页岩气水平井压裂
- 格式:pdf
- 大小:4.42 MB
- 文档页数:41
水平井压裂工艺技术现状及展望随着页岩气的广泛开采和开发,水平井压裂技术作为其中非常重要的一环,也得到了广泛的应用。
水平井压裂工艺技术是指在水平井中采用射孔和流体压裂技术,将固体颗粒、流体或者气体等媒介推动到井壁中断层裂缝中,从而形成足够宽阔的裂缝,进而实现岩石破裂和油气的产生与流动。
本文将对水平井压裂工艺技术现状及展望进行探讨。
一、现状分析当前,水平井压裂技术在页岩气开采中发挥了非常重要的作用。
该技术成功应用于美国、加拿大、阿根廷、中国等多个国家,对于页岩气这一大众能源的储备和利用发挥了积极的促进作用。
同时,在页岩气储层中,水平井压裂技术可实现留存厚度及生产能力的最大化,增加有效井段长度,提高井产量和储量。
目前,水平井压裂技术已经经过长期的研究和发展,其技术不断成熟。
随着水平井和压裂技术的不断发展,水平井产量逐年提升,压裂效率也在不断提高。
在压裂流体方面,传统液体压裂主要采用水作为压裂流体,而现在则在传统基础上,加入了一些化学材料,如界面活性剂、纳米粒子和纤维素醚等,可增加压裂液黏度、强度和粘度,提升压裂效果。
同时,由于水平井的特殊性,对于井间距、压裂剂质量、井间压力和应力等参数的控制非常重要,可以通过数值模拟和数据采集等方式来实现。
此外,在压裂设备方面,目前主要采用液压式压裂设备和电动式压裂设备。
其中,电动式压裂设备可以实现更高的精准度和更好的自动化控制,被广泛应用在沙漠、高海拔、深海和环保等特殊领域。
二、展望随着页岩气开采的日益繁荣,水平井压裂技术的发展也面临着新的挑战与机遇。
未来,水平井压裂技术将继续发展和创新,主要表现在以下几个方面:1.新材料的研发与应用随着液体压裂越来越广泛应用,其固液混合物的粘弹性、破裂力和破坏能力将成为技术发展中的瓶颈。
为此,需要研发出高效可靠的增压剂、润滑剂和减阻剂。
此外,还需要探索利用纳米材料、超级材料等新型材料,改善压裂流体的防止泄漏、减少对环境的负面影响的特性。
水平井体积改造技术目前我国页岩气勘探开发工作正在起步阶段,与国外差距较大,许多制约我国页岩气开发的技术瓶颈亟待突破。
《页岩气发展规划(2011-2015年)》(以下简称《规划》)的发布对我国页岩气开发的有序发展具有重大意义,它指出了未来一段时间我国页岩气产业需要科技攻关的8项任务,这为解决制约我国页岩气综合开发利用问题指明了方向。
本文主要对体积改造技术进行简要阐释,希望能借此推动我国页岩气开发技术的进步和发展。
体积改造技术亟需突破页岩气储层具有渗透率超低、厚度大及天然裂缝发育的特点,气体主要以吸附态吸附在有机质表面,常规改造形成单一裂缝很难获得好的增产效果。
因此,必须要对天然裂缝发育和岩石硅质含量高(>35%),脆性系数高的页岩进行体积压裂。
通过水力裂缝沟通天然裂缝,增强渗流能力,从而提高页岩气井的经济效益。
图1 钻式桥塞封隔技术图2 北美不同地区页岩气水平井分段压裂工艺运用情况与美国相比,我国页岩气藏储层产状有埋藏深度、厚度较薄和多层叠置的特点。
因此,水平井体积改造技术就更为适合我国页岩气藏的开发。
在《规划》中提出的“体积改造技术”,就是采用分段多簇射孔和多段一起压裂的模式,利用缝间干扰,促使裂缝转向,产生复杂缝网,从而增大流动通道。
而“水平井体积改造”则是以分段多簇射孔技术、可钻式桥塞工具和大型滑溜水压裂技术为主。
分段多簇射孔技术是关键分段多簇射孔技术是实现体积改造的技术关键。
其目的是为了压裂形成网状裂缝、提高改造体积,进而减少井筒附近的压力损失,并为压裂时产生的流体提供通道。
其特点是可以实现:一次装弹、电缆传输、液体输送、桥塞脱离、分级引爆。
分段多簇射孔每级分4~6簇进行,每簇长度为0.46~0.77m,射孔枪每簇之间的距离为50m,实际井眼中每簇间距一般为20~30m,每个压裂段控制在100~150m左右,孔密16~20孔/m,孔径13mm,相位角60°或者180°,排量一般为16m3/min,单孔流量0.27m3/min。
国外页岩气水力压裂技术及工具一览页岩储层具有超低孔低渗特性,钻完井后需要压裂改造后才得到经济产量。
国外油田服务公司最新工具达到了很高水平,水平井裸眼封隔器投球滑套分段压裂技术用高强度低密度球级差达到1/16in,封隔器耐压差达到70MPa,TAM公司自膨胀封隔器最高可达302 °C ;泵送桥塞射孔分段压裂技术所用桥塞可分为:堵塞式、单流阀式和投球式复合桥塞,桥塞耐压差达103.4MPa,耐温232 °C ;哈里伯顿CobraMax H连续油管喷射工具系统,目前最多达到44段。
这些为国内页岩气水力压裂完井方式与压裂工具的选用打下基础。
从应用工具角度看,分段压裂工艺方面主要包括:水平井裸眼封隔器投球滑套分段压裂技术,泵送桥塞分段压裂技术,水力喷射分段压裂技术。
从压裂工具方面分析,目前页岩气压裂技术有可膨胀封隔器/裸眼封隔器+滑套多级压裂,泵送桥塞射孔压裂联作多级压裂,水力喷射压裂等。
在美国的页岩气开发技术中,可膨胀封隔器/裸眼封隔器+滑套多级压裂,泵送桥塞射孔压裂联作多级压裂技术比较成熟,使用比较广泛,可适用于较长的水平段;水力喷射压裂可实现准确定位喷射,无需机械封隔,节省作业时间,非常适合用于裸眼井、筛管井以及套管中井。
1、水平井裸眼封隔器投球滑套多级压裂系统封隔器投球滑套多级压裂技术一般采用可膨胀封隔器或者裸眼封隔器分段封隔。
根据页岩气储层开发的需要,使用封隔器将水平井段分隔成若干段,水力压裂施工时水平段最趾端滑套为压力开启式滑套,其它滑套通过投球打开,从水平段趾端第二级开始逐级投球,进行有针对性的压裂施工。
水平裸眼井多级压裂目前已经是北美页岩气压裂开采主要技术手段,并越来越受到作业者的欢迎。
水平井多级压裂技术关键在于封隔器(压裂封隔器和可膨胀封隔器)和滑套可靠性和安全性能,尤其是管外封压裂管柱的可膨胀封隔器和开启滑套的高强度低密度球材料决定技术的成功与否。
目前国外油田服务公司都有自己成熟的工具,高强度低密度球级差达到1/16in,封隔器耐压差达到70MPa,TAM公司耐高温自膨胀封隔器最高可达30 °C 。
基于管外光纤监测的页岩气水平井多簇压裂效果评价目录一、内容概要 (2)1. 研究背景和意义 (2)1.1 页岩气开发的重要性 (4)1.2 水平井多簇压裂技术的现状 (4)1.3 管外光纤监测技术的应用 (6)2. 研究目的和任务 (7)二、页岩气水平井多簇压裂技术概述 (8)1. 页岩气水平井简介 (9)2. 多簇压裂技术原理 (10)3. 压裂施工流程 (11)三、管外光纤监测技术原理及应用 (12)1. 管外光纤监测技术概述 (13)2. 光纤传感器原理及特点 (14)3. 监测系统的组成及工作原理 (15)4. 管外光纤监测技术在压裂过程中的应用 (16)四、基于管外光纤监测的页岩气水平井多簇压裂效果评价方法 (17)1. 评价方法的建立 (18)2. 评价指标的确定 (19)3. 评价流程 (20)五、案例分析 (21)1. 监测数据获取与处理 (22)2. 压裂效果分析 (23)2.1 裂缝形态分析 (24)2.2 裂缝扩展范围分析 (26)2.3 压裂效果综合评价 (27)六、多簇压裂技术的优化建议 (28)1. 监测系统的优化建议 (28)2. 压裂施工参数优化建议 (29)3. 地质条件与压裂技术的匹配性优化建议 (30)七、结论与展望 (31)一、内容概要本文档旨在研究基于管外光纤监测的页岩气水平井多簇压裂效果评价方法。
通过对水平井内多簇压裂过程中的实时数据进行采集和分析,利用管外光纤传感技术实现对压裂液流动速度、压力变化以及裂缝扩展等关键参数的实时监测。
通过对这些参数的综合分析,可以有效地评价页岩气水平井多簇压裂的效果,为页岩气开采提供科学依据和技术支持。
本研究首先介绍了管外光纤传感技术的基本原理和应用领域,然后详细阐述了水平井多簇压裂过程的特点和挑战。
设计了一种适用于水平井多簇压裂过程的管外光纤监测系统,并对该系统进行了实验验证。
通过实际数据对所提出的评价方法进行了验证,并提出了改进措施。
页岩气开采原理
页岩气开采原理是通过水平钻井和水力压裂技术将水和添加剂注入页岩岩层,使岩层裂缝扩大并释放出内部储存的天然气。
具体步骤如下:
1. 水平钻井:首先,在地表选择合适的位置进行垂直钻井,当钻杆到达目标页岩层时,钻井工程师会改变钻头方向,将钻孔延伸成水平方向。
这样可以增加页岩岩层与钻孔的接触面积,提高天然气的开采效率。
2. 水力压裂:完成水平钻井后,高压水和添加剂(如砂岩颗粒)被泵送到井中,进入页岩岩层。
压力和添加剂的作用下,岩石发生裂缝和断裂,从而使天然气能够逸出。
水力压裂也可以同时增加岩石孔隙的连接性,便于天然气在岩层内流动和采集。
3. 采集天然气:一旦页岩层被水力压裂,天然气开始从岩石毛细孔隙中释放出来,并通过新形成的裂缝流向水平井筒。
然后,运用抽油泵等装置将天然气输送到地面设备进行储存和处理。
4. 环境保护:在整个开采过程中,需要严格控制水和添加剂的使用,以减少对地下水资源的污染。
此外,储存和处理阶段也要采取相应的措施,以确保环境不受污染。
以上就是页岩气开采的基本原理。
通过水平钻井和水力压裂技术,能够充分利用页岩岩层内部的天然气资源,提高天然气开采效率,促进能源产业的发展。
油气藏评价与开发PETROLEUM RESERVOIR EVALUATION AND DEVELOPMENT2023年第13卷第3期南川页岩气田压裂水平井井间干扰影响因素及对策研究卢比,胡春锋,马军(中国石化重庆页岩气有限公司,重庆408400)摘要:随着页岩气开发不断深入,水平井实施压裂过程中邻井的干扰现象日益增多,对气田的产量、套管的安全、气井的管柱造成较大影响,有待明确压裂井间干扰的影响因素及降低干扰的治理对策。
采用井下压力监测的方式证实压裂井间干扰的矿场表现,通过生产动态跟踪分析及微地震监测结果基本明确井网井距、压裂改造强度、天然裂缝是影响压裂水平井井间干扰的主要因素。
对降低压裂干扰提出了压裂设计源头优化、采气井现场管理、生产运行调整3种治理对策,在现场应用中获得了较好的效果。
关键词:页岩气;矿场试验;井间干扰;治理对策中图分类号:TE371文献标识码:AInfluencing factors and countermeasures of inter-well interference of fracturinghorizontal wells in Nanchuan shale gas fieldLU Bi,HU Chunfeng,MA Jun(Sinopec Chongqing Shale Gas Co.,Ltd.,Chongqing408400,China)Abstract:With the continuous development of shale gas,the interference of adjacent wells is increasing during the fracturing of horizontal wells,which has a great impact on the production of gas fields,the safety of casings,and the string of gas wells.The influencing factors of the interference between fracturing wells and the countermeasures to reduce the interference need to be clarified.The field performance of fracturing interwell interference is confirmed by downhole pressure monitoring.Through production dynamic tracking analysis and microseismic monitoring results,it is basically clear that well spacing,fracturing transformation intensity,and natural fractures are the main factors affecting the interference between horizontal wells during fracturing.Three governance strategies have been proposed to reduce fracturing interference,including optimization of fracturing design source,on-site management of gas production wells,and production operation adjustment.These measures have achieved good improvement effects in on-site applications.Keywords:shale gas;field test;interwell interference;governance countermeasures南川页岩气田位于渝东南盆缘复杂构造带,生产目的层位为五峰组—龙马溪组页岩,地层压力系数小于1.3,属于常压页岩气。
水平井分段压裂产能跟踪与评价技术水平井分段压裂是一种常用的页岩气开发技术,通过将水平井井筒在垂直方向分段压裂,可以有效提高井段产能并延长井生产寿命。
在实际应用中,如何准确跟踪和评价水平井分段压裂的产能是非常重要的,下面将从产能跟踪和产能评价两个方面进行介绍。
首先是产能跟踪。
产能跟踪的目的是了解各个井段的实际产能情况,帮助确定优化工艺和调整生产策略。
常用的产能跟踪技术包括:1.压力监测技术:通过分析井底和井口的压力数据变化,可以了解井段产能的动态变化情况。
可以使用压力传感器、记录仪等设备进行实时监测。
2.流量监测技术:通过监测井口流量的变化,可以得到井段产能的大致范围。
可以使用流量计、流量传感器等设备进行监测。
3.温度监测技术:通过监测井底和井口的温度变化,可以推测井段产能的变化情况。
水平井段产能较大时,会伴随着温度升高的现象。
以上三种技术可以结合起来使用,通过实时监测和在线数据传输,可以准确跟踪水平井段的产能变化情况。
其次是产能评价。
产能评价的目的是对水平井分段压裂效果进行综合评价,判断井段的产能水平和潜力。
常用的产能评价技术包括:1.产能指标评价:通过对水平井实际产量、开采效率等指标进行分析,对井段产能进行定量评价。
常用的指标包括产量指标(日产量、累计产量等)、采收率指标(累计采收率等)、含水率指标等。
2.压裂效果评价:通过对压裂后的产能曲线(产量随时间的变化曲线)进行分析,评价压裂效果。
可以比较不同井段的产能曲线,判断压裂程度和产能差异。
3.模拟预测评价:可以使用数值模拟软件进行产能评价,输入井段参数和压裂参数,模拟井段的产能变化情况。
模拟结果可以辅助评价井段的产能水平和优化压裂参数。
综上所述,水平井分段压裂产能跟踪与评价技术需要结合压力监测、流量监测、温度监测等实时监测技术,辅以产能指标评价、压裂效果评价和模拟预测评价等多种分析手段,以准确了解井段产能变化情况,并判断产能水平和潜力,从而优化生产策略和提高开发效益。
页岩气水力压裂地面工程关键技术随着化石能源价格上涨和油气开发技术的不断进步,页岩气已成为非常规油气资源领域中的重要组成部分。
目前美国和加拿大是页岩气规模开发的两个主要国家,1821年,第一口页岩气井钻于美国东部,至今已经有180多年历史。
进入21世纪以来,以美国为代表的西万国家在页岩气开发领域走在世界前列,其成熟的水平井与水力压裂技术得以将页岩气商业化。
美国页岩气资源量超过28万亿立方米,2010年美国页岩气产量达到1380亿立万米,超过我国天然气产量。
页岩气藏在美国的成功开发依赖于水平井与水力压裂技术的应用。
页岩气藏因其储层物性差、孔隙度和渗透率极低,需要应用水力压裂技术才能经济开采。
2003年,随着水平井成为页岩气开发的主要完钻井万式,水力压裂开始成为页岩气水平井主要增产措施。
水力压裂是利用含有减阻剂、黏土稳定剂和必要的表面活性剂的水作为压裂液,这项技术可以在不减产的前提下节约30%的开发成本,在低渗透油气藏储层改造中取得很好的效果。
页岩气开发的地面工程围绕着水力压裂和气体储运而开展,其中水力压裂注入系统及压裂液的应用决定了页岩气开发的经济效益,是一项非常重要的开发环节。
水是页岩气开发压裂液中的必要组成部分,压裂过程中需要消耗大量的水量,随着人类对环保的日益重视,将返出液处理净化后可以进行循环利用已成为一种共识。
这方面避免了污染排放,另一方提高了页岩气的开发效益目前返出液的净化和利用已成为页岩气经济开发的一项关键技术。
一、页岩气水力压裂地面工程关键技术与装备由于页岩气藏岩性特别致密,对作业井的压裂特征参数不清楚,试验潜在风险高、难度大,加上页岩气藏压裂作业井规模大、排量高,需要动用的设备也多,在工艺设计、地面配套等方面需要进行针对性的分析。
与常规油气的水力压裂相比,页岩气藏压裂作业属于高排量(>10m³min)、超大规模(>2000m³),因此对于注入设备选型提出很高要求。
水平井压裂工具:趾端滑套页岩气水平井分段压裂施工前,通常采用连续油管射孔建立第一段压裂通道。
目前页岩气储层平均埋深超过3500m,井深超过5500m。
连续油管一般作业长度小于等于5500m,且在井眼轨迹复杂、井斜角及狗腿度大、水平段末端呈“上翘型”等情况下易发生卡钻、自锁等问题。
趾端压裂滑套作为第一级压裂滑套,随套管一起入井至预定位置,并完成固井作业,压裂时只需通过井口打压的方式即可打开滑套,形成第一段压裂通道,可代替连续油管射孔作业,提高作业效率,降低作业风险和成本。
1趾端滑套适用环境及技术要求1.1适用环境:趾端滑套主要用于深层长水平段页岩气井第一段压裂施工环境:①地层温度介于0-150℃;②压力介于0.1-140MPa;③固井环境;1.2技术要求:趾端滑套主要实现在高温、高压、固井环境中建立第一段压裂通道的功能,需满足以下3个方面的要求:①高温、高压下的密封性;②精确开启;③固井及大排量压裂施工的要求。
2趾端滑套的结构趾端滑套主要由上接头、下接头、“O”形密封圈、定位销钉、内滑套和破裂盘等零件组成。
上、下接头通过螺纹连接,采用密封圈密封。
内滑套装在上、下接头内部腔室中,与上接头通过定位销钉固定,破裂盘装在内滑套上。
3趾端滑套工作原理趾端滑套作为第一级压裂滑套,与套管一起下入、固井;压裂施工前,从井口向套管内打压,任一破裂盘被击穿后,定位销钉被剪断,内滑套上行,滑套打开,建立起第一段压裂通道。
4技术优势及相关技术参数4.1技术优势趾端压裂滑套只需通过井口打压的方式即可打开,形成第一段压裂或泵送通道,与常规连续油管带射孔枪建立第一段压裂通道相比,趾端压裂滑套具有以下4个优势:4.1.1通过套管内部打压的方式开启滑套,建立第一段压裂通道,其开启压力由套管内绝对压力决定;4.1.2无需射孔,不受井深、水平段长度、连续油管工作长度等因素的影响;4.1.3特别适用于深层长水平段页岩气井的固井环境。
压裂喷砂孔采用可溶性材料封堵,避免固井时水泥进入滑套内;内滑套采用上行开启的方式,防止固井作业导致滑套意外开启;滑套内表面采用特殊涂层处理,避免水泥固结,影响正常开启;破裂盘传压孔采用高温固体黄油封堵,避免固井水泥进入。
页岩气开采原理
页岩气是一种非常重要的天然气资源,它存在于页岩岩石中,
开采页岩气的原理是通过水力压裂和水平钻井技术来释放岩石中的
天然气。
在进行页岩气开采时,需要了解一些基本的原理和技术,
下面将详细介绍页岩气开采的原理。
首先,页岩气开采的原理是利用水力压裂技术。
水力压裂是指
在井下注入高压水和一定比例的添加剂,通过高压水的作用使岩石
发生裂变,从而释放出岩石中的天然气。
这项技术可以有效地提高
页岩气的开采效率,使得原本无法开采的天然气资源得以充分利用。
其次,页岩气开采还需要运用水平钻井技术。
水平钻井是指在
垂直深井的基础上,通过一定的技术手段将钻井方向转为水平方向,使得钻井能够在页岩层内进行水力压裂作业。
这项技术的应用可以
使得页岩气的开采更加高效,同时减少地表对环境的影响。
此外,页岩气开采还需要考虑地层条件和岩石性质。
不同的地
层条件和岩石性质会对页岩气的开采产生影响,因此需要进行详细
的地质勘探和岩石分析,以便确定最佳的开采方案和工艺流程。
最后,页岩气开采的原理还包括对天然气的收集和处理。
在水力压裂和水平钻井技术的作用下,释放出的天然气需要通过管道输送至地面设施进行收集和处理,以便最终投入市场使用。
综上所述,页岩气开采的原理主要包括水力压裂技术、水平钻井技术、地层条件和岩石性质的分析,以及天然气的收集和处理。
这些原理和技术的应用可以有效地提高页岩气的开采效率,为人们提供更多的清洁能源资源。
随着技术的不断进步和完善,相信页岩气开采将会在未来发挥更加重要的作用。