导数题型总结(解析版)
- 格式:doc
- 大小:14.00 KB
- 文档页数:4
导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
第7讲 导数构造函数13类【题型一】 利用x nf (x )构造型【典例分析】函数()f x 是定义在区间(0,)+∞上的可导函数,其导函数为'()f x ,且满足'()2()0+>xf x f x ,则不等式(2016)(2016)5(5)52016x f x f x ++<+的解集为A .{}2011x x -B .{}|2011x x <-C .{}|20110x x -<<D .{}|20162011x x -<<-【答案】D 【详解】设2()()g x x f x =,则2'()2()'()['()2()]g x xf x x f x x xf x f x =+=+,由已知当0x >时,'()0g x >,()g x 是增函数,不等式(2016)(2016)5(5)52016x f x f x ++<+等价于22(2016)(2016)5(5)x f x f ++<,所以020165x <+<,解得20162011x -<<-.点睛:本题考查导数的综合应用,解题关键是构造新函数2()()g x x f x =,从而可以利用已知的不等式关系判断其导数的正负,以确定新函数的单调性,在构造新函数时,下列构造经常用:()()g x xf x =,()()f x g x x=,()()x g x e f x =,()()xf xg x e =,构造新函数时可结合所要求的问题确定新函数的形式.【变式演练】1.已知定义域为的奇函数的导函数为()f x ',当时,()()0f x f x x'+>,若,则的大小关系正确的是A .B .C .D .【答案】C 【解析】分析:构造函数()()g x xf x =,利用已知条件确定'()g x 的正负,从而得其单调性. 详解:设()()g x xf x =,则'()()'()g x f x xf x =+,∵()'()0f x f x x +>,即'()()'()0xf x f x g x x x+=>,∵当0x <时,)'(0g x <,当0x >时,'()0g x >,()g x 递增.又()f x 是奇函数,∵()()g x xf x =是偶函数,∵(2)(2)g g -=,1(ln )(ln 2)(ln 2)2g g g =-=,∵10ln 222<<<,∵1()(ln 2)(2)2g g g <<,即a c b <<.故选C .2.已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,【答案】B 【分析】根据题意,构造函数()y xf x =,结合函数的单调性解不等式,即可求解. 【详解】根据题意,构造函数()y xf x =,()0,x ∈+∞,则()()0y f x xf x ''=+<, 所以函数()y xf x =的图象在()0,∞+上单调递减.又因为()()()2111f x x f x +>--,所以()()22(1)(1)11x f x x f x ++>--,所以2011x x <+<-,解得2x >或1x <-(舍).所以不等式()()()2111f x x f x +>--的解集是()2,+∞.故选:B.3.设函数()f x 在R 上可导,其导函数为()'f x ,且2()()0f x xf x '+>.则下列不等式在R 上恒成立的是( ) A .()0f x ≥ B .()0f x ≤ C .(x)x f ≥ D .()f x x ≤【答案】A 【分析】根据给定不等式构造函数2()()g x x f x =,利用导数探讨()g x 的性质即可判断作答. 【详解】依题意,令函数2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因2()()0f x xf x '+>,于是得0x <时()0g x '<,0x >时()0g x '>, 从而有()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,因此得:2,()()(0)0x R x f x g x g ∀∈=≥=,而(0)0f >,即f (x )不恒为0, 所以()0f x ≥恒成立.故选:A【题型二】 利用f (x )/x n构造型【典例分析】 函数()f x 在定义域0,内恒满足:①()0f x >,①()()()23f x xf x f x '<<,其中f x 为()f x 的导函数,则A .()()111422f f << B .()()1111628f f << C .()()111322f f << D .()()111824f f << 【答案】D 【详解】令()()2f xg x x =,()0,x ∈+∞,()()()32xf x f x g x x '-'=,∵()0,x ∀∈+∞,()()()23f x xf x f x '<<,∵()0f x >,0g x,∵函数()g x 在()0,x ∈+∞上单调递增,∵()()12g g <,即()()412f f <,()()1124f f <, 令()()3f x h x x =,()0,x ∈+∞,()()()43xf x f x h x x '-'=,∵()0,x ∀∈+∞,()()()23f x xf x f x '<<,()0h x '<, ∵函数()h x 在()0,x ∈+∞上单调递减,∵()()12h h >,即()()218f f >,()()1182f f <,故选D.【变式演练】1.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数,所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===();()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A2.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( ) A .(],1-∞B .(],e -∞C .[)1,+∞D .[),e +∞【答案】C 【分析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>.令()()xg x e f x =⋅,则()()()0x g x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1x f x e -≥,可变形为()x e f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞.故选:C.【题型三】 利用e nx f (x )构造型【典例分析】已知函数()f x 在R 上 可导,其导函数为()f x ',若()f x 满足:当1x ≠时,()()()1x f x f x ⎡⎤-+⎣'⎦>0,()()222x f x e f x -=-,则下列判断一定正确的是A .()()10f f <B .()()440e f f <C .()()20ef f >D .()()330e f f >【答案】D 【分析】构造函数()()xg x f x e =,结合导函数,判定()g x 的单调性,()()g 2x g x 由,-=得()g x 的对称轴,对选项判断即可. 【详解】构造函数()()x g x f x e =,计算导函数得到()'g x =()()xe f x f x +'⎡⎤⎣⎦,由()1x -()()f x f x +'⎡⎤⎣⎦>0,得当x 1>,()()f x f x '+>0,当x 1<时,()()f x f x '+<0.所以()g x 在()1,∞+单调递增,在(),1∞-单调递减,而()()()()()2x 2x x 22xf xg 2x f 2x e e f x e g x e----=-=⋅==,所以()g x 关于x 1=对称,故()()()()()3g 3e f 3g 1g 00f ==->=,得到()()3e f 3f 0>,故选:D.【变式演练】1.已知()f x 是R 上可导的图象不间断的偶函数,导函数为()f x ',且当0x >时,满足()()20'+>f x xf x ,则不等式()()121xef x f x -->-的解集为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .()0,∞+【答案】B【分析】构造函数2()()x g x e f x =,根据()()20'+>f x xf x ,结合题意可知函数()g x 是偶函数,且在()0,∞+上是增函数,由此根据结论,构造出x 的不等式即可. 【详解】由题意:不等式()()121xef x f x -->-可化为:21(1)()x f x f x e -->,两边同乘以2(1)x e -得:22(1)(1)()x x e f x e f x -->,令2()()x h x e f x =,易知该函数为偶函数, 因为[]2()()2()xh x e f x xf x ''=+, ()()20'+>f x xf x ,所以()0,(0)h x x '>>所以()h x 在()0,∞+上是单调增函数,又因为()h x 为偶函数,故22(1)x x ->,解得:12x <.故选:B . 2.设函数()f x 的定义域为R ,()'f x 是其导函数,若()()e ()x f x f x f x '-'+>-,()01f =,则不等式()f x >21x e +的解集是( ) A .(0,)+∞ B .(1,)+∞C .(,0)-∞D .(0,1)【答案】A 【分析】构造函数()()1()xg x e f x =+,通过求导判断函数()g x 的单调性,利用函数()g x 的单调性解不等式即可.【详解】令()()1()x g x e f x =+,则()()()1()x x g x e f x e f x ''=++,因为()()e ()x f x f x f x '-'+>-,所以()()1e ()0x f x f x -'++>,化简可得()e ()e 1()0x x f x f x '++>,即()0g x '>,所以函数()g x 在R 上单调递增,因为()f x >21xe +,化简得()1()2xe f x +>, 因为()()0202g f ==,()()1()xg x e f x =+,所以()(0)g x g >,解得0x >,所以不等式2()1xf x e >+的解集是(0,)+∞.故选:A 3.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( ) A .(],1-∞ B .(],e -∞ C .[)1,+∞ D .[),e +∞【答案】C 【分析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>.令()()xg x e f x =⋅,则()()()0x g x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1x f x e -≥,可变形为()x e f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞.故选:C.【题型四】 用f (x )/e nx 构造型【典例分析】已知函数()f x 是定义在R 上的可导函数,且对于x R ∀∈,均有()()'f x f x >,则有 A .()()()()2017201720170,20170e f f f e f -B .()()()()2017201720170,20170ef f f e f -<< C .()()()()2017201720170,20170ef f f e f ->>D .()()()()2017201720170,20170ef f f e f -><【答案】D 【分析】通过构造函数()()x f x g x e =,研究()()xf xg x e =函数的单调性进而判断出大小关系.【详解】因为()()'f x f x >。
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
第4讲导数中构造函数比大小问题题型总结【典型例题】题型一:构造()xxx f ln =比较大小此函数定义域为()+∞,0,求导()2ln 1x xx f -=',当()e x ,0∈时,()0>'x f ,故()x f 为增函数,当()+∞∈,e x 时,()0<'x f ,故()x f 为减函数,当e x =时,()x f 取得极大值为()ee f 1=,且()()222ln 42ln 244ln 4f f ====,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若1ln 2ln 3,,e 23a b c ===,则,,a b c 的大小关系为()A .a c b >>B .b c a>>C .c b a>>D .a b c>>【答案】A 【解析】【分析】通过对三个数的变形及观察,可以构造出函数()ln xf x x=,通过求导分析其单调性即可得到答案【详解】解:1ln e ln 2ln 4ln 3,,e e 243a b c =====,设()()2ln 1ln ,x x f x f x x x -'==,则e x >时,()0f x '<,故()f x 在()e,∞+上单调递减,则()()()3e 4f f f >>,即ln e ln 3ln 4e34>>,所以a c b >>.故选:A.【例2】(2023·全国·高三专题练习)设24ln 4a e -=,ln 22b =,1c e =,则()A .a c b <<B .a b c<<C .b a c<<D .b c a<<【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数()ln xf x x=,然后结合导数与单调性关系分析出e x =时,函数取得最大值()1e ef =,可得c 最大,然后结合函数单调性即可比较大小.【详解】设()ln x f x x =,则()21ln xf x x -'=,当e x >时,()0f x '<,函数单调递减,当0e x <<时,()0f x '>,函数单调递增,故当e x =时,函数取得最大值()1e ef =,因为()2222e ln 22ln22e e e 22a f -⎛⎫=== ⎪⎝⎭,()()4ln2l e n 4e 1,24b f c f =====,2e 42e << ,当e x >时,()0f x '<,函数单调递减,可得()()2e 4e 2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是()①ln 32<;②ln π<;③15<;④3e ln 2>.A .1B .2C .3D .4【答案】B 【解析】【分析】本题首先可以构造函数()ln x f x x =,然后通过导数计算出函数()ln xf x x=的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数()ln xf x x=的单调性即可比较出大小.【详解】解:构造函数()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,e x >时,()0f x '<,所以函数()ln xf x x=在()0,e 上递增,在()e,+∞上递减,所以当e x =时()f x 取得最大值1e,ln 322ln 2ln 22<⇔⇔,2e <<可得()2ff <,故①正确;lnπ<⇔e <<,可得f f <,故②错误;ln 2ln 4152ln1524<⇔<⇔<<,因为函数()ln xf x x=在()e,+∞上递减,所以()4f f<,故③正确;因为e >,所以(()e f f <,ln ee <1e <,则3e <即3e ln 2<④错误,综上所述,有2个正确.故选:B .【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a ,b ,c 均为区间()0,e 内的实数,且ln 55ln a a =,ln 66ln b b =,ln 77ln c c =,则a ,b ,c 的大小关系为()A .a c b >>B .a b c>>C .c a b>>D .c b a>>【答案】B 【解析】【分析】构造函数()ln xf x x=,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,函数()F x 在()0,e 上单调递增,当e x >时,()0f x '<,函数()f x 在()e,+∞上单调递减,因为765e >>>,所以()()()765f f f <<,因为a ,b ,c 均为区间()0,e 内的实数,且ln 5ln 5a a =,ln 6ln 6b b =,ln 7ln 7c c=,所以()()()f a f b f c >>,所以a b c >>,故选:B.【例5】(2022·江西·高三阶段练习(理))设ln 28a =,21e b =,ln 612c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【答案】B 【解析】【分析】根据a 、b 、c 算式特征构建函数()2ln xf x x =,通过求导确定函数单调性即可比较a 、b 、c 的大小关系.【详解】令()2ln x f x x =,则()42ln 0x x xx x f x '-==⇒=因此()2ln xf x x =在)∞+上单调递减,又因为ln 2ln 4(4)816a f ===,22ln e1=(e)e e b f ==,ln 612c f ===,因为4e >>>a b c <<.故选:B .【题型专练】1.(2022·四川省资阳中学高二期末(理))若ln212ln3,,29e a b c ===,则()A .b a c>>B .b c a>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】令()ln xf x x=,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a 、c ,即可得解;【详解】解:令()ln x f x x =,则()21ln xf x x-'=,所以当0e x <<时()0f x '>,当e x >时()0f x '<,所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max ln e 1e e e f x f ===,所以1e ln22>又94ln22ln39ln 24ln 3ln 2ln 3ln 512ln 91029181818----===>所以ln22ln329>,即b a c >>.故选:A2.(2022·浙江台州·高二期末)设24ln 4e a -=,ln 22b =,c =,则()A .a b c <<B .b a c <<C .a c b<<D .b c a<<【答案】B 【解析】【分析】由题设22e ln2e 2a =,ln 44b =,ln 33c =,构造ln ()xf x x =并利用导数研究单调性,进而比较它们的大小.【详解】由题设,222e ln4ln 42e e 2a -==,ln 2ln 424b ==,ln 33c ==,令ln ()xf x x=且0x >,可得21ln ()x f x x -'=,所以()0f x '>有0e x <<,则(0,e)上()f x 递增;()0f x '<有e x >,则(e,)+∞上()f x 递减;又2e 43e 2>>>,故c a b >>.故选:B3.(2022·四川广安·模拟预测(理))在给出的(1ln 32)43ln 34<e (3)ee ππ>.三个不等式中,正确的个数为()A .0个B .1个C .2个D .3个【答案】C 【解析】【分析】根据题目特点,构造函数()ln x f x x =,则可根据函数()ln xf x x=的单调性解决问题.【详解】首先,我们来考察一下函数()ln xf x x=,则()21ln xf x x -'=,令()0,f x '>解得0e x <<,令()0,f x '<解得e x >,故()ln xf x x=在区间()0,e 上单调递增,在区间()e,+∞单调递减,所以,(1)ff <ln 3>,则正确;(2)()43e 3f f ⎛⎫< ⎪⎝⎭,即4343lne ln33e <,即43e ln 34⋅>,则错误;(3)()()πf e f >,即e e e e e e ππππππln ln ln ln ln ln >⇒>⇒>,所以,e e ππ>,则正确故选:C.4.(2022·四川资阳·高二期末(文))若ln 33a =,1eb =,3ln 28c =,则()A .b a c >>B .b c a >>C .c b a >>D .c a b>>【答案】A 【解析】【分析】设函数ln (),(0)xf x x x=>,求出其导数,判断函数的单调性,由此可判断出答案.【详解】设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当0e x <<时,()0f x '>,()f x 递增,当e x >时,()0f x '<,()f x 递减,当e x =时,函数取得最小值,由于e 38<<,故lne ln 3ln 8e 38>>,即b a c >>,故选:A5.(2022·山东日照·高二期末)π是圆周率,e 是自然对数的底数,在e 3,3e ,33,e e ,πe ,3π,π3,e π八个数中,最小的数是___________,最大的数是___________.【答案】e e π3【解析】【分析】分别利用指数函数的单调性,判断出底数同为3,e 以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数()ln xf x x=的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e .函数3x y =是增函数,且e 3π<<,∴e 3π333<<;函数e x y =是增函数,且e 3π<<,e 3πe e e <<;函数πx y =是增函数,且e 3π<<,e 3ππ<;函数e y x =在()0,∞+是增函数,且e 3π<<,e e e e 3π<<,则八个数中最小的数是e e 函数πy x =在()0,∞+是增函数,且e 3<,ππe 3<,八个数中最大的数为3π或π3,构造函数()ln xf x x=,求导得()21ln xf x x -'=,当()e,x ∈+∞时()0f x '<,函数()f x 在()e,+∞是减函数,()()3πf f >,即ln 3ln π3π>,即πln 33ln π>,即π3ln 3ln π>,π33π∴>,则八个数中最大的数是π3.故答案为:e e ;π3.6.(2022·安徽省宣城中学高二期末)设24ln41,,e ea b c -===,,a b c 的大小关系为()A .a b c <<B .b a c<<C .a c b<<D .c a b<<【答案】D 【解析】【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案.【详解】设ln ()(0)xf x x x=>,则221ln 1ln ()x xx x f x x x ⋅--'==,当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数,当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2(2)2c f ===,又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为()A .b c a <<B .c b a<<C .a b c<<D .b a c<<【答案】C 【解析】【分析】判断出01,01,1a b c <<<<>,构造函数ln (),(0)xf x x x=>,判断01x <<时的单调性,利用其单调性即可比较出a,b 的大小,即可得答案.【详解】由ln ln ln 0e a a b cb c==-<,得01,01,1a b c <<<<>,设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当01x <<时,()0f x '>,()f x 单调递增,因为01a <<,所以e 1>>a a ,所以ln ln e a aa a>,故()()ln ln ln e =>∴>a a b a f b f a b a ,则b a >,即有01a b c <<<<,故a b c <<.故选:C.题型二:利用常见不等式关系比较大小1、常见的指数放缩:)1();0(1=≥=+≥x ex e x x e xx证明:设()1--=x e x f x,所以()1-='xe xf ,所以当()0,∞-∈x 时,()0<'x f ,所以()x f 为减函数,当当()+∞∈,0x 时,()0>'x f ,所以()x f 为增函数,所以当0=x 时,()x f 取得最小值为()00=f ,所以()0≥x f ,即1+≥x e x2.常见的对数放缩:)(ln );1(1ln 11e x exx x x x x =≤=-≤≤-3.常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫⎝⎛∈π【例1】(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x=+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知910a =,19eb -=,101ln 11c =+,则a ,b ,c 的大小关系为()A .a b c <<B .b a c<<C .c b a <<D .c a b<<【答案】B【解析】【分析】首先设()e 1x f x x =--,利用导数得到()e 10xx x >+≠,从而得到11b a>,设()ln 1g x x x =-+,利用导数得到()ln 11x x x <-≠,从而得到111ln 1010<和c a >,即可得到答案.【详解】解:设()e 1x f x x =--,()e 1xf x '=-,令()0f x ¢=,解得0x =.(),0x ∈-∞,()0f x ¢<,()f x 单调递减,()0,x ∞∈+,()0f x ¢>,()f x 单调递增.所以()()00f x f ≥=,即e 10x x --≥,当且仅当0x =时取等号.所以()e 10xx x >+≠.又1911101e 199b a=>+==,0,0a b >>,故11b a >,所以b a <;设()ln 1g x x x =-+,()111xg x x x-'=-=,令()0g x ¢=,解得1x =.()0,1∈x ,()0g x ¢>,()g x 单调递增,()1,x ∈+∞,()0g x ¢<,()g x 单调递减.所以()()10g x g ≤=,即ln 10x x -+≤,当且仅当1x =时取等号.所以()ln 11x x x <-≠,故11111ln 1101010<-=,又1011011lnln ln ln1011101110c a -=+>+==,所以c a >,故b a c <<.故选:B.【例3】(2022·四川凉山·高二期末(文))已知0.01e a =, 1.01b =,1001ln 101c =-,则().A .c a b >>B .a c b>>C .a b c>>D .b a c>>【答案】C 【解析】【分析】构造函数()e 1x f x x =--,由导数确定单调性,进而即得.【详解】设()e 1x f x x =--,则e ()10x f x '=->,在0x >时恒成立,所以()f x 在(0,)+∞上是增函数,所以e 1(0)0x x f -->=,即e 1x x >+,0x >,∴0.01e 1.01>,又ln1.010>,∴ln1.01e 1ln1.01>+,即1001.011ln 101>-,所以a b c >>.故选:C .【例4】(2022·四川绵阳·高二期末(理))若8ln 7a =,18=b ,7ln 6c =,则()A .a c b <<B .c a b<<C .c b a <<D .b a c<<【答案】D 【解析】【分析】构造函数()1ln 1f x x x=+-,其中1x >,利用导数分析函数()f x 的单调性,可比较得出a 、b 的大小关系,利用对数函数的单调性可得出c 、a 的大小关系,即可得出结论.【详解】构造函数()1ln 1f x x x=+-,其中1x >,则()221110x f x x x x -'=-=>,所以,函数()f x 在()1,+∞上为增函数,故()()10f x f >=,则88781ln 1ln 077878f ⎛⎫=+-=-> ⎪⎝⎭,即a b >,78lnln 67> ,因此,b a c <<.故选:D.【例5】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解.【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A 【题型专练】1.(2022·福建·莆田一中高二期末)设ln1.01a =, 1.0130e b =,1101c =,则()A .a b c <<B .a c b <<C .c b a <<D .c a b<<【答案】D 【解析】【分析】构造函数()ln 1f x x x =-+(0x >),证明ln 1≤-x x ,令 1.01x =,排除选项A,B,再比较,a b 大小,即得解.【详解】解:构造函数()ln 1f x x x =-+(0x >),()10f =,()111xf x x x-'=-=,所以()f x 在()0,1上()0f x '>,()f x 单调递增,()f x 在()1,+∞上()0f x '<,()f x 单调递减,所以max ()(1)0,ln 10,ln 1f x f x x x x ==∴-+≤∴≤-,令 1.01x =,则 ln a x =,30e x b =,11c x=-,考虑到ln 1≤-x x ,可得11ln 1x x ≤-,1ln 1x x -≥-等号当且仅当 1x =时取到,故 1.01x =时a c >,排除选项A ,B.下面比较,a b 大小,由ln 1≤-x x 得 1.01ln1.01 1.0130e<<,故b a >,所以c a b <<.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知1cos 5a =,4950b =,15sin 5=c ,则()A .b a c >>B .c b a >>C .b c a >>D .c a b>>【答案】D 【解析】【分析】构造函数21()cos 12f x x x =+-,利用导数求解函数()f x 的单调性,利用单调性进行求解.【详解】解:设21()cos 1,(01)2f x x x x =+-<<,则()sin f x x x '=-,设()sin ,(01)g x x x x =-<<,则()1cos 0g x x '=->,故()g x 在区间(0,1)上单调递增,即()(0)0g x g >=,即()0f x '>,故()f x 在区间(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,可得149cos 550>,故a b >,利用三角函数线可得0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >,所以11tan 55>,即1sin1515cos 5>,所以115sincos 55>,故c a >综上,c a b >>故选:D.3(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x =+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知1ln 22a a -=,1ln 33b b -=,e ln e cc -=,其中12a ≠,13b ≠,e c ≠,则a ,b ,c 的大小关系为().A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A 【解析】【分析】构造函数()()ln 0f x x x x =->,并求()f x ',利用函数()f x 的图象去比较a b c 、、三者之间的大小顺序即可解决.【详解】将题目中等式整理,得11ln ln 22a a -=-,11ln ln 33b b -=-,ln e ln e c c -=-,构造函数()()ln 0f x x x x =->,()111x f x x x-'=-=,令()0f x '=,得1x =,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,函数()f x 的大致图象如图所示.因为()12f a f ⎛⎫= ⎪⎝⎭,()13f b f ⎛⎫= ⎪⎝⎭,()()e f c f =,且12a ≠,13b ≠,e c ≠,则由图可知1b a >>,01c <<,所以c a b <<.故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设 1.01e a =,3eb =,ln 3c =,其中e 为自然对数的底数,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b>>D .a b c>>【答案】D 【解析】【分析】可判断 1.012e a =>,e32b =<,ln 32c =<,再令()ln exf x x =-,[e x ∈,)∞+,求导判断函数的单调性,从而比较大小.【详解】解: 1.012e a =>,e 32b =<,ln 32c =<,令()ln exf x x =-,[e x ∈,)∞+,11()0e e e x f x x x-'=-=<,故()f x 在[e ,)∞+上是减函数,故()()e 3f f <,即3ln 30e-<,故 1.013l e e n 3<<,即c b a <<,故选:D .【例3】(2022·全国·高三专题练习)已知ln 32a =,1e 1b =-,ln 43c =,则a ,b ,c 的大小关系是()A .b a c >>B .b c a >>C .c a b >>D .c b a>>【答案】A 【解析】【分析】根据给定条件构造函数ln ()e)1xf x x x =≥-,再探讨其单调性并借助单调性判断作答.【详解】令函数ln ()(e)1x f x x x =≥-,求导得()211ln ()1x x f x x --'=-,令()11ln g x x x =--,则()210,(e)xg x x x -'=<≥,故()11ln g x x x =--,(e)x ≥单调递减,又()111ln101g =--=,故()0,(e)g x x <≥,即()0,(e)f x x '<≥,而e 34<<,则(e)(3)(4)f f f >>,即1ln 3ln 4e 123>>-,所以b a c >>,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设110a =,ln1.1b =,910ec -=,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<【答案】D 【解析】【分析】利用指数函数的性质可比较,a c 的大小,再构造函数()ln(1)f x x x =-+,利用导数判断函数的单调性,再利用其单调性可比较出,a b ,从而可比较出三个数的大小【详解】因为e x y =在R 上为增函数,且9110-<-,所以9110e e --<,因为11e 10-<,所以9101e 10-<,即a c <,令()ln(1)f x x x =-+(0x >),得1()1011xf x x x'=-=>++,所以()f x 在(0,)+∞上递增,所以()(0)0f x f >=,所以ln(1)x x >+,令0.1x =,则0.1ln1.1>,即1ln1.110>,即a b >,所以b a c <<,故选:D【例5】(2022·四川南充·高二期末(理))设0.010.01e a =,199b =,ln 0.99c =-,则()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)-上单调递减,1)x ∀∈,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈时,e 1xx x x<-,取0.01x =,则有0.010.0110.01e10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈,()(0)0h x h <=,有()0g x '>,则()g x 在1)上单调递增,1)x ∀∈,()(0)0g x g >=,因此当1)x ∈时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c a b <<.故选:A 【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是()A .a b c >>B .c a b>>C .a c b>>D .b a c>>【答案】B 【解析】【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>.【详解】2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π306f ⎛⎫'=-< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且ππ30124f ⎛⎫'=-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>.故选:B【例7】(2022·河南洛阳·三模(理))已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .a c b >>D .a b c>>【答案】D 【解析】【分析】构造函数()()18ln f x x x =-,8x ≥,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造()()18ln f x x x =-,8x ≥,()18ln 1f x x x+'=--,()18ln 1f x x x+'=--在[)8,+∞时为减函数,且()295558ln 81ln 8ln e 204444f =-+-=-<-=-<',所以()18ln 10f x x x=-+-<'在[)8,+∞恒成立,故()()18ln f x x x =-在[)8,+∞上单调递减,所以()()()8910f f f >>,即10ln89ln 98ln10>>,所以10988910>>,即a b c >>.故选:D 【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若0.2e a =,b =ln 3.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a>>【答案】B 【解析】构造函数()()e 10xf x x x =-->,利用导数可得0.2e 1.2b a >>=,进而可得 1.2e 3.2>,可得a c >,再利用函数()()21ln 1x g x x x -=-+,可得ln 3.2 1.1>,即得.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,∴()f x 在()0,∞+上单调递增,∴0.20.21 1.2e a b >+=>=,0.2 1.21.e ln 2e a >==,ln 3.2c =,∵()()()6551.262.7387.4,3.2335.5e e >≈≈=,∴ 1.2e 3.2>,故a c >,设()()21ln 1x g x x x -=-+,则()()()()()22221211011x xx g x x x x x +--=-=≥++',所以函数在()0,∞+上单调递增,由()10g =,所以1x >时,()0g x >,即()21ln 1x x x ->+,∴()()22121.6155ln 3.2ln 2ln1.611 1.1211.613950--=+>+=>=++,又1 1.2 1.21,1 1.1b <<<<,∴ 1.1c b >>,故a c b >>.故选:B.【点睛】本题解题关键是构造了两个不等式()e 10xx x >+>与()21ln (1)1x x x x ->>+进行放缩,需要学生对一些重要不等式的积累.【题型专练】1(2022·山东烟台·高二期末)设a =0.9,b =9ln e10c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .c b a >>D .c a b>>【答案】B【分析】构造函数()ln 1f x x x =--,()g x x =-.【详解】令()ln 1f x x x =--,因为11()1x f x x x'-=-=所以,当01x <<时,()0f x '<,()f x 单调递减,所以(0.9)0.9ln 0.91(1)0f f =-->=,即90.9ln 0.91ln(e)10>+=,a c >;令()g x x =()1g x '=-所以,当114x <<时,()0g x '>,()g x 单调递增,所以(0.9)(1)g g <,即0.90<,0.9a b <.综上,c a b <<.故选:B2.(2022·山东青岛·高二期末)已知ln 3a π=,2b =,1sin 0.042c ⎫=-⎪⎪⎭,则a ,b ,c 的大小关系是()A .c b a >>B .a b c>>C .b a c>>D .a c b>>【答案】C 【解析】【分析】构造函数得出,a b 大小,又0c <即得出结论.【详解】构造函数()()()2ln 212ln 1f x x x x x =--=-+,则a b f -=,()1210f x x ⎛⎫'=-< ⎪⎝⎭在()1,+∞上恒成立,则()y f x =在()1,+∞上单调递减,故()10a b f f -=<=,则0b a >>,()π103x x =+>,则()π30121100433.x .-+-=>=,由对于函数()πsin 02g x x x x ⎛⎫=<< ⎪⎝⎭-,()πcos 1002g x x ,x ⎛⎫'=<<< ⎪⎝⎭-恒成立,所以,()()sin 00g x x x g =<=-即sin x x <在π0,2⎛⎫ ⎪⎝⎭上恒成立.所以,1sin0.04sin sin 02x x x ⎫<=<-<⎪⎭(注:004009020305.x .,...<<<<)所以,b a c >>故选:C3.(2022·湖北襄阳·高二期末)设253e 4a =,342e 5b =,35c =,则()A .b c a <<B .a b c <<C .c b a<<D .c a b<<【答案】C 【解析】【分析】根据式子结构,构造函数()()e ,01xf x x x=<<,利用导数判断单调性,得到2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即可判断出a b >.记()()e 2,01xg x x x =-<<,推理判断出b c >.【详解】24452533e23e 542e e 534a b ==.记()()e ,01x f x x x =<<,则()()2e 10x xf x x -'=<,所以()e xf x x =在()0,1上单调递减.所以2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以a b >.433422e e 5325354b c ⎛⎫-= ⎪⨯⎝--⎭=.记()()e 2,01x g x x x =-<<,则()e 2xg x '=-.所以在()0,ln 2x ∈上,()0g x '<,则()g x 单调递减;在()ln 2,1x ∈上,()0g x '>,则()g x 单调递增;所以()()()ln 2min ln 2e 2ln 221ln 20g x g ==-⨯=->,所以()min 304g g x ⎛⎫>> ⎪⎝⎭,即3422e 0534b c ⨯⎛⎫-> ⎪⎝⎭=-.所以b c >.综上所述:c b a <<.故选:C4.(2022·福建宁德·高二期末)已知a ,R b ∈,且221a b >>,则()A .ln ln a b a b -<-e eB .ln ln b a a b <C .e a b ba->D .sin sin 1a ba b-<-【答案】D 【解析】【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误.【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e xy x'=-,故12|20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除;B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=,所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减;故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除;C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增,所以e e a b a b >,即e a b ba-<,排除;D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增,所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设 1.01e a =,3eb =,ln3c =,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b >>D .a b c>>【答案】D 【解析】【分析】分析可得2a >,(1,2)b ∈,(1,2)c ∈,令()ln ,[e,)e xf x x x =-∈+∞,利用导数可得()f x 的单调性,根据函数单调性,可比较ln 3和3e的大小,即可得答案.【详解】由题意得 1.011e e 2a =>>,3(2e 1,)b =∈,ln 3(1,2)c =∈,令()ln ,[e,)exf x x x =-∈+∞,则11e ()0e ex f x x x -'=-=≤,所以()f x 在[e,)+∞为减函数,所以(3)(e)f f <,即3eln 3ln e 0e e-<-=,所以3ln 3e<,则 1.013e ln 3e >>,即a b c >>.故选:D6.(2022·重庆南开中学高二期末)已知6ln1.25a =,0.20.2e b =,13c =,则()A .a b c <<B .c b a <<C .c a b <<D .a c b<<【答案】A 【解析】【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>,所以函数()g x 在(),0∞-上递减,在()0,∞+上递增,所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >,所以c b >,综上所述a b c <<.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知212ln 204a a -=>,22122ln 0eb b --=>,221ln 303c c -=>,则()A .c b <B .b a<C .c a<D .b c<【答案】AC 【解析】【分析】根据题意可将式子变形为2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,构造函数()ln f x x x =-,利用导数求解函数()f x 的单调性,即可求解.【详解】解:由题意知,211,1,23a b c >>>,对三个式子变形可得2211ln ln 44a a -=-,222211ln ln e eb b -=-,2211ln ln 33c c -=-,设函数()ln f x x x =-,则()111x f x x x-'=-=.由()0f x ¢>,得1x >;由()0f x <,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为211101e 43<<<<,所以222b a c >>,所以c a b <<.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知01x y z ∈、、(,),且满足2e 2e x x =,3e 3e y y =,4e 4e z z =,则()A .x y z <<B .x z y<<C .z y x<<D .z x y<<【答案】C 【解析】【分析】先对已知条件取对数后得到ln ln22x x -=-,ln ln33y y -=-,ln ln44z z -=-.根据式子结构,构造函数()ln m x x x =-,利用导数判断单调性,比较大小.【详解】由2e 2e x x =得2ln ln2,x x +=+即ln ln22x x -=-.同理得:ln ln33y y -=-,ln ln44z z -=-.令()ln ,m x x x =-则()111xm x x x-=-='.故()m x 在()0,1上单调递增,1∞+(,)上单调递减.所以z y x <<.故选:C.。
第5讲导数研究函数单调性5种题型总结【考点分析】考点一:含参数单调性讨论①先求函数定义域;②求导,化简,通分,分解因式;③x 系数有未知数a ,先考虑x 系数0=a 的情况;再考虑0,0<>a a 情况,求出()0='x f 的根,判断根与定义域,及根的大小关系,穿针引线,判断导函数正负,进而判断单调性;④若不能分解因式,若分子为二次函数则考虑讨论判别式∆,若不是二次函数可以考虑二次求导【题型目录】题型一:导函数为一次函数型题型二:导函数为准一次函数型题型三:导函数为二次可分解因式型题型四:导函数为二次不可因式分解型题型五:导函数为准二次函数型【典型例题】题型一:导函数为一次函数型【例1】(2023河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论函数()f x 的单调性;【例2】(2022·辽宁营口·高二期末)已知函数()ln 1f x a x x =+-(其中a 为参数).(1)求函数()f x 的单调区间;【例3】(2022·江西·二模(文))己知函数()()R a x ax x f ∈++=1ln ,讨论()f x 的单调性。
【解析】1(),0ax f x x x'+=>,①当0a ≥时,1()0ax f x x+'=>恒成立,()f x 在(0,)+∞上单调递增②当0a <时,令()0f x '>得10x a<<-,∴()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减综上所述:当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;当0a ≥时,()f x 在(0,)+∞上单调递增;【例4】(2022·广东·模拟预测)已知函数()()()R m mx x x f ∈--=1ln ,讨论函数()f x 的单调性。
导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。
答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。
答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。
解:首先求导数f'(x) = 3x^2 - 12x + 9。
然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。
2. 已知函数y = ln(x),求y'。
解:根据对数函数的导数公式,y' = 1/x。
四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。
五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。
解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。
然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。
因此,该物体在t = 3时的瞬时速度为0。
六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。
高中数学导数题型全解析在高中数学中,导数是一个极其重要的概念和工具,它不仅在函数的研究中发挥着关键作用,还与物理、经济等领域有着紧密的联系。
导数题型种类繁多,掌握这些题型对于提高数学成绩和解决实际问题的能力都具有重要意义。
下面我们就来对高中数学中常见的导数题型进行全面解析。
一、导数的定义与计算导数的定义是理解和计算导数的基础。
函数\(y = f(x)\)在\(x = x_0\)处的导数定义为:\(f'(x_0) =\lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =\lim\limits_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)。
在计算导数时,我们需要掌握基本函数的求导公式,如\(C' =0\)(\(C\)为常数)、\((x^n)'= nx^{n 1}\)、\((\sin x)'=\cos x\)、\((\cos x)'=\sin x\)、\((e^x)'= e^x\)、\((\ln x)'=\frac{1}{x}\)等。
同时,还需要掌握导数的四则运算法则:\((u ± v)'= u' ± v'\)、\((uv)'= u'v + uv'\)、\((\frac{u}{v})'=\frac{u'v uv'}{v^2}\)(\(v ≠ 0\))。
例如,求函数\(f(x) = x^3 + 2x^2 3x + 1\)的导数,根据求导公式和法则可得:\(f'(x) = 3x^2 + 4x 3\)。
二、利用导数求函数的单调性函数的单调性是导数的一个重要应用。
若\(f'(x) > 0\),则函数\(f(x)\)在相应区间上单调递增;若\(f'(x) < 0\),则函数\(f(x)\)在相应区间上单调递减。
导数构造函数解决问题类型总结一、重点题型目录【题型一】构造函数x n f (x )型【题型二】构造函数e nx f (x )型【题型三】构造函数f (x )x n 型【题型四】构造函数f (x )e nx型【题型五】构造函数sin x 与函数f (x )型【题型六】构造函数cos x 与函数f (x )型【题型七】构造e n 与af (x )+bf (x )型【题型八】构造kx +b 与f (x )型【题型九】构造ln kx +b 型【题型十】构造综合型二、题型讲解总结【题型】一、构造函数x n f (x )型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在0,+∞ 上的函数f x 满足2xf x +x 2f x <0,f 2 =34,则关于x 的不等式f x >3x 2的解集为( )A.0,4B.2,+∞C.4,+∞D.0,2 【答案】D【分析】构造函数h x =x 2f x ,得到函数h x 的单调性,根据单调性解不等式即可.【详解】令h x =x 2f x ,则h x =2xf x +x 2f x <0,所以h x 在0,+∞ 单调递减,不等式f x >3x 2可以转化为x 2f x >4×34=22f 2 ,即h x >h 2 ,所以0<x <2.故选:D .例2.(2022·河北·高三阶段练习)已知奇函数f x 的定义域为R ,导函数为f x ,若对任意x ∈0,+∞ ,都有3f x +xf x >0恒成立,f 2 =2,则不等式x -1 3f x -1 <16的解集是__________.【答案】-1,3【分析】构造新函数g x =x 3f x ,根据f (x )的性质推出g (x )的性质,最后利用g (x )单调性解不等式.【详解】设g x =x 3f x ,x ∈R ,f x 为奇函数,∴g -x =-x 3f (-x )=x 3f (x )=g x ,即g x 是偶函数,有g (x )=g (-x )=g x ,∵∀x ∈0,+∞ ,3f x +xf x >0恒成立,故x ∈0,+∞ 时,g x =3x 2f x +x 3f x =x 23f x +xf x ≥0,∴函数g x 在0,+∞ 上为增函数,∵f 2 =2,∴g 2 =g -2 =16,x -1 3f x -1 <16等价于g x -1 <16=g (2),g (x -1)=g x -1 <g (2),且函数g x 在0,+∞ 上为增函数,∴x -1 <2,解得-1<x <3.故答案为:-1,3【题型】二、构造函数e nx f (x )型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R ,其函数图象连续不断,当x >0时,x +2 f x +xf x >0,则( )A.f 1 4e >f 2 B.f 2 <0 C.f -3 ⋅f 1 >0 D.f -1 e>4f -2 【答案】D【解析】令g x =x 2e x f x ,根据导数可知其在0,+∞ 上单调递增,由g 2 >g 1 >g 0 =0可知AB 错误,同时得到f 1 e<4f 2 ,f 1 >0,f 3 >0,结合奇偶性知C 错误,D 正确.【详解】对于AB ,令g x =x 2e x f x ,则g 0 =0,g x =x x +2 e x f x +x 2e x f x ,当x ≥0时,g x =xe x x +2 ⋅f x +xf x ≥0,∴g x 在0,+∞ 上单调递增,∴g 0 <g 1 <g 2 ,即0<ef 1 <4e 2f 2 ,∴f 2 >0,f 1 4e <f 2 ,AB 错误;对于C ,由A 的推理过程知:当x >0时,g x =x 2e x f x >0,则当x >0时,f x >0,∴f 1 >0,f 3 >0,又f x 为奇函数,∴f -3 =-f 3 <0,∴f -3 ⋅f 1 <0,C 错误.对于D ,由A 的推理过程知:f 1 e <4f 2 ,又f -1 =-f 1 ,f -2 =-f 2 ,∴-f -1 e <-4f -2 ,则f -1 e>4f -2 ,D 正确.故选:D .例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为f x ,且对于任意的x ∈R ,均有f x +f x >0,则( )A.e -2021f (-2021)>f (0),e 2021f (2021)<f (0)B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0)D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数F x =e x⋅f x ,F x =f x +f x⋅e x>0,所以F x 在R上递增,所以F-2021<F0 ,F0 <F2021,即e-2021⋅f-2021<f0 ,f0 <e2021⋅f2021.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数y=f x ,若f x >0且f x +xf x >0,则有( )A.f x 可能是奇函数,也可能是偶函数B.f-1>f1C.π4<x<π2时,f(sin x)<e cos2x2f(cos x)D.f(0)<e f(1)【答案】D【解析】根据奇函数的定义结合f x >0即可判断A;令g x =e x22f x ,利用导数结合已知判断函数g x 的单调性,再根据函数g x 的单调性逐一判断BCD即可得解.【详解】解:若f x 是奇函数,则f-x=-f x ,又因为f x >0,与f-x=-f x 矛盾,所有函数y=f x 不可能时奇函数,故A错误;令g x =e x22f x ,则g x =xe x22f x +e x22f x =e x22xf x +f x,因为e x22>0,f x +xf x >0,所以g x >0,所以函数g x 为增函数,所以g-1<g1 ,即e 12f-1<e12f1 ,所以f-1<f1 ,故B错误;因为π4<x<π2,所以0<cos x<22,22<sin x<1,所以sin x>cos x,故g sin x>g cos x,即e sin2x2f sin x>e cos2x2f cos x,所以f sin x>e cos2x-sin2x2f cos x=e cos2x2f cos x,故C错误;有g0 <g1 ,即f0 <e f1 ,故D正确.故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)f x 是定义在R上的函数,满足2f x +f x =xe x,f-1=-12e,则下列说法错误的是( )A.f x 在R上有极大值B.f x 在R上有极小值C.f x 在R上既有极大值又有极小值D.f x 在R上没有极值【答案】ABC【分析】先由题意得f -1=0,再构造g x =e2x f x ,得到g x =xe3x,进而再构造h x =e2x f x =xe3x-2g x ,判断出h x >0,即f x >0,由此得到选项.【详解】根据题意,2f x +f x =xe x,故2f-1+f -1=-e-1,又f-1=-12e,得2-12e+f -1 =-1e,故f -1 =0,令g x =e2x f x ,则g x =2e2x f x +e2x f x =e2x2f x +f x=e2x⋅xe x=xe3x,又2e2x f x +e2x f x =xe3x,记h x =e2x f x =xe3x-2e2x f x =xe3x-2g x ,所以h x =e3x+3xe3x-2g x =e3x+3xe3x-2xe3x=e3x x+1,当x<-1时,h x <0,h x 单调递减;当x>-1时,h x >0,h x 单调递增,所以h x >h-1=e-2f -1=0,即e2x f x >0,即f x >0,所以f x 在R上单调递增,故f x 在R上没有极值.故选项ABC说法错误,选项D说法正确.故选:ABC【题型】三、构造函数f(x)x n型例7.(2022·山东·潍坊一中高三期中)设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x> 0时,xf (x)-f(x)>0,则使得f(x)>0成立的x取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)【答案】D【分析】根据题意构造函数g(x)=f(x)x,由求导公式和法则求出g (x),结合条件判断出g (x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.【详解】由题意设g(x)=f(x)x,则g (x)=xf (x)-f(x)x2∵当x>0时,有xf (x)-f(x)>0,∴当x>0时,g (x)>0,∴函数g(x)=f(x)x在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(-x)=g(x),∴函数g(x)为定义域上的偶函数,g(x)在(-∞,0)上递减,由f(-1)=0得,g(-1)=0,∵不等式f(x)>0⇔x∙g(x)>0,∴x>0g(x)>g(1)或x<0g(x)<g(-1),即有x>1或-1<x<0,∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a=ln24,b=1e2,c=lnπ2π则a,b,c的大小关系为( )A.a<c<bB.b<a<cC.a<b<cD.c<a<b 【答案】C【分析】构造函数,根据函数的单调性比较大小.【详解】令f x =ln xx2,则fx =x-2x ln xx4,令f x <0,解得x>e,因此f x =ln xx2在e,+∞上单调递减,又因为a=ln24=ln416=f4 ,b=1e2=ln ee2=f e ,c=lnπ2π=lnππ=fπ,因为4>e>π>e,所以a<b<c.故选:C.【题型】四、构造函数f(x)e nx型例9.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x <0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D 【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g (x )=f (x )e x ⇒g (x )=f (x )-f (x )ex ,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e 2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D例10.(2022·江苏·涟水县第一中学高三阶段练习)f x 是定义在R 上的函数,f x 是f x 的导函数,已知f x >f x ,且f (1)=e ,则不等式f 2x -5 -e 2x -5>0的解集为( )A.-∞,-3B.-∞,-2C.2,+∞D.3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解.【详解】由f x >f x ,得f x -f x >0,设g x =f x e x ,则g x =f x -f x e x>0,所以函数g x 在-∞,+∞ 上单调递增,因为f 1 =e ,所以g 1 =f 1 e 1=1,所以不等式f 2x -5 -e 2x -5>0等价于f 2x -5 e 2x -5>1即g 2x -5 >g 1 ,所以2x -5>1,解得x >3,所以不等式f 2x -5 -e 2x -5>0的解集为3,+∞ .故选:D .例11.(2023·江西·赣州市赣县第三中学高三期中(理))设f x 是函数f x 的导函数,且f x >3f x x ∈R ,f 13=e (e 为自然对数的底数),则不等式f ln x <x 3的解集为( )A.0,e 3 B.1e ,e 3 C.0,3e D.e 3,3e【答案】C【分析】构造函数g x =f x e 3x ,由已知可得函数g x 在R 上为增函数,不等式f ln x <x 3即为g ln x <g 13,根据函数的单调性即可得解.【详解】解:令g x =f xe3x,则gx =f x -3f xe3x,因为f x >3f x x∈R,所以g x =f x -3f xe3x>0,所以函数g x 在R上为增函数,不等式f ln x<x3即不等式f ln xx3<1 x>0,又g ln x=f ln xe3ln x=f ln xx3,g13 =f13e=1,所以不等式f ln x<x3即为g ln x<g 13 ,即ln x<13,解得0<x<3e,所以不等式f ln x<x3的解集为0,3e.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R的函数f x 的导函数为f x ,且f x -f x = 2xe x,f0 =0,则以下错误的有( )A.f x 有唯一的极值点B.f x 在-3,0上单调递增C.当关于x的方程f x =m有三个实数根时,实数m的取值范围为0,4e-1D.f x 的最小值为0【答案】ABC【分析】构造g(x)=f(x)e x,结合已知求g(x)的解析式,进而可得f(x)=x2e x,再利用导数研究f(x)的极值点、单调性,并判断其值域范围,即可判断各选项的正误.【详解】令g(x)=f(x)e x,则g(x)=f (x)-f(x)e x=2x,故g(x)=x2+C,(C为常数),所以f(x)=e x(x2+C),而f0 =e00+C=0,故C=0,所以f(x)=x2e x,则f (x)=(x2+2x)e x,令f (x)=0,可得x=-2或x=0,在(-∞,-2)、(0,+∞)上f (x)>0,f(x)递增;在(-2,0)上f (x)<0,f(x)递减;所以f(x)有2个极值点,在-3,0上不单调,A、B错误;由x趋于负无穷时f(x)趋向于0,f(-2)=4e2,f(0)=0,x趋于正无穷时f(x)趋向于正无穷,所以f x =m有三个实数根时m的范围为0,4e-2,f x 的最小值为0,C错误,D正确;故选:ABC【题型】五、构造函数sin x 与函数f (x )型例13.(2022·云南师大附中高三阶段练习)已知a =sin111,b =331,c =ln1.1,则( )A.a <b <cB.a <c <bC.c <a <bD.b <a <c 【答案】B【分析】根据结构构造函数f (x )=x -sin x ,x ∈0,π2 ,利用导数判断单调性,即可得到a <b ;根据结构构造函数g (x )=ln x +1-x ,利用导数判断单调性,即可得到a <c ;根据结构构造函数h (x )=ln(x +1)-3x 3+x ,利用导数判断单调性,即可得到c <b .【详解】构造函数f (x )=x -sin x ,x ∈0,π2 ,则f (x )=1-cos x ≥0,故函数y =f (x )在0,π2 上单调递增,故f 111 >f (0)=0,即111>sin 111,又331>111,故a <b .构造函数g (x )=ln x +1-x ,则g (x )=1x-1,易知函数y =g (x )在x =1处取得最大值g (1)=0,故g 1011 <0,即ln 1011+1-1011<0,即111<-ln 1011=ln 1110=ln1.1,由前面知sin 111<111,故a <c .构造函数h (x )=ln (x +1)-3x 3+x ,则h (x )=1x +1-9(3+x )2=(3+x )2-9(x +1)(x +1)(3+x )2=x (x -3)(x +1)(3+x )2,故知函数y =h (x )在(0,3)上单调递减,故h (0.1)<h (0)=0,即ln1.1<0.33.1=331,故c <b .综上,a <c <b .故选:B .例14.(2022·全国·高三阶段练习)已知函数f (x )及其导函数f (x )的定义域均为R ,且f (x )为偶函数,f π6 =-2,3f (x )cos x +f (x )sin x >0,则不等式f x +π2 cos 3x -14>0的解集为( )A.-π3,+∞ B.-2π3,+∞ C.-2π3,π3 D.π3,+∞ 【答案】B 【分析】令g x =f x sin 3x -14,结合题设条件可得g x 为R 上的增函数,而原不等式即为g x +π2>0,从而可求原不等式的解集.【详解】f x +π2 cos 3x -14>0可化为f x +π2 sin 3x +π2 -14>0,令g x =f x sin 3x -14,则g x =f x sin 3x +3f x sin 2x cos x =sin 2x f (x )sin x +3f x cos x ,因为3f (x )cos x +f (x )sin x >0,故g x ≥0(不恒为零),故g x 为R 上的增函数,故f x +π2 cos 3x -14>0即为g x +π2>0,而g -π6 =f -π6 sin 3-π6 -14=f π6 sin 3-π6 -14=0,故g x +π2 >0的解为x +π2>-π6,故x >-2π3即f x +π2 cos 3x -14>0的解为-2π3,+∞ .故选:B .【题型】六、构造函数cos x 与函数f (x )型例15.已知函数f x 的定义域为-π2,π2,其导函数是f (x ).有f (x )cos x +f (x )sin x <0,则关于x 的不等式3f (x )<2f π6cos x 的解集为()A.π3,π2 B.π6,π2 C.-π6,-π3 D.-π2,-π6【答案】B【分析】令F x =f x cos x ,根据题设条件,求得F 'x <0,得到函数F x =f x cos x 在-π2,π2内的单调递减函数,再把不等式化为f x cos x <f π6 cos π6,结合单调性和定义域,即可求解.【详解】由题意,函数f x 满足f 'x cos x +f x sin x <0,令F x =f x cos x ,则F 'x =f 'x cos x +f x sin x cos 2x<0函数F x =f x cos x 是定义域-π2,π2内的单调递减函数,由于cos x >0,关于x 的不等式3f (x )<2f π6 cos x 可化为f x cos x <f π6 cos π6,即F x <F π6 ,所以-π2<x <π2且x >π6,解得π2>x >π6,不等式3f (x )<2f π6 cos x 的解集为π6,π2 .故选:B 例16.(2021·重庆·高二期末)已知f x 的定义域为(0,+∞)且满足f x >0,f x 为f x 的导函数,f x -f x =e x (x +cos x ),则下列结论正确的是( )A.f x 有极大值无极小值B.f x 无极值C.f x 既有极大值也有极小值D.f x 有极小值无极大值【答案】B【解析】令F x =f xe x,根据题意得到Fx =x+cos x,设g x =x+cos x,x>0,利用导数求得g x 在区间(0,+∞)单调递增,得到F x >0,由f x =e x⋅F x ,得到f x >0,即函数f x 为单调递增函数,得到函数无极值.【详解】令F x =f xe x,x>0,可得F x =f x -f xe x,因为f x -f x =e x(x+cos x),可得F x =x+cos x,设g x =x+cos x,x>0,可得g x =1-sin x≥0,所以g x 在区间(0,+∞)单调递增,又由g0 =1,所以g x >g0 =1,所以F x >0,所以F x 单调递增,因为f x >0且e x>0 ,可得F x >0,因为F x =f xe x,可得f x =ex⋅F x ,x>0,则f x =e x F x +F x>0,所以函数f x 为单调递增函数,所以函数f x 无极值.故选:B.【题型】七、构造e n与af(x)+bf(x)型例17.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x < 0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef2 <f1 ,f2 <ef1D.ef2 <f1 ,f2 >ef1【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g(x)=f(x)e x⇒g (x)=f (x)-f(x)e x,因为f x <fx ,所以g (x)>0,因此函数g(x)是增函数,于是有g(2)>g(1)⇒f(2)e2>f(1)e⇒f(2)>ef(1),构造函数h(x)=f(x)⋅e x⇒h (x)=e x[f(x)+f (x)],因为f x <f x <0,所以h (x)<0,因此h(x)是单调递减函数,于是有h(2)<h(1)⇒e2f(2)<ef(1)⇒ef(2)<f(1),故选:D例18.(2022·河南·高三阶段练习(文))已知函数f x =ax-e x-k,其中e为自然对数的底数,若k∈-1,e2时,函数f x 有2个零点,则实数a的可能取值为( )A.eB.2eC.e 2D.3e【答案】D【分析】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,结合导数分析函数g (x )的单调性与极值情况即可解决问题.【详解】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,g (x )=a -e x .(1)若a ≤0,g (x )<0在R 上恒成立,所以g (x )在R 上单调递减,g (x )的图象与直线y =k ,k ∈-1,e 2 至多只有一个交点,不合题意;(2)若a >0,当x <ln a 时,g (x )>0,当x >ln a 时,g (x )<0,所以g (x )的单调递增区间是(-∞,ln a ),单调递减区间是(ln a ,+∞),所以当x =ln a 时,g (x )取得极大值,也是最大值,为a ln a -a .当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→-∞,所以要使g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,只需a ln a -a >e 2.a ln a -a =a (ln a -1),当0<a ≤e 时,a ln a -a ≤0,当a >e 时,a ln a -a >0,所以a ln a -a >e 2,a >e ,设h (a )=a ln a -a ,a >e ,则h (a )=ln a >0,所以h (a )在(e ,+∞)上单调递增,而h e 2 =e 2,所以a ln a -a >e 2的解为a >e 2,而3e >e 2,故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数y =f (x )的导函数为y =f (x ),当x >0时,f (x )+f (x )x <0,且f (2)=-3,则不等式f (2x -1)<-62x -1的解集为( )A.-∞,12 ∪32,+∞ B.32,+∞C.12,32D.-12,12 ∪12,32【答案】A【分析】根据题干中的不等式,构造函数F x =xf x ,结合y =f (x )在在R 上为偶函数,得到F x =xf x 在R 上单调递减,其中F 2 =2f 2 =-6,分x >12与x <12,对f (2x -1)<-62x -1变形,利用函数单调性解不等式,求出解集.【详解】当x >0时,f(x )+f (x )x =xf (x )+f (x )x<0,所以当x >0时,xf (x )+f (x )<0,令F x =xf x ,则当x >0时,F x =xf (x )+f (x )<0,故F x =xf x 在x >0时,单调递减,又因为y=f(x)在在R上为偶函数,所以F x =xf x 在R上为奇函数,故F x =xf x 在R上单调递减,因为f(2)=-3,所以F2 =2f2 =-6,当x>12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)<-6,即F2x-1<F2 ,因为F x =xf x 在R上单调递减,所以2x-1>2,解得:x>3 2,与x>12取交集,结果为x>32;当x<12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)>-6,即F2x-1>F2 ,因为F x =xf x 在R上单调递减,所以2x-1<2,解得:x<3 2,与x<12取交集,结果为x<12;综上:不等式f(2x-1)<-62x-1的解集为-∞,12∪32,+∞.故选:A例20.(2022·全国·高三阶段练习(理))已知函数f x =x3-x+2+e x-e-x,其中e是自然对数的底数,若f a-2+f a2>4,则实数a的取值范围是( )A.-2,1B.-∞,-2C.1,+∞D.-∞,-2∪1,+∞【答案】D【分析】构造函数g(x)=f x -2,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将f (a-2)+f(a2)>4变为g(a-2)>g(-a2),利用g(x)的单调性进行求解.【详解】构造函数g(x)=f x -2=x3-x+e x-e-x,因为g(x)的定义域为(-∞,+∞),且g-x= -x3--x+e-x-e x=-x3+x-e x+e-x=-(x3-x+e x-e-x)=-g(x),即g(x)是奇函数,又g x =3x2-1+e x+e-x≥3x2-1+2e x⋅e-x=3x2+1>0,所以g(x)在 (-∞,+∞)上单调递增;因为f(a-2)+f(a2)>4,所以f(a-2)-2>-[f(a2)-2],即g(a-2)>-g(a2),即g(a-2)>g(-a2),所以a-2>-a2,即a2+a-2>0,解得a>1或a<-2,即a∈(-∞,-2)∪(1,+∞).故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数g(x)=f x -2,将问题转化为利用函数的奇偶性和单调性求g(a-2)>-g(a2)的解集.【题型】八、构造kx+b与f(x)型例21.(2022·河南·高三阶段练习(文))已知定义在0,+∞上的函数f x 的导函数为f x ,若f x < 2,且f4 =5,则不等式f2x>2x+1-3的解集是( )A.0,2B.0,4C.-∞,2D.-∞,4【答案】C【分析】根据所求不等式f2x>2x+1-3的形式,构造函数g x =f x -2x+3,利用题目中的条件判断出g x 在0,+∞上单调递减,进而将所求转化为g2x>g4 ,再利用单调性求出解集.【详解】设g x =f x -2x+3,则g x =f x -2.因为f x <2,所以f x -2<0,即g x <0,所以g x 在0,+∞上单调递减.不等式f2x>2x+1-3等价于不等式f2x-2×2x+3>0,即g2x>0.因为f4 =5,所以g4 =f4 -2×4+3=0,所以g2x>g4 .因为g x 在0,+∞上单调递减,所以2x<4,解得x<2.故选:C.例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R,其函数图象连续不断,当x>0时,x+2f x +xf x >0,则( )A.f14e>f2 B.f2 <0 C.f-3⋅f1 >0 D.f-1e>4f-2【答案】D【解析】令g x =x2e x f x ,根据导数可知其在0,+∞上单调递增,由g2 >g1 >g0 =0可知AB错误,同时得到f1e<4f2 ,f1 >0,f3 >0,结合奇偶性知C错误,D正确.【详解】对于AB,令g x =x2e x f x ,则g0 =0,g x =x x+2e xf x +x2e x f x ,当x≥0时,g x =xe x x+2⋅f x +xf x≥0,∴g x 在0,+∞上单调递增,∴g0 <g1 <g2 ,即0<ef1 <4e2f2 ,∴f2 >0,f14e<f2 ,AB错误;对于C,由A的推理过程知:当x>0时,g x =x2e x f x >0,则当x>0时,f x >0,∴f1 >0,f3 >0,又f x 为奇函数,∴f-3=-f3 <0,∴f-3⋅f1 <0,C错误.对于D,由A的推理过程知:f1e<4f2 ,又f-1=-f1 ,f-2=-f2 ,∴-f-1e<-4f-2,则f-1e>4f-2,D正确.故选:D.【题型】九、构造ln kx+b型例23.(2023·全国·高三专题练习)定义在(0,+∞)上的函数f(x)满足xf x +1>0,f2 =ln 12,则不等式f(e x)+x>0的解集为( )A.(0,2ln2)B.(0,ln2)C.(ln2,1)D.(ln2,+∞)【答案】D【分析】构造新函数g(x)=f(x)+ln x,(x>0),利用导数说明其单调性,将f(e x)+x>0变形为g(e x) >g(2),利用函数的单调性即可求解.【详解】令g(x)=f(x)+ln x,(x>0) ,则g (x)=f (x)+1x=xf x +1x,由于xf x +1>0,故g (x)>0,故g(x)在(0,+∞)单调递增,而g(2)=f(2)+ln2=ln 12+ln2=0 ,由f(e x)+x>0,得g(e x)>g(2) ,∴e x>2 ,即x>ln2 ,∴不等式f(e x)+x>0的解集为(ln2,+∞),故选:D.例24.(2022·河南·高三阶段练习(理))设a=cos 12,b=78,c=ln158,则a,b,c之间的大小关系为( )A.c<b<aB.c<a<bC.b<c<aD.a<c<b 【答案】A【分析】构造函数g x =ln x+1-x,f x =cos x-1-x2 2,借助函数的单调性分别得出c<b与a>b,从而得出答案.【详解】构造函数g x =ln x+1-x,x>-1,则g x =1x+1-1=-xx+1,当-1<x<0时,g x >0,g x 单调递增,当x>0时,g x <0,g x 单调递减,∴g x ≤g 0 =0,∴ln x +1 ≤x (当x =0时等号成立),∴ln 158=ln 78+1 <78,则c <b ,构造函数f x =cos x -1-12x 2 ,0<x <1,则f x =x -sin x ,令φx =x -sin x ,0<x <1,∴φ x =1-cos x >0,φx 单调递增,∴φx >φ0 =0,∴f x >0,f x 单调递增,从而f x >f 0 =0,∴f 12 >0,即cos 12>1-12⋅122=78,则a >b .∴c <b <a .故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在△ABC 中,若A >π4,则sin A >22,命题q :∀x >-1,x ≥ln (x +1).下列复合命题正确的是( )A.p ∧q B.(¬p )∧(¬q )C.(¬p )∧qD.p ∧(¬q )【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出q :∀x >-1,x ≥ln (x +1)成立,从而判断出四个选项中的真命题.【详解】在△ABC 中,若A =5π6,此时满足A >π4,但sin A =12<22,故命题p 错误;令f x =x -ln x +1 ,x >-1,则f x =1-1x +1=xx +1,当x >0时,f x >0,当-1<x <0时,f x <0,所以f x 在x >0上单调递增,在-1<x <0上单调递减,所以f x 在x =0处取得极小值,也是最小值,f 0 =0-ln 0+1 =0,所以q :∀x >-1,x ≥ln (x +1)成立,为真命题;故p ∧q 为假命题,(¬p )∧(¬q )为假命题,(¬p )∧q 为真命题,p ∧(¬q )为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )①log 32>23;②e lnπ<π;③sin 12>2348;④3e ln2<4 2.A.1 B.2C.3D.4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得①错误;构造函数f x =ln xx,利用导数研究其单调性和最值,进而判定②④正确;构造函数h(x)=sin x-x+16x3,x∈0,π2,利用二次求导确定其单调性,利用h 12 >h(0)得到③正确.【详解】对于①:若log32>23,则2>323,即8>9,显然不成立,故①错误;对于②:将e lnπ<π变为lnππ<ln ee,构造f x =ln xx,则f x =1-ln xx2,则当0<x<e时,f x >0,x>e时,f x <0,所以f x =ln xx在(0,e)上单调递增,在(e,+∞)上单调递减,则x=e时,f x 取得最大值1 e,由fπ <f e 得lnππ<ln ee,即e lnπ<π成立,故②正确;对于③:令h(x)=sin x-x+16x3,x∈0,π2,则g x =h x =cos x-1+12x2,t x =g x =-sin x+1,因为t x =g x =-sin x+1>0在0,π2成立,所以g x =h x =cos x-1+12x2在0,π2上单调递增,又g(0)=cos0-1+0=0,所以g x =h x >0在0,π2上成立,即h(x)=sin x-x+16x3在在0,π2上单调递增,所以h 12 >h(0),即sin12-2348>0,即sin12>2348,故③正确;对于④:将3e ln2<42变为ln2222<ln e e,由②得f22<f e ,即ln2222<ln e e,即3e ln2<42成立,故④正确;综上所述,真命题的个数为3.故选:C.【点睛】方法点睛:利用函数的单调性解决不等式问题时,往往要利用题干中的不等式的结构特点合理构造函数,如本题中证明e lnπ<π、3e ln2<42构造函数f x =ln xx,证明sin12>2348构造h(x)=sin x -x +16x 3,x ∈0,π2,将问题转化为利用导数研究函数的单调性问题.例27.(2022·江苏·南京师大附中高三期中)已知函数f x =ln x -ax 2,则下列结论正确的有( )A.当a <12e 时,y =f x 有2个零点B.当a >12e 时,f x ≤0恒成立C.当a =12时,x =1是y =f x 的极值点D.若x 1,x 2是关于x 的方程f x =0的2个不等实数根,则x 1x 2>e 【答案】BCD【分析】对于A 和B ,由f x =0可得a =ln x x 2,令g x =ln xx 2,利用导数得到g x 的单调性和最值情况即可判断;对于C ,将a =12代入f x ,利用导数得到f x 的单调性即可判断;对于D ,问题转化为2at =ln t 有两个零点,证明t 1t 2>e 2,进而只需要证明ln t 1+ln t 2>2,也即是ln t 1t 2>2t1t 2-1 t 1t 2+1,从而令m =t 1t 2>1,构造函数s m =ln m -2m -1 m +1m >1 求出最值即可【详解】对于A ,令f x =ln x -ax 2=0即a =ln xx 2,令g x =ln x x 2,x >0,则g x =1x⋅x 2-ln x ⋅2x x 2 2=1-2ln x x 3,令g x =0,解得x =e ,故当x ∈0,e ,g x >0,g x 单调递增;当x ∈e ,+∞ ,g x <0,g x 单调递减;所以g x 的最大值为g e =12e,又因为当x <1时,g x =ln x x 2<0;当x >1时,g x =ln xx 2>0,故g x 如图所示,当0<a <12e时,函数y =a 与g x 有两个交点,此时y =f x 有2个零点,故A 错误;对于B ,由A 选项可得g x =ln x x2≤12e ,当a >12e 时,由a >ln xx 2,可整理得ln x -ax 2<0,即f x <0,故B 正确;对于C ,将a =12代入f x 得f x =ln x -12x 2,x >0,所以f x =1x -x =1-x 2x,令f x =0,解得x =1,故当x ∈0,1 ,f x >0,f x 单调递增;当x ∈1,+∞ ,f x <0,f x 单调递减;所以x=1是y=f x 的极大值点,故C正确;对于D,由f x =ln x-ax2=0即ax=ln x x,因为x1,x2是关于x的方程f x =0的2个不等实数根,所以ax1=ln x1x1ax2=ln x2x2,即2ax21=ln x212ax22=ln x22,所以等价于:2at=ln t有两个零点,证明t1t2>e2,不妨令t1>t2>0,由2at1=ln t12at2=ln t2⇒2a=ln t1-ln t2t1-t2,要证t1t2>e2,只需要证明ln t1+ln t2>2,即只需证明:ln t1+ln t2=2a t1+t2=t1+t2ln t1-ln t2t1-t2>2,只需证明:ln t1-ln t2>2t1-t2t1+t2,即lnt1t2>2t1t2-1t1t2+1,令m=t1t2>1,只需证明:ln m>2m-1m+1m>1,令s m=ln m-2m-1m+1m>1,则s m=m-12m m+12>0,即s m在1,+∞上为增函数,又s1 =0,所以s m>s1 =0.综上所述,原不等式成立,即x1x2>e成立,故D正确,故选:BCD【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数f x 的定义域是0,+∞,f x 是f x 的导数,若f x =xf x -x,f 1 =1,则下列结论正确的是( )A.f x 在0,1e上单调递减 B.f x 的最大值为eC.f x 的最小值为-1eD.存在正数x0,使得f x0<ln x0【答案】AC【分析】构造g x =f xx,得到g x =1x,从而得到g x =ln x+c,结合f 1 =1,得到f x =x ln x,求导得到f x =ln x+1,从而得到函数的单调性和极值,最值情况,判断出ABC选项;解不等式x-1ln x<0得到解集为∅,故D错误.【详解】由f x =xf x -x得f x =f xx+1,设g x =f xx,则g x =xf x -f xx2=xf xx+1-f xx2=1x.设c为常数,则ln x+c=1 x,∴g x =ln x+c,∴f x =xg x =x ln x+cx.∵f 1 =1,∴f1 =0,∴c=0,所以f x =x ln x,∴f x =ln x+1.当0<x<1e时,f x <0,f x 单调递减,当x>1e时,f x >0,f x 单调递增.∵f 1e =0,∴f x 在x=1e时取得极小值,也是最小值-1e,f x 无最大值.∴A正确,B错误,C正确,由f x <ln x得x ln x<ln x,∴x-1ln x<0.当0<x<1时,x-1<0,ln x<0,x-1ln x>0.当x=1时,x-1ln x=0.当x>1时,x-1>0,ln x>0,x-1ln x>0.因此不等式x-1ln x<0即f x <ln x的解集是∅.所以D错误.故选:AC【点睛】当条件中出现类似f x =xf x -x的条件时,通常要构造函数来解决问题,本题中的难点是利用f x =f xx+1来构造g x =f xx,从而结合f 1 =1求出f x =x ln x.例29.(2023·全国·高三专题练习)已知函数f x =x e x+1,g x =x+1ln x,若f x1=g x2>0,则x2x1可取( )A.1B.2C.eD.e2【答案】CD【分析】由g x =x+1ln x=ln x e ln x+1,利用同构结合f x 在(0,+∞)上单调递增,即可得到x1=ln x2,则x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),求出h (x)即可判断h(x)在(0,+∞)上的单调性,即可得出x2x1≥e,由此即可选出答案.【详解】因为f x1=g x2>0,所以x1>0,x2>1,因为f x =e x+1+xe x=(x+1)e x+1>0恒成立,所以f x 在(0,+∞)上单调递增,又g x =x+1ln x=ln x e ln x+1,因为f x1=g x2,即x1e x1+1=ln x2e ln x2+1,所以x1=ln x2⇒x2=e x1,所以x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),所以h (x)=e x(x-1)x2当0<x<1时,h (x)<0,h(x)单调递减,当x>1时,h (x)>0,h(x)单调递增,所以h(x)≥h(1)=e,即x2x1≥e故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将g x =x+1ln x=ln x e ln x+1变形为f x =x e x+1的结构,是解本题的关键.。
导数题型总结(解析版)
1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m 的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值、解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最
值入手:等价于解法二:分离变量法:∵ 当时, 恒成立, 当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数” 则等价于当时恒成立变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)-22 例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围、(二次函数区间最值的例子)解:(Ⅰ)3aaa3a令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值= 当
x=3a时,极大值=b、(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数、(9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值
二、参数问题题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立,回归基础题型解
法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是
(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数、(Ⅰ)如果函数是偶函数,求的极大值和极小值;(Ⅱ)如果函数是上的单调函数,求的取值范围、解:、(Ⅰ)∵ 是偶函数,∴ 、此时,,令,解得:、列表如下:(-∞,-2)-2(-2,2)2(2,+∞)+0-0+递增极大值递减极小值递增可知:的极大值为,的极小值为、(Ⅱ)∵函数是上的单调函数,∴,在给定区间R上恒成立判别式法则解得:、综上,的取值范围是、例
5、已知函数(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。
子集思想(I)
1、当且仅当时取“=”号,单调递增。
2、 a-1-1单调增区间:
单调增区间:(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,综上,a的取值范围是[0,1]。
三、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二
步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例
6、已知函数,,且在区间上为增函数、(1)求实数的取值范围;(2)若函数与的图象有三个不同的交点,求实数的取值范围、解:(1)由题意∵在区间上为增函数,∴在区间上恒成立(分离变量法)即恒成立,又,∴,故∴的取值范围为(2)设,令得或由(1)知,①当时,,在R上递增,显然不合题意…②当时,,随的变化情况如下表:
,∴当即时,有一个交点;当即时,有两个交点;当时,,有一个交点、………………………13分综上可知,当或时,有一个交点;当时,有两个交点、…………………………………14分。