的k值为( )A.1B.5C.15D.02.反比例函数y=-2x的图象在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是( )A.-12B.2C.1D.-15.如图,A,C是函数y=1x的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )A.S1>S2B.S1<S2C.S1=S2D.S1和S2的大小关系不能确定6.如图,直线y=14x与双曲线y=4x相交于点(-4,-1)和(4,1),则不等式14x>4x的解集为( )A.-4<x<0或x>4B.x<-4或0<x<4C.-4<x<4且x≠0D.x<-4或x>47.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )8.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,若以此蓄电池为电源的用电器限制电流不得超过10 A,则此用电器的可变电阻应( )A.不小于4.8 ΩB.不大于4.8 ΩC.不小于14 ΩD.不大于14 Ω9.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( ) A.﹣5 B.﹣4 C.﹣3 D.﹣210.如图,在第一象限的点A既在双曲线y=12x上,又在直线y=2x﹣2上,且直线y=2x﹣2与x轴相交于点B,C(0,b)、D(0,b+2),当四边形ABCD周长取得最小值时,b=( )A.12B.34C.1D.52 二、填空题11.若y =1x 2n -5是反比例函数,则n =________.12.若反比例函数y =的图象位于第一、三象限,则正整数k 的值是 .13.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =2x 和y =-4x 的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.14.已知点A(-2,y 1),B(-1,y 2)和C(3,y 3)都在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系为____________(用“<”连接).15.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y(单位:m/min)可以表示为y =1500x ;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y(单位:N/m 2)可以表示为y =1500x ……,函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:____________________________________________________________.16.如图,在平面直角坐标系中,反比例函数y =2x (x >0)的图象与正比例函数y =kx ,y =1k x(k>1)的图象分别交于点A ,B ,若∠AOB =45°,则△AOB 的面积是______.三、解答题17.已知y=y1+y2,y1与x2成正比例,y2与x成反比例,且当x=1时,y=3;当x=-1时,y=1.求当x=-12时,y的值.18.已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.19.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.20.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?21.如图,反比例函数y=kx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.22.如图,已知正方形OABC的面积为4,点O是坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(x>0,k>0)的图象上,点P(m,n)是函数y=kx(x>0,k>0)的图象上任意一点.过点P分别作x轴、y轴的垂线,垂足分别为点E,F.若设矩形OEPF和正方形OABC不重合部分的面积为S.求当S>1时,求m的取值范围.23.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.24.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数y=kx(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kx(x>0)的图象于点N,若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.参考答案1.C2.D3.B.4.D5.C6.A7.C8.A9.C. 10.A. 11.答案为:3. 12.答案为:1. 13.答案为:3. 14.答案为:y 2<y 1<y 3.15.答案为:体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可). 16.答案为:2.17.解:依题意,设y 1=k 1x 2,y 2=k 2x则y =y 1+y 2=k 1x 2+k 2x.∵当x =1时,y =3;当x =-1时,y =1 ∴⎩⎨⎧k 1+k 2=3,k 1-k 2=1,解得⎩⎨⎧k 1=2k 2=1, ∴y =2x 2+1x.当x=-12时,y=12-2=-32.18.解:(1)∵反比例函数y=kx的图象经过点A(2,3)把点A的坐标代入解析式,得3=k2,解得k=6.∴这个函数的解析式为y=6 x .(2)点B不在这个函数的图象上,点C在这个函数的图象上.理由:分别把点B,C的坐标代入y=6 x可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式∴点B不在这个函数的图象上,点C在这个函数的图象上. (3)∵当x=-3时,y=-2;当x=-1时,y=-6.又由k>0,知当x<0时,y随x的增大而减小∴当-3<x<-1时,-6<y<-2.19.解:(1)∵反比例函数y=mx(m≠0)的图象过点A(3,1)∴m=3.∴反比例函数的表达式为y=3 x .∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2). ∴,解得:∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0). ∵S△ABP=31 2PC×1+12PC×2=3.∴PC=2∴点P的坐标为(0,0)、(4,0).20.解:(1)将(40,1)代入t=kv,得1=k40,解得k=40.函数关系式为:t=40 v.当t=0.5时,0.5=40m,解得m=80.所以,k=40,m=80.(2)令v=60,得t=4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.21.解:(1)把点A(2,6)代入y=kx,得m=12,则y=12x.把点B(n,1)代入y=12x,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE 则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB =S△BEP﹣S△AEP=5∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).22.解:∵正方形OABC 的面积为4∴OA =AB =2∴B 点坐标为(2,2).∵点B 在函数y =k x(x >0,k >0)的图象上 ∴把B(2,2)代入y =k x中,得k =4. ∴反比例函数的解析式为y =4x. ∵P(m ,n)在y =4x上 ∴mn =4∴n =4m. ∵S =AE ·PE +CB ·CF∴S =(m -2)·n +2(2-n)=mn -2n +4-2n =mn -4n +4=8-16m. ∵S >1,∴16m<7. ∵x >0∴m 的取值范围m >167. 23.解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,﹣3)∴AB =5∵四边形ABCD 为正方形∴点C的坐标为(5,﹣3).∵反比例函数y=kx的图象经过点C∴解得k=﹣15∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C ∴,解得∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积∴12×OA•|x|=52∴12×2•|x|=25,解得x=±25.当x=25时,y=﹣35;当x=﹣25时,y=35.∴P点的坐标为(25,﹣35)或(﹣25,35).24.解:(1)∵一次函数y=x+b的图象经过点A(-2,0) ∴0=-2+b,解得b=2∴一次函数的表达式为y=x+2.∵一次函数y=x+2的图象与反比例函数y=kx(x>0)的图象交于B(a,4)∴4=a+2,解得a=2,∴B(2,4)∴4=k2,解得k=8∴反比例函数的表达式为y=8x(x>0).(2)∵点A(-2,0),∴OA=2.设点M(m-2,m),点N(8m,m)当MN∥AO且MN=AO时,四边形AONM是平行四边形|8m-(m-2)|=2且m>0解得m=22或m=23+2∴点M的坐标为(22-2,22)或(23,23+2).。
《反比例函数》测试题班级 姓名 总分一、选择题。
(每小题2分,共30分)1、若函数xk y 1-=(k ≠1)在每一象限内,y 随x 的增大而减小,则k 的取值范围是( ).A.k 〉1 B.k 〈1 C.k>0 D.k<02、已知反比例函数xa y 12+-=的图像上有点A(11,y x ),B(22,y x ) ,C(33,y x ),且3210x x x ,是比较3,21,y y y 的大小( )A.321y y yB.312y y yC. 231y y yD.213y y y 3、若反比例函数22)12(--=m xm y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定4、已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 25、反比例函数ky x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .46、如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴 作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则有( )A .123S S S <<B .123S S S >>C . 123S S S =<D .123S S S =>7、已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是( )8、如图4,两个反比例函数y = k 1x 和y = k 2x (其中k 1>0>k 2)在第一象限内的图象是C 1,第二、四象限内的图象是C 2,设点P 在C 1上,PC ⊥x 轴于点M ,交C 2于点C ,P A ⊥y 轴于点N ,交C 2于点A ,AB ∥PC ,CB ∥AP 相交于点B,则四边形ODBE 的面积为( ) A .|k 1-k 2|B .k 1|k 2|C .|k 1·k 2|D .k 22k 19、一定质量的干松木,当它的体积V=2m 3,它的密度ρ=0.5×103kg/m 3,则ρ与V( )A 、ρ=1000VB 、ρ=V+1000C 、ρ=V 500 D 、ρ=V100010、如图所示,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,△P 2A 2O 、△P 3A 2O ,设它们的面积分别是S 1、S 2、S 3,则()A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 1<S 3<S 2D 、S 1=S 2=S 311.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 12.如图,关于x 的函数y=k(x-1)和y=-k(k ≠0), 它们在同一坐标系内的图象大致是13.向高为H 的圆柱形水杯中注水,已知水杯底面半径为2,那么注水量y 与水深x 的函数图象是 ( )14. 在xy 1=的图象中,阴影部分面积不为1的是( ).x15.已知1y +2y =y,其中1y 与1x成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,若x=-1时,y=0,则1k ,2k 的关系是( )A.12k k + =0B.12k k =1C.12k k - =0D.12k k =-1二.填空题。
浙教版八年级数学下册第5章《反比例函数》检测题及答案第6章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.已知反比例函数y=kx的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是(B)A.(3,-2)B.(-2,-3)C.(1,-6)D.(-6,1) 2.有以下判断:①圆面积公式S=πr2中,面积S与半径r成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式V=πr2h中,当体积V不变时,圆柱的高h与底面半径r的平方成反比例,其中错误的有(B)A.1个B.2个C.3个D.4个3.a,b是实数,点A(2,a),B(3,b)在反比例函数y=-2x的图象上,则(A)A.a<b<0B.b<a<0C.a<0<bD.b<0<a4.如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是(A)5.一次函数y=ax+a(a为常数,a≠0)与反比例函数y=ax(a为常数,a≠0)在同一平面直角坐标系内的图象大致为(C)6.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是(D)A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<-2D.-2<x<0或x>2,第6题图),第7题图),第8题图),第9题图)7.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是8,则k的值为(A)A.12B.10C.8D.68.如图,在平面直角坐标系中,▱OABC的顶点A 的坐标为(-4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB∶DC=3∶1.若函数y=kx(k>0,x >0)的图象经过点C,则k的值为(D)A.33B.32C.233D.39.如图,A,B两点在反比例函数y=k1x的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1-k2的值是(D)A.6B.4C.3D.210.函数y=4x和y=1x在第一象限内的图象如图,点P 是y=4x的图象上一动点,PC⊥x轴于点C,交y=1x的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB 始终相等;③四边形PAOB的面积大小不会发生变化;④CA=13AP.其中所有正确结论的序号是(C)A.①②③B.②③④C.①③④D.①②④,第10题图),第12题图),第13题图),第16题图) 二、细心填一填(每小题4分,共24分)11.在下列函数表达式中,x均表示自变量:①y=x2;②y=-2x-1;③xy=2;④y=-4x.其中y是x的反比例函数有__3__个.12.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=2m3时,气体的密度是__4__kg/m3.13.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C,D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的表达式为__y=-3x__.14.点(a-1,y1),(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的取值范围是__-1<a<1__.15.已知△ABC的三个顶点为A(-1,-1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=3x的图象上,则m的值为__0.5或4__.16.如图,已知点A,C在反比例函数y=ax的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,AB与CD间的距离为6,则a-b的值是__3__.三、耐心做一做(共66分)17.(6分)某种型号热水器的容量为180升,设其工作时间为y分钟,每分钟的排水量为x升.(1)写出y关于x的函数表达式和自变量x的取值范围;(2)如果热水器可连续工作的时间不超过1小时,那么每分钟的排水量应控制在什么范围内?解:(1)y=180x(x>0)(2)当0<y≤60时,x≥3(升/分钟)18.(6分)已知y=y1+y2,y1与(x-1)成正比例,y2与(x+1)成反比例,当x=0时,y=-3,当x=1时,y =-1.(1)求y关于x的函数表达式;(2)求当x=-12时y的值.解:(1)y=x-1-2x+1(2)y=-11219.(6分)若反比例函数y=kx与一次函数y=2x-4的图象都经过点A(a,2).(1)求反比例函数y=kx的表达式;(2)当反比例函数y=kx的值大于一次函数y=2x-4的值时,求自变量x的取值范围.解:(1)y=6x(2)x<-1或0<x<320.(8分)如图,在平面直角坐标系中,点A(3,1),B(2,0),O(0,0),反比例函数y=kx图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?解:(1)k=3(2)易知△BOD是等边三角形,可得D(1,3),由(1)k=3,∴y=3x,当x=1时,y=3,∴点D在该反比例函数的图象上21.(8分)如图,在平面直角坐标系中,过点A(-2,0)作y轴的平行线交反比例函数y=kx的图象于点B,AB=32.(1)求反比例函数的表达式;(2)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P,Q各位于哪个象限?并简要说明理由.解:(1)由题意B(-2,32),把B(-2,32)代入y=kx 中,得到k=-3,∴反比例函数的表达式为y=-3x (2)结论:P在第二象限,Q在第四象限.理由:∵k=-3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P,Q在不同的象限,∴P在第二象限,Q在第四象限22.(10分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数表达式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?解:(1)函数表达式为:y=10x+20(2)t=40(3)∵45-40=5≤8,∴当x=5时,y=10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70℃23.(10分)如图,设反比例函数的表达式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(-2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为163时,求直线l的表达式.解:(1)由题意得交点坐标为(1,2),把(1,2)代入y=3kx,得到3k=2,∴k=23(2)把M(-2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由y=3kx,y=kx+2k,消去y得到x2+2x-3=0,解得x=-3或1,∴B(-3,-k),A(1,3k),∵△ABO的面积为163,∴1223k+122k=163,解得k=43,∴直线l的解析式为y=43x+8324.(12分)如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,-2),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过点A,C两点.(1)求反比例函数与一次函数的表达式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,-2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=3,∴C(3,-2),把C(3,-2)代入y=kx得k=3×(-2)=-6,∴反比例函数表达式为y=-6x,把C(3,-2),A(0,1)代入y=ax+b得a=-1,b=1,∴一次函数表达式为y=-x+1(2)y=-x+1与y=-6x联立解得x=3y=-2或x=-2y=3,∴M点的坐标为(-2,3)(3)设P(t,-6t),∵△OAP的面积恰好等于正方形ABCD的面积,∴12×1×|t|=3×3,解得t=18或t=-18,∴P点坐标为(18,-13)或(-18,13)。
初二数学反比例函数试题答案及解析1. 如图,矩形AOBC 中,顶点C 的坐标(4,2),又反比例函数y =的图像经过矩形的对角线的交点P ,则该反比例函数关系式是( )A .y =(x >0)B .y =(x >0)C .y =(x >0)D .y =(x >0)【答案】B【解析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图, ∵四边形OACB 为矩形,点P 为对角线的交点, ∴S 矩形OEPF =S 矩形OACB =×8=2. ∴k=2.∴反比例函数关系式为y=(x >0), 故选:B .【考点】反比例函数图象上点的坐标特征2. 已知反比例函数y=的图象上有三个点(2,),(3,),(,),则,,的大小关系是( ) A .>> B .>> C .>>D .>>【答案】A.【解析】试题解析:∵-k 2-1<0 ∴反比例函数y=的图象在第二、四象限∴>> 故选A.【考点】反比例函数图象上点的坐标特征.3. 已知长方形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为图中的( )A .B .C .D .【答案】A【解析】由长方形的面积公式得y=,且x >0,y >0,而B 中有x <0,y <0的情况,C ,D 中有x=0或y=0的情况,据此即可得出结果. 解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.4.下列函数中,y是x的反比例函数的是()A.y=﹣B.y=﹣C.y=D.y=【答案】B【解析】此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解:A、是正比例函数,故错误;B、是反比例函数,故正确;C、不符合反比例函数的定义,故错误;D、不符合反比例函数的定义,故错误.故选B.点评:本题考查反比例函数的定义,熟记反比例函数解析式的一般式(k≠0)是解决此类问题的关键.5.已知一次函数y=x+2与反比例函数y=(x≠﹣1)的图象在第一象限内的交点为P(x,3).(1)求x的值;(2)求反比例函数的解析式.【答案】(1)x=1 (2)y=【解析】(1)先把P点坐标代入一次函数解析式得到得x0+2=3,然后解一次方程可得到x的值;(2)先写出P点坐标,然后把P点坐标代入反比例解析式求出m即可.解:(1)把P(x0,3)代入y=x+2得x+2=3,解得x=1;(2)P点坐标为(1,3),把P(1,3)代入y=得m+1=1×3=3,解得m=2,故反比例函数的解析式为y=.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.6.如图是我们学过的反比例函数图象,它的函数解析式可能是()A.B.C.D.【答案】B【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.由图可得它的函数解析式可能是故选B.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.如果函数的图象是双曲线,且在第二、四象限内,求k的值.【答案】-2【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.∵该函数的图象是双曲线且在第二、四象限∴,解得∴.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.如图,平行于y轴的直尺(一部分)与双曲线()交于点、,与轴交于点、,连结,, ,点、的刻度分别为5、2(单位:),直尺的宽度为,.(1)试求反比例函数的解析式和点的坐标;(2)试求的面积.【答案】(1),;(2)【解析】(1)由题意得AB=5-2=3,即可求得点A纵坐标为3,再结合OB=2cm可求得点A 的坐标,从而可以求得反比例函数的解析式,再根据点C的横坐标即可求得C点的坐标;(2)由根据三角形、梯形的面积公式求解即可.(1)由题意得AB=5-2=3,∴点A纵坐标为3又∵OB=2cm∴点A的坐标是(2,3).∴k=6∴反比例函数的解析式为∵点C的横坐标是4,把x=4代入得,,∴C点坐标为;(2)∴.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.已知y与x+2成反比例,且当x=5时,y=-6,求:(1)y与x的关系式;(2)当y=2时x的值。
(新课标)华东师大版八年级下册反比例函数一、反比例函数的概念:1、一般地,形如 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A ) (B ) (C )例1、(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21xy = ④.x y 21-=⑤2x y =-⑥13y x= ;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )(3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x的( )(3)反比例函数(0ky k x=≠)的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由(4)已知函数12y y y =-,其中1y 与x 成正比例,2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。
3、增减性:(1)当k>0时,_________________, y随x的增大而________;(2)当k<0时,_________________,y随x的增大而______。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;例2、(1)写出一个反比例函数,使它的图象经过第二、四象限.(2)若反比例函数22)1my的图象在第二、四象限,则m的值是=m x-2(-()的任意实数; C、-1; D、A、-1或1;B、小于12不能确定(3)已知0k>,函数y kx k=+和函数k=在同一坐标系内的图象大致是yx()A B D(4)正比例函数2x y =和反比例函数2y x=的图象有个交点. (5)正比例函数5y x =-的图象与反比例函数(0)k y k x=≠的图象相交于点A(1,a ),则a = .(6)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4y x=- D .12y x=. (7)正比例函数y=k 1x(k 1≠0)和反比例函数y=2k x(k 2≠0)的一个交点为(m,n),则另一个交点为_________.(8)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:.C三、反比例函数xky=(k≠0)中k的几何意义是:1、过双曲线xky=(k≠0)上任意引x轴y轴的垂线,所得矩形面积为。
数学反比例函数测试题及试卷答案(时间90分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分)1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( ) A .正比例函数 B .反比例函数 C .一次函数D .二次函数2.函数y =-4x的图象与x 轴的交点的个数是 ( )A .零个B .一个C .两个D .不能确定3.反比例函数y =-4x的图象在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( ) A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 33)第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面 积为 ( ) A .2 B . 4 C .6 D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时, y 1<y 2,则m 的取值范围 ( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____. 10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两 个交点,你认为这两位同学所描述的反比例函数的解析式是 . 15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 . 17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k y x =的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;O 12 第17题④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x的函数表达式,并画出函数的图象.21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m - (1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示:(1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?图1图2月)y ()28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式;(2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B;2. A;3. B;4. A ;5. B ;6. C ;7.A ;8. C.二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y =x 3 15.B16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k =-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =x k(k >0),当x 变小时,y 增大 27.(1)y =t6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =15 28.(1)8xy =-;(2)126。
初二数学反比例函数试题答案及解析1.如图,过反比例函数图象上的一点A,作x轴的垂线,垂足为B点,则.【答案】4.【解析】根据反比例函数k的几何意义可得:S=k=4.△AOB故答案是4.【考点】反比例函数系数k的几何意义.2.某函数具有下列性质:①图像在二、四象限内;②在每个象限内,函数值随自变量的增大而增大.则其函数解析式可以为.【答案】y=.【解析】首先根据题意可得此函数可以是反比例函数,并且k<0,所以函数解析式可以为:y=.故答案是y=.【考点】反比例函数的性质.3.如图,一次函数y=2x﹣2的图象与x轴、y轴分别相交于B、A两点,与反比例函数的图象在第一象限内的交点为M(3,m).(1)求反比例函数的解析式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)y=(2)存在.理由见解析【解析】(1)先把M(3,m)代入y=2x﹣2求出m,确定M点的坐标,然后利用待定系数法确定反比例函数解析式;(2)先确定A点坐标为(0,﹣2),B点坐标为(1,0),再根据勾股定理计算出AB=;根据M点坐标得到MC=4,BC=2,则利用勾股定理可计算出BM=2,然后证明Rt△OBA∽Rt△MBP,利用相似比计算出BP,于是可确定P点坐标.解:(1)把M(3,m)代入y=2x﹣2得m=2×3﹣2=4,∴M点坐标为(3,4),把M(3,4)代入y=得k=3×4=12,∴反比例函数的解析式为y=;(2)存在.作MC⊥x轴于C,如图,把x=0代入y=2x﹣2得y=﹣2;把y=0代入y=2x﹣2得2x﹣2=0,解得x=1,∴A点坐标为(0,﹣2),B点坐标为(1,0),∴OA=2,OB=1,在Rt△OAB中,AB==,∵M点坐标为(3,4),∴MC=4,BC=3﹣1=2,在Rt△MBC中,MB==2,∵MA⊥MB,∴∠BMP=90°,而∠OBA=∠MBP,∴Rt△OBA∽Rt△MBP,∴=,即=,∴BP=10,∴OP=11,∴点P的坐标为(11,0).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法确定函数解析式;熟练运用勾股定理和相似比进行几何计算.4.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A. 12米B. 13米C.14米D.15米【答案】A【解析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.点评:此题是勾股定理在实际生活中的运用,比较简单.5.若点A(﹣2,a),B(﹣1,b),C(3,c)在双曲线(k>0)上,则a、b、c的大小关系为(用“<”将a、b、c连接起来).【答案】b<a<c【解析】根据题意,易得a、b、c的值,比较可得答案.解:根据题意,易得a=﹣,b=﹣k,c=,又由k>0,易得b<a<c.故答案为b<a<c.点评:本题考查反比例函数图象上的点的特点,同一反比例函数图象上点的横纵坐标的积为同一常数.6.已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x【答案】C【解析】由点A(1,2)在反比例函数y=的图象上根据待定系数法即可求得结果.解:∵点A(1,2)在反比例函数y=的图象上∴∴该反比例函数的解析式是y=故选C.【考点】待定系数法求函数关系式点评:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.两个反比例函数,在第一象限内的图像如图所示,点,,,…,在函数的图像上,它们的横坐标分别是,,,…,,纵坐标分别是1,3,5,…,共2013个连续奇数,过点,,,…,分别作y轴的平行线,与函数的图像交点依次是(,),(,),(,),…,(,),则 .【答案】【解析】因为点P1,P2,P3,…,P2010在反比例函数图象上,根据P1,P2,P3的纵坐标,推出P2010的纵坐标,再根据和的关系求解即可.解:∵P1,P2,P3的纵坐标为1,3,5,是连续奇数∴Pn 的纵坐标为:2n-1∴P2013的纵坐标为2×2013-1=4025∵与在横坐标相同时,的纵坐标是的纵坐标的2倍∴.【考点】找规律-坐标的变化点评:解题的关键是仔细分析所给图形的特征得到规律,再根据得到的规律解题即可.8.如图,正方形OABC的面积为9,点O为坐标原点B在函数的图象上,点P (m,n)在的图象上任意一点,过P分别作x轴y轴的垂线,垂足分别是E,F,并设长方形OEPF和正方形OABC不重合部分的的面积为S。
第17章反比例函数单元复习测试(时间:120分钟分数:120分) 得分_______ 一、精心选一选,想信你一定能选对!(每题3分,共30分)1.下列函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有().A.0个 B.1个 C.2个 D.3个2.反比例函数y=2x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.已知矩形的面积为10,则它的长y与宽x之间的关系用图象表示大致为()4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• ).5.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是().A.(13,-9) B.(3,1) C.(-1,3) D.(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应().A.不大于2435m3 B.不小于2435m3 C.不大于2437m3 D.不小于2437m3(第6题) (第7题)7.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为().A.I=6RB.I=-6RC.I=3RD.I=2R8.函数y=1x与函数y=x的图象在同一平面直角坐标系内的交点个数是().A.1个 B.2个 C.3个 D.0个9.若函数y=(m+2)|m|-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×210.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y=4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3二、细心填一填,相信你填得又快又准!(每题3分,共27分) 11.一个反比例函数y=k x(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 12.已知关于x 的一次函数y=kx+1和反比例函数y=6x 的图象都经过点(2,m ),则一次函数的解析式是________. 13.一批零件300个,一个工人每小时做15个,用关系式表示人数x•与完成任务所需的时间y 之间的函数关系式为________.14.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.(第14题) (第15题) (第19题)15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.16.反比例函数y=21039n n x --的图象每一象限内,y 随x 的增大而增大,则n=_______.17.已知一次函数y=3x+m 与反比例函数y=3m x -的图象有两个交点,当m=_____时,有一个交点的纵坐标为6. 18.若一次函数y=x+b 与反比例函数y=k x 图象,在第二象限内有两个交点,•则k______0,b_______0,(用“>”、“<”、“=”填空)19.两个反比例函数y=3x ,y=6x 在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y=6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y=3x 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,•对而不全酌情给分)20.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是( •).A .y=3x 与y=1x B .y=-3x 与y=1xC .y=-2x+6与y=1xD .y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有().四、用心做一做,培养你的综合运用能力.22.(8分)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.23.(10分)如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?24.(11分)已知y=y1-y2,y1y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求(1)y与x之间的函数关系式.(2)自变量x的取值范围.(3)当x=14时,y的值.25.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.26.(14分)如图,双曲线y=5x在第一象限的一支上有一点C(1,5),•过点C•的直线y=kx+b(k>0)与x轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.答案:1.B 2.D 3.A 4.A 5.B 6.B 7.A 8.B 9.A 10.D11.y=2x 12.y=x+1 13.y= 14.2 15.y=-8x16.n=-3 17.m=5 18.<,> 19.2004.5 20.A 、B 21.A 、C 、D22.解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0).(2)∵点AB 在一次函数y=kx+b (k ≠0)的图象上, ∴ 解得 ∴一次函数的解析式为y=x+1,∵点C 在一次函数y=x+1的图象上,•且CD ⊥x 轴,∴C 点的坐标为(1,2),又∵点C 在反比例函数y=m x(m ≠0)的图象上, ∴m=2,•∴反比例函数的解析式为y=2x . 23.(1)y=2x-6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.(2)自变量x 取值范围是x>0.25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=,∴m=2,∴反比例函数的解析式为y=2x. 又点B 也在双曲线上,∴n==-2,∴点B 的坐标为(-1,-2). ∵直线y=kx+b 经过点A 、B .∴ 解得 ∴一次函数的解析式为y=x-1. (2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x>2或-1<x<0.26.解:(1)∵点C (1,5)在直线y=-kx+b 上,∴5=-k+b ,又∵点A (a ,0)也在直线y=-kx+b 上,∴-ak+b=0,∴b=ak将b=ak 代入5=-k+a 中得5=-k+ak ,∴a=+1. (2)由于D 点是反比例函数的图象与直线的交点20x 01k b b -+=⎧⎨=⎩11k b =⎧⎨=⎩2m 21-122k b k b =+⎧⎨-=-+⎩11k b =⎧⎨=-⎩5k∴ ∵ak=5+k ,∴y=-8k+5 ③ 将①代入③得:=-8k+5,∴k=,a=10. ∴A (10,0),又知(1,5),∴S △COA =12×10×5=25. 599y y k ak⎧=⎪⎨⎪=-+⎩5959。