人教版高中数学A版必修四优秀教案完整版
- 格式:pdf
- 大小:15.44 MB
- 文档页数:97
高中数学必修4 教案1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 ⑵B 1 y⑴O x45° B 2O x B 3y30°60o 负角:按顺时针方向旋转形成的角 始边 终边顶点AO B例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角此时,2α属于第四象限角 因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360;180;1801()57.305718rad ;180( )nn.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.7.弧长公式 l l rr弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,193是第三象限角.(2) 315316,666是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
第八课时 同角三角函数关系的应用教学目标:熟练运用同角三角函数化简三角函数式,活用同角三角函数关系证明三角恒等式,明确化简结果的要求,掌握证明恒等的方法;通过化简与证明,使学生提高三角恒等变形的能力,树立化归的思想方法.教学重点:三角函数式的化简,三角恒等式的证明.教学难点:同角三角函数关系的变用、活用.教学过程:[例1]化简1-cos 4α-sin 4α1-cos 6α-sin 6α法一:原式=(sin 2α+cos 2α)-cos 4α-sin 4α(sin 2α+cos 2α)-cos 6α-sin 6α=2cos 2αsin 2α3cos 2αsin 2α(cos 2α+sin 2α) =23法二:原式=(1-cos 2α)(1+cos 2α)-sin 4α (1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α) sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α 1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α 1+cos 2α+cos 2α-sin 2α =2cos 2α3cos 2α =23法三:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2 cos 2αsin 2α] 1-(cos 2α+sin 2α)(cos 4α-cos 2αsin 2α+sin 4α)=1-1+2cos 2αsin 2α 1-[(cos 2α+sin 2α)2-3cos 2αsin 2α] =2cos 2αsin 2α3cos 2αsin 2α =23①以上三种解法虽思路不同,但都应用了公式sin 2α+cos 2α=1,其中生2、3是顺用公式,1是逆用公式,显然1的解法简单明了.②在1的解法中逆用公式sin 2α+cos 2α=1,实质是“1”的一种三角代换“1=sin 2α+cos 2α”.对于利用同角三角函数关系式化简时,其结果一般要求:①函数种类少;②式子项数少;③项的次数低;④尽量使分母或根号内不含三角函数式;⑤尽可能求出数值(不能查表)).[例2]求证cos x 1-sin x=1+sin x cos x 证法一:由cos x ≠0知1+sin x ≠0,于是左=cos x (1+sin x )(1-sin x )(1+sin x ) =cos x (1+sin x )1-sin 2x=cos x (1+sin x ) cos 2x =1+sin x cos x =右证法二:由1-sin x ≠0,cos x ≠0于是右=(1+sin x )(1-sin x )cos x (1-sin x ) =1-sin 2x cos x (1-sin x ) =cos 2x cos x (1-sin x ) =cos x 1-sin x=左 证法三:左-右=cos x 1-sin x -1+sin x cos x =cos 2x -(1+sin x )(1-sin x )cos x (1-sin x )=cos 2x -(1-sin 2x )cos x (1-sin x ) =cos 2x -cos 2x cos x (1-sin x )=0 ∴cos x 1-sin x=1+sin x cos x 证法四:(分析法) 欲证cos x 1-sin x=1+sin x cos x 只须证cos 2x =(1+sin x )(1-sin x )只须证cos 2x =1-sin 2x 只须证sin 2x +cos 2x =1∵上式成立是显然的,∴cos x 1-sin x=1+sin x cos x 成立 分析法证题的思路是“执果索因”:从结论出发,逐步逆推,推出一个真命题或者推出的 与已知一致,从而肯定原式成立.要注意论证格式Ⅲ.课堂练习已知sin θ+cos θ=15,θ∈(0,π),求tan θ的值. 分析:依据已知条件sin θ+cos θ=15,θ∈(0,π),求得2sin θcos θ的值,进而求得sin θ-cos θ的值,结合sin θ、cos θ的值再求得tan θ即可.解:∵sin θ+cos θ=15,(1) 将其平方得,1+2sin θcos θ=125 ∴2sin θcos θ=-2425, ∵θ∈(0,π) ∴cos θ<0<sin θ∵(sin θ-cos θ)2=1-2sin θcos θ=4925 ∴sin θ-cos θ=75(2) 由(1)(2)得sin θ=45 ,cos θ=-35 , ∴tan θ=-43Ⅳ.课时小结本节课我们讨论了同角三角函数关系式的两个方面的应用:化简与证明,与同学们讨论了化简的一般要求,证明恒等的常用方法,对于化简与证明另外还应注意两种技巧:一种是切化弦”,一种是“1”的代换,“1”的代换不要仅限于平方关系的代换,还要注意倒数关系的代换,究竟用哪一种,要由具体问题来决定.Ⅴ.课后作业课本P 24习题 10、11、12.同角三角函数关系的应用1.式子sin 4θ+cos 2θ+sin 2θcos 2θ的结果是 ( )A. 14B. 12C. 32D.12.已知tan θ=2a a 2-1(其中0<a <1,θ是三角形的一个内角),则cos θ的值是 ( ) A. 1-a 2a 2+1 B. 2a a 2+1 C. a 2-1a 2+1 D.±a 2-1a 2+13.若sin α=a -3a +5 ,cos α=4-2a a +5,π2 <α<π,则a 的值满足 ( ) A.a =0 B.a >3或a <-5 C.a =8 D.a =0或a =84.化简1-sin 24 的结果为 ( )A.cos4B.-cos4C.±cos4D.cos 225.已知sin α=45,且α为第二象限角,那么tan α= 6.已知sin αcos α=18 ,且π4 <α<π2,则cos α-sin α的值为 7.若tan α=13 ,π<α<32π,则sin α·cos α= 8.若β∈[0,2π),且1-cos 2β +1-sin 2β =sin β-cos β,求β的取值范围.9.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1.10.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ.同角三角函数关系的应用答案1.D 2.C 3.C 4.B 5.-43 6.-32 7.3108.若β∈[0,2π),且1-cos 2β +1-sin 2β =sin β-cos β,求β的取值范围.分析:依据已知条件得cos β≤0,sin β≥0,利用同角三角函数之间的关系式求解. 解:∵1-cos 2β +1-sin 2β=sin 2β +cos 2β =|sin β|+|cos β|=sin β-cos β∴sin β≥0,cos β≤0∴β是第二象限角或终边在x 轴负半轴和y 轴正半轴上的角∵0≤β≤2π ∴π2≤β≤π 9.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 原式=sin 2x sin x -cos x -(sin x +cos x )cos 2x sin 2x -cos 2x=sin 2x (sin x +cos x )-(sin x +cos x )cos 2x sin 2x -cos 2x=sin x +cos x 10.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ. 左边=tan 2θ-sin 2θ=θθ22cos sin -sin 2θ =sin 2θ·θθ22cos cos 1-=sin 2θ·θθ22cos sin =sin 2θ·tan 2θ=右边。
人教版高中数学a必修4教案教学目标:1. 了解直线的概念和性质;2. 掌握直线的方程和相关定理;3. 能够应用直线的知识解决实际问题。
教学重点:1. 直线的方程;2. 直线的性质。
教学难点:1. 解决实际问题时的应用能力提升;2. 掌握直线的各种形式的方程。
教学准备:1. 教材《人教版数学A必修4》;2. 教具:黑板、粉笔、直尺、圆规等。
教学过程:一、导入(5分钟)引导学生回顾直线的概念,概括直线的性质,并提问直线在几何中的重要性。
二、讲解直线的方程(15分钟)1. 带领学生分析直线的一般方程和点斜式方程的意义和应用;2. 指导学生通过实例理解直线方程的求解过程;3. 引导学生掌握直线的各种形式的方程。
三、讲解直线的性质(15分钟)1. 讲解直线的平行和垂直关系;2. 分析平行线和垂直线的性质和定理;3. 引导学生掌握利用直线的性质解决问题的方法。
四、练习与讨论(20分钟)1. 给学生一些实际问题,让他们应用直线的知识解决;2. 引导学生用直线方程和直线性质解决实际问题;3. 鼓励学生积极参与讨论,提高解决问题的能力。
五、总结与反思(5分钟)总结本节课所学内容,检查学生对直线的理解和应用情况,指导学生如何进一步提升应用能力。
六、作业布置(5分钟)布置相应练习题目,要求学生巩固所学知识,找出解题方法和技巧,并留出时间讨论解答。
教学反思:本节课的教学目标是让学生理解直线的概念和性质,并学会应用直线的知识解决实际问题。
通过引导学生分析直线的方程和性质,让他们理解直线在数学中的重要性。
通过实际问题的练习和讨论,培养学生的解决问题能力和应用能力,提升他们的数学思维和学习兴趣。
在教学过程中,要注重引导学生思考和讨论,激发他们的学习兴趣,激励他们提高自己的学习水平。
精心整理第一章三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广23角之分重点:难点:行了推广.思考小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒”(即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒210α︒=,负角150,660βγ︒︒=-=-;这样,“角α”或“3.意: 4.[(1)((2)(天后的5. 4.(2)[OB ,而328︒=-设S ,所有与32︒-.{|360,}S k k Z ββα︒==+⋅∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.6.[展示投影]例题讲评 例1.例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤<的元素β写出来.720︒7.[展示投影]练习P第3、4、5题.教材6∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终注意:(1)k Z边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍.8.学习小结(1)你知道角是如何推广的吗?(2)象限角是如何定义的呢?(3)=线y x121(1.23关系.:数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何). B .显然,我们可以由此角度与弧度的换算了. 6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法. 7.填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1)l其中例4.注意:9.教材9.(1)(2)121(12)理2初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.二、教学重、难点重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加数,),它与么它的则线段OMsinα=cossinMPbOPα==;cosOMaOPα==;tanMP bOM aα==.思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y,那么:(1)y叫做α的正弦(sine),记做sinα,即sin yα=;(2)x叫做α的余弦(cossine),记做cosα,即cos xα=;(3)yx叫做α的正切(tangent),记做tanα,即tan(0)yxxα=≠.注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点P在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离7.例题讲评例3.求证:当且仅当不等式组sin0{tan0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然:终边相同的角的同一三角函数值相等.即有公式一:cos(2)cos k απα+=(其中k Z ∈)9.例题讲评例4.确定下列三角函数值的符号,然后用计算器验证: (1)cos250︒;(2)sin()4π-;(3)tan(672)︒-;(4)tan3π例5.求下列三角函数值: (1)'sin148010︒;(2)9cos4π;(3)11tan(6π- 利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0︒到360︒)角的三角函数值.另外可以直接利用10.11.(1)(2)(3)(4)121、 2、 3、 4、 5、 1.,2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x⊥轴交x 轴于点M ,则请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化?3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?(2)你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定:当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标.这样,无论那种情况都有同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定:当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向时,MP的方向为负向,且有正值y;其中y为P点的横坐标.这样,无论那种情况都有、这种被看作带有方向的线段,叫做有向线段(directlinesegment).4.像MP OM5.角函数线6.(27.例1处理8.9(1)(2)(3)1.(1)21.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1)使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点:1. 从圆的如图:,而且1OP =.2sin α+2. 例sin ,cos ,tan ααα三者知一求二,熟练掌握.3.巩固练习23P 页第1,2,3题4.例题讲评 例7.求证:cos 1sin 1sin cos x xx x+=-.通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题6.学习小结(1)同角三角函数的关系式的前提是“同角”,因此1cos sin22≠+βα,γβαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论. 五、评价设计(1) 作业:习题1.2A 组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.第二章平面向量.1. 2. 3. 能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.1234567、 12.②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.ABCDA(起点)3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②5①.记作a6相等;.有向线段的起点无关..........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有..向线段的起点无关)..........说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例1书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4(5(6(7例下列命题正确的是()共线,则也共线任意两个相等的非零向量的始点与终点是一平行四边形的四顶点向量a与有相同起点的两个非零向量不平行不正确;由于数学中研究的向量是自由不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FE,)DOCB,课堂练习:1①四点必在一直线上;②③任一向量与它的相反向量不相等;④是平行四边形当且仅当AB⑤一个向量方向不确定当且仅当模为0;共线向量即平行向量,只要求方向相同或相反即可,并不要求两③零相同.2.书本88页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题第2课时§2.2.1向量的加法运算及其几何意义教学目标:1、 掌握向量的加法运算,并理解其几何意义;2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;. 学法:教具1、 2、 则两次的位移和:=+(3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+(4)船速为,水速为,则两速度和:AC =+二、探索研究: ABCC1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,=b,则向量叫做a 与b的和,记作a +b,即a +b=+=,规定:a+0-=0+a探究:(1(2向,(3当与|+|=||a +b|=|b (4 5.向量加法的结合律:(a +b )+c =a +(b +c ) 证:如图:使a AB =,b BC =,c CD =则(a +b )+c =AD CD AC =+,a +(b +c )==+∴(+)+=+(+) a从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.三、应用举例:例二(P94—95)略练习:P95四、小结1、向量加法的几何意义;2、交换律和结合律;3、注意:|+|≤||+||,当且仅当方向相同时取等号.h/,求8km,为4,最.第3课时§2.2.2向量的减法运算及其几何意义教学目标:1.了解相反向量的概念;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.教学重点:向量减法的概念和向量减法的作图法.教学难点:减法运算时方向的确定.学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、复习:向量加法的法则:三角形法则与平行四边形法则向量加法的运算定律:二、123作=a则=a?b即a?b可以表示为从向量b的终点指向向量a的终点的向量.注意:1?表示a?b.强调:差向量“箭头”指向被减数2?用“相反向量”定义法作差向量,a?b=a+(?b)显然,此法作图较繁,但最后作图可统一.4.探究:B’ABDC1) 如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b ?a.2)若a ∥b ,如何作出a ?b ? 三、 例题:例一、(P 97例三)已知向量a 、b 、c 、d ,求作向量a ?b 、c ?d .在平面上取一点O ,作=a ,解:OB =b ,OC =c ,OD =d ,A.a +bB.-a +(-b )C.a -bD.b -a2.O 为平行四边形ABCD 平面上的点,设OA =a ,OB =b ,OC =c ,OD =d ,则 A.a +b +c +d =0B.a -b +c -d =0 C.a +b -c -d =0D.a -b -c +d =0 3.如图,在四边形ABCD 中,根据图示填空:a ?bAABBB’Oa ?ba abbO AOBa ?ba ?b BA O?ba +b =,b +c =,c -d =,a +b +c -d =.4、如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =DC ,并画出b -c 和a +d .2.3平面向量的基本定理及坐标表示第4课时§2.3.1平面向量基本定理(1(2) (3教具教学过程一、 复1(1)|λa 23.向量共线定理向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa.二、讲解新课:平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e .探究:第3题(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一.λ1,λ2是被a,1e ,2e 唯一确定的数量三、讲解范例:例1例2MB例3OA 例4(2)(OP OA tOB t +例51212样的实数d a b λμ=+使与c 共线:1.A.e 1、2一定平行B .e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线B .共线C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于()A.3B .-3 C.0D.24.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1=.5.已知a 与e 2五、小结(1(2(3教具:多媒体、实物投影仪 教学过程: 一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一.λ1,λ2是被a,1e ,2e 唯一确定的数量二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a =我们把,(x a 其中x 示.与.a 特别地,i 如图,一确定. 设=A 的坐标),(y x 也就是向量OA .因2(1)若a 设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2)若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =?=(x 2,y 2)?(x 1,y 1)=(x 2?x 1,y 2?y 1)(3)若),(y x a=和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=三、讲解范例:例1已知A(x 1,y 1),B(x 2,y 2),求AB 的坐标.例2已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标. 例3D 的坐例4即:⎩⎨⎧-+431.若M(32.若A(03五、小结六、课后作业(略) 七、板书设计(略) 八、课后记:第6课时§2.3.4平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念; (2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1把),(y x 其中x )0,1(=i 2若a =则a +若,(1y x A a ∥设a=(x 1由a=λb 得,(x 1,y 1)=λ(x 2,y 2)⎩⎨=⇒2121y y λ消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1,y 2有可能为0,∵b?0∴x 2,y 2中至少有一个不为0(2)充要条件不能写成2211x y x y =∵x 1,x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b?)01221=-=⇔y x y x λ三、讲解范例:例1已知a =(4,2),b =(6,y),且a ∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A ,B ,C 三点之间的位置关系. 例3设点P 是线段P 1P 2上的一点,P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1) 当点P 是线段P 1P 2的中点时,求点P 的坐标; (2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.例4若向量a=(-1,x)与b =(-x ,2)共线且方向相同,求x例5∴A 1.2.A.-3B .-1 C.1D.33.若AB =i +2j ,DC =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量).AB 与DC 共线,则x 、y 的值可能分别为() A.1,2B .2,2 C.3,2D.2,44.已知a =(4,2),b =(6,y ),且a ∥b ,则y =.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结(略)六、课后作业(略)七、板书设计(略)1.2.3.4.内容分析:??本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.教学过程:一、复习引入:1.向量共线定理向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 4若(1x a =). 若,(1y x A 5.a ∥b 6P 1,P 2使P 1况:λ7.(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8.点P 的位置与λ的范围的关系:①当λ>0时,P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1-≠λ)时,P 1与2PP 反向共线,这时称点P 为21P P 的外分点.。
1.1.1 角的概念的推广-任意角教学目标知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念.过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.情感与态度目标提高学生的推理能力;2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AO例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°;⑵ 120°;⑶ 240°;⑷ 300°;⑸ 420°;⑹ 480°;答:分别为1、2、3、4、1、2象限角.3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 °,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴ k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,2α各是第几象限角?解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角又k ·180°+90°<2α<k ·180°+135°(k ∈Z) .当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) ,此时,2α属于第二象限角当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) ,此时,2α属于第四象限角因此2α属于第二或第四象限角.1.1.2弧度制(一) 教学目标 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程 一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角 所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质:①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=r r③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. r l4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度7.弧长公式ll r ra a=??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度.例2.把rad53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(.例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2)315316,666p p pp -=-+\-是第二象限角.ORl.,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lRR R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业: ①阅读教材P6 –P8;②教材P9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三) 教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
高中数学教案1新人教A版必修4教案教案名称:高中数学教案1教材版本:新人教A版必修4一、教学内容概述:本节课主要介绍高中数学必修四教材内容的概述,包括直线、圆、抛物线、双曲线等基础知识点和基本性质。
二、教学目标:1.了解直线的解析式及其相关概念和性质;2.学习圆的解析式和基本性质;3.掌握抛物线的基本知识和性质;4.了解双曲线的概念及其相关知识点。
三、教学准备:1.教学课件;2.相关教学资源和实践题目。
四、教学步骤:步骤一:引入(5分钟)1.向学生简要介绍本节课的内容概要,以及直线、圆、抛物线、双曲线的基本概念。
2.提问学生对这些几何图形的了解和经验,引导学生回顾和思考。
步骤二:直线(15分钟)1.讲解直线的解析式,包括点斜式、两点式和截距式。
2.通过具体的例子,讲解直线方程的求解过程和应用。
3.引导学生运用直线的相关性质和定理,进行一些练习题。
步骤三:圆(20分钟)1.介绍圆的解析式和基本性质,包括圆心、半径、弦、切线等概念。
2.讲解圆方程的一般形式和一些特殊形式。
3.引导学生通过实例练习,掌握圆的相关性质和定理。
步骤四:抛物线(20分钟)1.引入抛物线的基本概念和性质。
2.介绍抛物线的标准方程和一般方程,并解释其具体含义。
3.引导学生通过例题,熟悉抛物线方程的求解方法和应用。
步骤五:双曲线(20分钟)1.介绍双曲线的基本概念和性质,包括焦点、准线、离心率等。
2.讲解双曲线的标准方程和一般方程,并解释其具体含义。
3.引导学生通过实例练习,巩固双曲线方程的应用和求解方法。
步骤六:总结归纳(10分钟)1.小结本节课学习的重点和难点。
2.引导学生对本节课内容进行总结归纳,巩固所学知识点。
3.鼓励学生提出自己对于几何图形的疑问和思考。
五、教学反馈:1.请学生完成课后习题,以检验对本节课内容的掌握程度。
2.监督学生自主学习和解决问题的能力。
3.根据学生的反馈情况,及时调整和完善教学方法和计划。
六、教学延伸:1.引导学生自主学习相关知识点的扩展内容,如椭圆、双曲线的性质和应用等。
高中数学必修4优秀教案五篇高中数学必修4优秀教案1教学准备教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理垂直的问题;4.掌握向量垂直的条件.教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π).并规定0向量与任何向量的数量积为0.×探究:1.向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2.两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a?0,且a×b=0,则b=0;但在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.高中数学必修4优秀教案2一.向量的概念1.既有又有的量叫做向量。
用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的2.叫做单位向量3.的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,因此平行向量也叫做。
零向量与任一向量平行4.且的向量叫做相等向量5.叫做相反向量二.向量的表示方法:几何表示法、字母表示法、坐标表示法三.向量的加减法及其坐标运算四.实数与向量的乘积定义:实数λ 与向量的积是一个向量,记作λ五.平面向量基本定理如果e1.e2是同一个平面内的两个不共线向量,那对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底六.向量共线/平行的充要条件七.非零向量垂直的充要条件八.线段的定比分点设是上的两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点定比分点坐标公式及向量式九、平面向量的数量积(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影(2)|a||b|cosθ叫a与b的数量积,记作a·b,即a·b=|a||b|cosθ(3)平面向量的数量积的坐标表示十、平移典例解读1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c其中,正确命题的序号是______2.已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____3.若将向量a=(2,1)绕原点按逆时针方向旋转得到向量b,则向量b的坐标为_____4.下列算式中不正确的是( )(A) AB+BC+CA=0 (B) AB-AC=BC(C) 0·AB=0 (D)λ(μa)=(λμ)a5.若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+17.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5(C)2x-y=0 (D)x+2y-5=08.设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则PQ=_________9.已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长10.若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )(A)-5 (B)5 (C)7 (D)-111.若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|(C)(a·b)·c-(b·c)·a与b垂直 (D)(a·b)·c-(b·c)·a=012.设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )(A)2 (B)0 (C)1 (D)-1/216.利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)17.在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一个内角为直角,求实数k的值18.已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量高中数学必修4优秀教案3教学准备教学目标掌握三角函数模型应用基本步骤:(1)根据图象建立解析式;(2)根据解析式作出图象;(3)将实际问题抽象为与三角函数关于的简单函数模型.教学重难点.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.教学过程一.练习讲解:《习案》作业十三的第3.4题3.一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?(1) 选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值(精确到0.001).(2) 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?(3) 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那该船在什么时间必须停止卸货,将船驶向较深的水域?本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。
人教A版高中数学必修四教案课程全集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#高中数学必修4教案.1 任意角教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念.(二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1.提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面终边相同的角的表示:⑵B 1 y⑴Ox 45° B 2O x B 3 y 30° 60o 正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 始终顶AO B所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) .解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材习题第1、2、3题思考题:已知α角是第三象限角,则2α,2α各是第几象限角解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角.又k ·180°+90°<2α<k ·180°+135°(k ∈Z) .当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) ,此时,2α属于第二象限角正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 因此2α属于第二或第四象限角. 教学目标 (四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. (五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的与圆的半径大小有关吗(2)引导学生完成P6的探究并归纳: 弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换:①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360;180;1801()57.305718rad;180()nn .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.6.特殊角的弧度 7.弧长公式 弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.例1.把67°30'化成弧度.例2.把rad 53π化成度.例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式: 319)1(π;︒-315)2(.例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193是第三象限角.(2) 315316,666是第二象限角. 6. 利用弧度制证明扇形例O R l证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.7.课堂小结①什么叫1弧度角 ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业: ①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-;即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin 3y x x =的周期,最大值和最小值.解:sin 3y x x =这种形式我们在前面见过,13sin 32sin cos 2sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -。
1.3诱导公式<二)教案目标<一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.<二)过程与能力目标<1)能运用公式一、二、三的推导公式四、五.<2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.<三)情感与态度目标通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.教案重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.教案难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.教案过程一、复习:诱导公式<一)诱导公式<二)诱导公式<三)诱导公式<四)sin(p-a>=sina cos(p-a>=-cosa tan(p-a>=-tanab5E2RGbCAP诱导公式(五>诱导公式<六)二、新课讲授:练习1.将下列三角函数转化为锐角三角函数:练习2:求下列函数值:例1.证明:<1)<2)例2.化简:解:例4.小结:①三角函数的简化过程图:练习3:教材P28页7.化简:例5.三.课堂小结①熟记诱导公式五、六;②公式一至四记忆口诀:函数名不变,正负看象限;③运用诱导公式可以将任意角三角函数转化为锐角三角函数.四.课后作业:①阅读教材;②《学案》P.16-P.17的双基训练.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
3.2 简单的三角恒等变换(3个课时)一、课标要求: 本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =的周期,最大值和最小值.解:sin y x x =这种形式我们在前面见过,1sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P -14T T -。