跨带投影的操作方法和步骤
- 格式:doc
- 大小:320.00 KB
- 文档页数:6
MAPGIS中北京54与西安80坐标系转换的方法朱明霞【摘要】简要介绍了北京54坐标系和西安80坐标系,以及北京54坐标系和西安80坐标系转换的原理及方法,着重介绍转换方法并附实例演示.【期刊名称】《青海国土经略》【年(卷),期】2014(000)004【总页数】2页(P68-69)【关键词】MAPGIS;坐标系;转换;方法【作者】朱明霞【作者单位】青海省第五地质矿产勘查院,青海西宁810000【正文语种】中文我国目前野外采集的GPS数据一般是用大地坐标表示的,也就是基于WGS 84的用经纬度和高程来表示。
将采集数据在地图上显示出来,需要将经纬度转化为平面坐标(即x,y坐标),由于椭球参数的不同造成经纬度相同点在不同椭球中的位置是不一样的。
这就要求在转换的过程中需考虑到椭球参数及坐标系的问题。
北京54坐标系为参心大地坐标系,它采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。
大地上的一点可用经度L54、纬度B54和大地高H54定位。
但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合;系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果差异较大,给用户使用带来一定困难。
西安80坐标系也是参心坐标系,其主要参数为:长半轴为6378140 米,扁率为1/298.257。
采用1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球)。
IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。
在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。
而且西安80坐标系是在我国完成的全国天文大地网的整体平差,消除了以前局部平差和逐级控制产生的不合理影响,提高了大地网的精度的基础上建立的。
这使西安80坐标系比54年北京坐标系更科学、更严密、更能满足科研和经济建设的需要。
地图投影与坐标变换地球椭球体人们假想,可以将大地体绕短轴(地轴)飞速旋转,就能形成一个表面光滑的球体,即旋转椭球体,或称地球椭球体。
它是可以用数学模型(即能量化计算)定义和表达的曲面,即我们所称的地球数学表面,是对地球形体的二级逼近。
下表为国际主要的椭球参数。
表(1)国际主要的椭球参数大地基准面一个国家或地区在建立大地坐标系时,为使地球椭球面更贴合本国或本地区的自然地球表面,往往需要选择合适的椭球参数、确定一个大地原点的起始数据,并进行椭球的定位和定向。
大地基准面的概念就是由此而提出的,它被定义为利用“特定”椭球体对“特定”地区地球表面的逼近,因此每个国家或地区均存在各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
北京54和西安80坐标系,WGIS84三种发展由来:我国在1953年前,使用海福特参考椭球,从1953年起,由于冷战和特定历史条件,我国参照前苏联采用克拉索夫斯基(Krassovsky)椭球建立了我国的54国家坐标系,又称北京坐标系,不过椭球的中心与地球质心不重合。
1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的80国家坐标系,又称西安坐标系,大地坐标原点在陕西省泾和县永乐镇。
由此,我们可知相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
美国国防部在1984年建立了世界大地测量坐标系统(World Geodetic System,WGS-84),目前GPS定位所得出的结果都属于WGS-84坐标系统。
目前工程中使用的大多是国家坐标系,因此要建立WGS-84和国家坐标系之间的转换模型,目前已有坐标转换模型可求得WGS-84和国家坐标系之间的转换参数,进而得到国家坐标系成果。
地球面、WGS-84坐标系、国家坐标系的关系参见下图(2):坐标系1.1空间大地坐标系地球椭球面上任一点的位置,可由该点的纬度和经度确定,即地面点的地理坐标值,由经纬度构成的地理坐标系统又叫地理坐标系。
高斯投影6度和3度分带计算公式高斯投影是一种常用的地理坐标转换方法,它将地球表面上的经纬度坐标转换成平面坐标系,以方便地图绘制和测量。
在中国,高斯投影采用的是带状投影方式,其中6度和3度分带是最常用的两种分带方式。
本文将介绍高斯投影6度和3度分带的计算公式和步骤。
1.高斯投影的基本原理高斯投影是基于椭球体模型的地图投影方法,其基本原理是将地球表面划分为一系列带状区域,每个区域采用不同的投影中央经线。
在相应的中央经线上,经度与平面坐标有直接线性关系,而纬度则需要进行适当的纬度变换。
2.高斯投影6度分带2.1计算公式对于给定的经度λ和纬度φ,可以计算出相应的高斯坐标(x,y)。
(1)计算带号先计算经度λ所在的带号zone:zone = int((λ+3)/6) + 1(2)计算中央经线中央经线投影为:L = zone * 6 - 3(3)计算ΔLΔL=λ-L(4)计算纬度变化量B=φ×π/180(5)计算椭球长半轴(6)计算参数e(7)计算TT = tan(B)T2=T*TC = e * cos^2(B)A = (λ - L) × cos(B)(8)计算MM = a * ((1 - e / 4 - 3e^2/64 - 5e^3/256) * B - (3e/8 + 3e^2/32 + 45e^3/1024) * sin(2 * B)+ (15e^2/256 + 45e^3/1024) * sin(4 * B) - (35e^3/3072) * sin(6 * B))(9)计算yy=M+a*(1-C+(5-T2+9C+4C^2)*A^2/12+(61-58T2+T^4)*A^4/360)(10)计算xx=a*((1-C+(1-T2+C)*A^2/6+(5-18T2+T^4+14C-58TC)*A^4/120)*A)3.高斯投影3度分带高斯投影3度分带是在中国西部和南部地区常用的投影方式,将全球划分为120个带状区域,每个带状区域跨度3度。
简述高斯分带投影过程
高斯投影是想象有一个椭圆柱面横套在地球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成投影面. 满足的条件是:1,中央子午线投影后为直线2, 中央子午线投影后长度不变.3,投影具有正形性. 6°带,自0°子午线起每隔经差6°自西向东分带,依次编号1,2,3等。
带号用N表示,中央子午线的经度用L 表示,则L = 6N-3。
3°带的中央子午线单数带与6°带重合,偶数带与6°带分界子午线。
该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。
投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。
设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。
将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。
取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。
高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。
由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。
高斯-克吕格投影分带按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。
分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。
通常按经差6度或3度分为六度带或三度带。
六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。
三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。
我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。
六度带可用于中小比例尺(如 1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。
影像投影仪的操作方法
影像投影仪的操作方法通常包括以下步骤:
1. 将投影仪放置在适当的位置上,确保其与要投射的屏幕或墙壁平行且垂直。
调整投影仪的高度或使用可调节的脚架,使投影区域的大小和位置符合要求。
2. 接通投影仪的电源,并将其与计算机或其他视频源设备连接。
通常可使用HDMI、VGA、USB等接口进行连接,具体取决于投影仪和视频源设备的接口类型。
3. 打开计算机或视频源设备,确保其正常工作并选择要投射的内容。
4. 在投影仪上找到电源按钮,并按下打开投影仪。
投影仪将会开始预热过程,此时可以听到风扇声和热胶机的声音。
5. 一旦预热完成,投影仪将会显示一个开机画面或空屏。
根据投影仪的型号和品牌,你可能需要按下相应的按钮选择输入源,例如HDMI或VGA。
6. 调整投影仪的焦距和投影区域,以确保图像清晰可见。
大多数投影仪都配备了焦距和投影大小的调节按钮或滚轮,可根据需要进行调整。
7. 如果需要,可以调整投影仪的亮度、对比度、色彩等设置,以优化投射效果。
8. 现在,你应该能够在屏幕上或墙壁上看到投射的图像。
根据需要,你可以通过计算机或视频源设备上的控制按钮来播放或调整内容。
9. 使用遥控器或投影仪本身的控制按钮,可以控制投影仪的电源、输入源切换、音量调节和其他功能。
10. 当使用完毕时,按下投影仪或遥控器上的电源按钮,将投影仪关闭并断开电源连接。
请注意,具体的操作方法可能会因投影仪的型号和品牌而有所不同,建议在使用前阅读和遵循投影仪的使用手册或说明书中的指导。
遥感影像投影变换处理方案(处理遥感影像跨带问题)本次林地落界数据处理中,湖南部分地区遥感影像数据存在跨带情况,需要要对遥感影像数据中跨带的部分进行影像投影变换,使遥感影像数据处于统一带内,才能与矢量数据完全套合。
影像投影变换在县市级林地保护利用规划系统和林地落界系统中都能进行,以湘潭市的几幅遥感影像为例,遥感影像为37和38度带。
第一步:确认需要投影变换的遥感影像确认跨的是哪两个带,将影像全部添加到系统中,再将矢量图层叠加进去,与矢量图层不套合的影像就是需要进行投影变换的影像。
图1 添加图层和影像的显示效果由图1看出需要进行投影变换的影像为右边的影像第二步:复制需要投影变换的遥感影像将需要投影变换的影像找出,复制到对应一个文件夹中。
(建议建立两个文件夹,一个存放需要投影变换的影像,一个存放投影变换后的影像,如下图2所示。
)图2文件夹设置窗口第三步:影像投影变换具体操作步骤1.显示影像投影变换窗口在规划系统中点击数据转换—— >影像投影变换——>批量投影,如下图3所示(或者在落界系统里点击影像预处理——>批量投影变换,以下步骤相同):图3 影像投影变换菜单窗口点击批量投影,如下图4所示:图4 批量投影变换窗口2.设置批量投影参数将原始投影参数以及结果投影参数类型设为Geotif格式,选择原始目录以及结果目录的位置,如下图5所示:图5 批量投影参数设置3.设置原始投影参数点击。
3.1设置坐标系参数将坐标系设成投影平面直角坐标系,如下图6所示:图6 原始投影参数坐标系参数设置3.2设置地理坐标系将标准椭球设置成,单位设成度,本初子午线名称设为格林威治,如下图7所示。
图7原始投影参数地理坐标系参数设置3.3设置投影坐标系将投影类型设为5:高斯-克吕格(横切椭圆柱等角)投影坐标系,投影带设成3带,投影带序号设为原始的投影带号(如湘潭市的为37),长度单位设成米,点击确定,如下图8所示:图8原始投影参数投影坐标系参数设置4设置目标投影参数点击。
CAD绘图中实现投影和截面的技巧和方法投影和截面是CAD绘图中常用的技巧和方法,可以帮助我们更准确地表达设计意图,并有效传达给其他人。
下面我将介绍一些实现投影和截面的技巧和方法。
首先,让我们来看看投影的实现技巧。
投影是将三维模型在二维平面上呈现的过程。
在CAD软件中,我们可以使用投影命令来实现这一目的。
首先,打开你的CAD软件,在模型空间中创建一个模型。
然后,进入布局空间,选择一个适当的布局,并调整视图的大小和比例。
接下来,使用投影命令,选择你要投影的对象,并指定投影方向。
在完成设置后,你将看到对象的投影出现在布局空间中。
你还可以根据需要调整投影的位置和样式。
截面是CAD绘图中另一个常用的技巧,可以帮助我们更清楚地展示模型的内部结构。
要实现截面效果,我们需要使用截面命令。
在CAD软件中,打开你的模型,在模型空间中选择一个适当的视角,并调整视图大小和比例。
然后,进入布局空间,在布局视图中选择你要进行截面的对象,并指定截面平面。
CAD软件将在布局视图中显示出对象的截面效果。
你还可以根据需要调整截面的位置和样式,以达到最理想的展示效果。
在CAD绘图中实现投影和截面的过程中,还有一些注意事项和技巧需要我们遵循。
首先,要确保选择合适的投影或截面视角,以突出设计的要点和重点。
其次,要注意投影或截面的比例和尺寸,保持视图的准确和一致。
此外,建议使用不同的颜色和线型来区分不同的投影或截面元素,以便更清晰地呈现设计意图。
最后,要注意投影或截面的位置和方向,使其更符合设计要求,并能够被他人轻松理解和使用。
总结一下,投影和截面是CAD绘图中常用的技巧和方法,可以帮助我们更准确地表达设计意图。
在CAD软件中,使用投影命令可以将三维模型投影在二维平面上呈现,而使用截面命令则可以展示模型的内部结构。
在实现投影和截面时,我们需要注意选择合适的视角、比例和尺寸,使用不同的颜色和线型来区分元素,并确保位置和方向符合设计要求。
通过合理运用这些技巧和方法,我们可以更好地进行CAD绘图,提高设计效果和传达效果。
投影过程:1首先检查钻孔点是否是在一个经度带中2在mapgis中编辑模式建立点文件,点上几个点如下图所示3在文件转换中将这些点文件转换成明码文件并用excel打开。
打开过程中用逗号隔开等等需要注意。
我们注意有些钻孔并不是在19度带,那必须先把这些18°带上的钻孔转到19°带上。
如何跨带投影一鄂尔多斯盆地18度带点转19度带点为例井号X Y 井深地面高程耿48井4095486.09 18715995.03 1573.23西41井3982329.42 18750571.33 2075 1276.87西58井3962626.72 18734182.14 1392.65伊23井4379228.73 18741733.09 1445.7元101井4122308.28 18749007.12 1624.52镇28井3991899.27 18721044.18 2265 1265.133庄19井3997547.49 18756238.49 1355.74 1360.69王探1井4117000 18731400 2262.46 1530王探1井4117000 18731400 2262.46 1530MC-2井4117282 18662345 2950 1590塞32井4121178 18340449.3 1440 1527.74MHC-1井4127847.25 18676182 2628.5 1780大24井4128730.8 18666634.8 2190 1549.33摆10井4132826 18662925.4 2082.02 1491.97摆12井4133715.83 18663399.29 2072 1487.18A46井4152270.95 18753902.00 2260 1651.31伊25井4287455.87 18704643.00 1432.94伊23井4379228.73 18741733.09 3734 1445.77首先表内的坐标为大地坐标系,整个过程就是将18度带转为经纬度再由经纬度转为19度带。
将球面坐标转换为平面坐标时需要进行投影,即将地理坐标系转换为投影坐标系,为了减少投影时产生的畸变,采用分带投影的方法。
另外,投影时采用不同的分带方式(比如三度带和六度带),可能会得到不同的公里网格坐标。
1.我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。
1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。
地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为20345486,其中20即为带号,345486为横坐标值。
2、如何计算当地的代号?当地的代号决定于当地的直角坐标系统,首先确定您的直角坐标系统是3度带还是6度带投影公式推算:6度带计算公式:代号=当地的经度/6+13度带计算公式:代号=(当地的经度-1.5)/3+1我国的经度范围西起73°东至135°,可分成六度带十一个(13号带—23号带),各带中央经线依次为(75°、81°、……123°、129°、135°);三度带二十二个(24号带—45号带)。
各带中央经线依次为(72°、75°、……132°、135°);六度带可用于中小比例尺(如1:250000)测图,三度带可用于大比例尺(如1:10000)测图,城建坐标多采用三度带的高斯投影3.当地中央经线经度的计算六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。
“北京54坐标系”转“西安80坐标系”的转换方法和步骤。
一、数据阐明北京54坐标系和西安80坐标系之间的转换实在是两种不同的椭球参数之间的转换,一般而言比拟周密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX,Y旋转(WY, Z旋转(WY,标准变更(DM。
若得七参数就须要在一个地域供给3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z,可以向处所测绘局获取。
二、“北京54坐标系”转“西安80坐标系”的操作步骤启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1所示:图11、单击“投影转换”“菜单下“S坐标系转换”“命令,体系弹出“转换坐标值”“话框,如图2所示:图2⑴、在“输进”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“西安80坐标系”,单位设置为“线类单位-米”;⑶、在“转换办法”一栏中,单击“公共点操作求系数”项;⑷、在“输进”一栏中,输入北京54坐标系下一个公共点的(x、y、z,如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z,如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表现输入了一个公共点对,如图2所示;⑺、按照雷同的方式,再输入另外的2个公共点对;⑻、在“转换方式”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统依据输入的3个公共点对坐标主动盘算出7个参数,如图3所示,将其记载下来;然后单击“肯定”按钮;图32、单击“投影转换”菜单下“编纂坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;图4在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系,独家详解将上市奔驰小改款S级;目标坐标系:西安80坐标系;转换办法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出,后记;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修正项”按钮,输入转换关系,并单击“肯定”按钮;接下来就是文件投影的操作进程了。
投影变换的知识1投影变换,我个人理解,就是对投影进行变换只要把握住了这个核心的思想,其他的就不在那么难理解了那么下面就要搞清楚两个问题,就是什么是投影?为什么要进行投影?然后再来理解如何变换那么什么是投影呢?我们知道,地球是一个近似于梨型的不规则椭球体,而GIS软件所处理的都是二维平面上的地物要素的信息所以首先要考的一个问题,就是如果如何将地球表面上的地物展到平面上去最简单的一个方法,或者说是最容易想到的一个方法就是将地球表面沿着某个经线剪开,然后展成平面,即采用这种物理的方法来实现可采用物理的方法将地球表面展开成地图平面必然产生裂隙或褶皱,大家可以想象一下,如果把一个足球展成平面的,会是什么结果所以这种方法存在着很大的误差和变形,是不行的那么我们就可以采用地图投影的方法,就是建立地球表面上的点与地图平面上点之间的一一对应关系,利用数学法则把地球表面上的经纬线网表示到平面上,这样就可以很好的控制变形和误差凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题所以一句话,投影:就是建立地球表面上点(Q,)和平面上的点(x,y)之间的函数关系式的过程这时候就有一个问题要问了,就是随着地图制图理论及科学技术的不断发展,就会有不同的国家,不同的人,提出了不同的数学法则这就表示存在着很多的投影方式有时候我们需要将不同的投影方式变换成同一种投影方式,或者将不同的投影参数,变换成相同的投影参数,这都需要进行投影变换所以一句话,投影变换:就是将不同的地图投影函数关系式变换的过程在MAPGIS中的投影变换的定义如下:将当前地图投影坐标转换为另一种投影坐标,它包括坐标系的转换不同投影系之间的变换以及同一投影系下不同坐标的变换等多种变换下面我们就来看看投影和变换过程中所涉及到的知识点地球椭球体地图投影是指建立地球表面上点(Q,)和平面上的点(x,y)之间的函数关系式的过程那我们先来看看,如何在地球表面上表示地物要素的空间信息只有先将地球表面上的地物要素的空间信息描述好了以后,在将它们通过函数关系式,投影到地图平面上去,这样才可以进行空间分析或者其它的运算我们知道:如果要描述地物要素的空间信息,或者不同地物要素之间的相对空间关系,首先要在地球上建立一个参考系,只有建立了参考系,才能去准确的描述每个地物的坐标等信息这涉及到很多地球的形状及椭球体方面的知识1地球的形状地球自然表面是一个起伏不平十分不规则的表面,有高山丘陵和平原,又有江河湖海地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿陆地上最高点与海洋中最深处相差近20 公里这个高低不平的表面无法用数学公式表达,也无法进行运算所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面但水准面有无数多个,其中有一个与静止的平均海水面相重合可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面大地水准面所包围的形体,叫大地球体由于地球体内部质量分布的不均匀,引起重力方向的变化,导致处处和重力方向成正交的大地水准面成为一个不规则的,仍然是不能用数学表达的曲面大地水准面形状虽然十分复杂,但从整体来看,起伏是微小的它是一个很接近于绕自转轴(短轴)旋转的椭球体所以在测量和制图中就用旋转椭球来代替大地球体,这个旋转球体通常称地球椭球2地球的大小关于地球椭球体的大小,由于采用不同的资料推算,椭球体的元素值是不同的现将世界各国常用的地球椭球体的数据列表如下:各种地球椭球体模型椭球体名称年代长半轴(米)短半轴(米)扁率白塞尔(Bessel) 1841 6377397 6356079 1:299.15克拉克(Clarke) 1880 6378249 6356515 1:293.5克拉克(Clarke) 1866 6378206 6356584 1:295.0海福特(Hayford) 1910 6378388 6356912 1:297克拉索夫斯基(北京54)1940 6378245 6356863 1:298.3I.U.G.G (西安80)1975 6378140 6356755 1:298.25WGS-84 1979 6378137 6356759 1:298.263 MAPGIS中的椭球体在MAPGIS软件中最常用的就是两种椭球体,它们在MAPGIS软件中是以选择北京54坐标系或西安80坐标系的方式表现出来的比如在做标准框时,系统提示我们选择椭球体,这时我们要么选择北京54,要么选择西安80或者其他所以说在MAPGIS中,当提到北京54坐标系或西安80坐标系时,它们所代表的含义不是大地测量中的大地坐标系,而是指不同的椭球参数,这个一定要搞清楚下面我们就了解一下我们国家的坐标系当前我国采用坐标系主要有:1954 年北京坐标系1980年西安坐标系新1954 年北京坐标系WGS84坐标系该坐标系是通过与原苏联1942年坐标系联测而建立的解放后,为了建立我国天文大地网,鉴于当时历史条件,在东北黑龙江边境上同苏联大地网联测,推算出其坐标作为我国天文大地网的起算数据;随后,通过锁网的大地坐标计算,推算出北京点的坐标,并定名为1954年北京坐标系因此,1954 年北京坐标系是苏联1942 年坐标系的延伸,其原点不在北京,而在苏联普尔科沃该坐标系采用克拉索夫斯基椭球作为参考椭球,高程系统采用正常高,以1956 年黄海平均海水面为基准该坐标系有两个缺陷:因为它是在东北黑龙江边境上同苏联大地网联测,推算出其坐标作为我国天文大地网的起算数据,所以随着误差的不断累计,到了中国西部以后,测量的数据必须经过严格修正后,才能达到要求1954 年北京坐标系采用克拉索夫斯基椭球作为参考椭球,这一点和其他国家的参考椭球不一致,所以该坐标系的数据必须经过变换后才可以在国际上得到认可1980 年西安坐标系1978 年4 月召开的全国天文大地网平差会议上决定建立我国新的坐标系,称为1980 年国家大地坐标系其大地原点设在西安西北的永乐镇,简称西安原点椭球参数选用1975年国际大地测量与地球物理联合会第16 界大会的推荐值简称IUUG-75地球椭球参数或IAG-75 地球椭球新1954年北京坐标系将全国大地网整体平差的结果整体换算到克拉索夫斯基椭球体上,形成一个新的坐标系,称为新1954 年北京坐标系该坐标系与1980年国家大地坐标系的轴定向基准相同,网的点位精度相同WGS84 坐标系在GPS 定位中,定位结果属于WGS-84 坐标系该坐标系是使用了更高精度的VLBLSLR等成果而建立的坐标系原点位于地球质心,Z 轴指向BIH1984.0 协议地极(CTP)不同的投影方式前面提到,随着地图制图理论及科学技术的不断发展,就会有不同的国家,不同的人,提出了不同的数学法则这就表示存在着很多的投影方式下面对不同投影方式做一下归类,详细的资料可以参考有关的书籍按地图投影的构成方法分:a 几何投影:几何投影源于透视几何学原理,并以几何特征为依据,将地球椭球面的经纬网投影到平面上或投影到可以展成平面的圆柱表面和圆锥表面等几何面上,从而构成:方位投影圆柱投影圆锥投影;方位投影:以平面作为辅助投影面,使球体与平面相切或相割,将球体表面上的经纬网投影到平面上构成的一种投影;圆柱投影:以圆柱表面作为辅助投影面,使球体和圆柱表面相切或相割,将球体表面上的经纬网投影到圆柱表面上,然后再将圆柱表面展成平面而构成的一种投影;圆锥投影:以圆锥表面作为辅助投影面,使球体和圆柱表面相切或相割,将球体表面上的经纬网投影到圆柱表面上,然后再将圆锥表面展成平面而构成的一种投影据球面和投影面的相对部位不同,上述投投影影有可分为:正轴投影横轴投影斜轴投影;在圆柱投影中,以正轴和横轴常见;在圆锥投影中以正轴常见;正横斜轴方位投影正横斜轴圆柱投影正横斜轴圆锥投影正轴投影经纬线形状b 非几何投影:通过一系列数学解析法,由几何投影演绎产生了非几何投影,它们并不借助投影面,而是根据制图的某些特定要求,如考虑制图区域形状等特点,选用合适的投影条件,用数学解析方法,求出投影公式,确定平面和球面之间点与点间的函数关系据经纬线的形状,可将非几何投影分为伪方位投影伪圆柱投影伪圆锥投影多圆锥投影;(新编地图学P59)伪方位投影:在正轴情况下,伪方位投影的纬线仍投影为同心圆,除中央经线投影成直线外,其余经线均投影成对称于中央经线的曲线,且交于纬线的共同圆心;伪圆柱投影:在正轴圆柱投影基础上,规定纬线仍为平行直线,除中央经线投影成直线外,其余经线均投影成对称于中央经线的曲线;伪圆锥投影:在圆锥投影基础上,规定纬线仍为同心圆弧,除中央经线仍为直线外,其余经线则投影成对称于中央经线的曲线;多圆锥投影:这是一种假想借助多个圆锥表面与球体相切设计而成的投影,纬线为同轴为同轴圆弧,其圆心位于中央经线上,中央经线为直线,其余经线则投影成对称与中央经线的曲线;按地图投影的变形性质分:等角投影地球表面上无穷小图形投影后仍保持相似或两微分线段所组成的角度,在投影后仍保持不变,称等角投影,又称正形投影在等角投影中变形椭圆为不同大小的圆,它满足条件,极值长度比a=b或经纬线夹角=90°和沿经纬度长度比相圆锥等(m=n)等积投影地球面上的图形在投影后保持面积不变,称等面积投影投影中变形椭圆为面积相等而形状不同的椭圆,这满足条件,面积比P=a×b=mnsin=1 任意投影即不具备以上两种投影的,在任意投影中,如果沿某一主方向的长度比等于1,即a=1或b=1,则这种投影称为等距离投影前面对投影方式做了大体的分类后,下面讲解一个具体的投影方式:高斯-克吕格投影高斯-克吕格投影由德国数学家高斯提出,后经克吕格扩充并推导出计算公式,故称为高斯-克吕格投影,简称高斯投影为了控制变形,本投影采用分带的思想6度带是从0度子午线(在英国的格林尼治天文台附近)起,自西向东每隔经差6为一投影带,全球分为60带,各带的带号用自然序数1,2,3,60 表示即以东经0-6为第1带,其中央经线为3E,东经6-12 为第2 带,其中央经线为9E,其余类推3度带,是从东经1度30分的经线开始,每隔3度为一带,全球划分为120 个投影带这样的目的就是为了让6度分带的中央经线全部和3度分带的中央经线重合,3度分带的中央经线只有一半和6度分带的中央经线重合在高斯-克吕格投影上,规定以中央经线为X 轴,赤道为Y 轴,两轴的交点为坐标原点如下图所示:我国规定1:1 万1:2.5 万1:5 万1:10 万1:25 万1:50 万比例尺地形图,均采用高斯-克吕格投影1:2.5 至1:50万比例尺地形图采用经差6 度分带,1:1万比例尺地形图采用经差3 度分带MAPGIS中图框的制作由于图框和投影变换紧密相连,故MAPGIS将其放在同一个系统中在MAPGIS 中生成图框,大家应该用的很多了,这里就不再重复只是将其中用到的一些重要的知识点做一下归纳和总结首先搞清楚在MAPGIS大小比例尺的分界,如下:它以1:5000为界小于或等于1:5000时,小比例尺,图幅为梯形图幅(在后面地图入库的时候,是选择矩形图幅,还是梯形图幅就看这里),单位为经纬度;大于1:5000时,大比例尺,图幅为矩形图幅,单位为公里值;根据这个标准,在MAPGIS中我将图框分为一下四类:小比例尺的标准框:在系统标准框菜单下,选择相应的比例命令即可小比例尺的非标准框:在投影变换菜单下绘制投影经纬网命令大比例尺的标准框:在系统标准框菜单下,选择相应的比例尺命令,在矩形分幅方法中选择正方形或者矩形大比例尺的非标准框:在系统标准框菜单下,选择相应的比例尺命令,在矩形分幅方法中选择任意矩形分幅所以总这里可以看出,小比例尺的标准框和小比例尺的非标准框是通过不同的菜单下不同的命令生成的,而大比例尺的标准框和大比例尺的非标准框则是通过同一个命令生成的,只是矩形分幅方法不一致而已北京54坐标系转西安80坐标系首先将MAPGIS平台的工作路径设置为..\北京54转西安80文件夹下下面我们来讲解北京54坐标系转西安80坐标系的转换方法和步骤一数据说明北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下xyz 和西安80坐标系下xyz),可以向地方测绘局获取二北京54坐标系转西安80坐标系的操作步骤启动投影变换模块,单击文件菜单下打开文件命令,将演示数据演示数据_北京54.WT演示数据_北京54.WL演示数据_北京54.WP打开:1 单击投影转换菜单下S坐标系转换命令,系统弹出转换坐标值话框:在输入一栏中,坐标系设置为北京54坐标系,单位设置为线类单位-米;在输出一栏中,坐标系设置为西安80坐标系,单位设置为线类单位-米;在转换方法一栏中,单击公共点操作求系数项;在输入一栏中,输入北京54坐标系下一个公共点的(xyz),如图2所示;在输出一栏中,输入西安80坐标系下对应的公共点的(xyz),如图2所示;在窗口右下角,单击输入公共点按钮,右边的数字变为1,表示输入了一个公共点对;依照相同的方法,再输入另外的2个公共点对;在转换方法一栏中,单击七参数布尔莎模型项,将右边的转换系数项激活;单击求转换系数菜单下求转换系数命令,系统根据输入的3个公共点对坐标自动计算出7个参数,将其记录下来;然后单击确定按钮;2 单击投影转换菜单下编辑坐标转换参数命令,系统弹出不同地理坐标系转换参数设置对话框;在坐标系选项一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击添加项按钮,则在窗口左边的不同椭球间转换列表中将该转换关系列出;在窗口下方的参数设置一栏中,将上一步得到的七个参数依次输入到相应的文本框中;单击修改项按钮,输入转换关系,并单击确定按钮;接下来就是文件投影的操作过程了3 单击投影转换菜单下MAPGIS投影转换/选转换线文件命令,系统弹出选择文件对话框:选中待转换的文件演示数据_北京54.WL,单击确定按钮;4 设置文件的Tic点,在投影变换模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明;5 单击投影转换菜单下编辑当前投影参数命令,系统弹出输入投影参数对话框,如图6所示,根据数据的实际情况来设置其地图参数,如下:坐标系类型:大地坐标系椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单位:米投影中心点经度(DMS):1230000然后单击确定按钮;6 单击投影转换菜单下设置转换后参数命令,系统弹出输入投影参数对话框,如图7所示,转换后的参数设置为:坐标系类型:大地坐标系椭球参数:西安80(注意椭球参数的变换)投影类型:高斯-克吕格投影比例尺分母:1坐标单位:米投影中心点经度(DMS):1230000(注意前后中央经线保持一致)7 单击投影转换菜单下进行投影变换命令,系统弹出输入转换后位移值对话框,单击开始转换按钮,系统开始按照设定的参数转换线文件以同样的操作步骤和参数设置,将演示数据_北京54.WL演示数据_北京54.WP文件进行投影转换;8 单击鼠标右键,选择复位命令,系统弹出选择文件名对话框,可以看到系统生成了三个新的文件:NEWLIN.WLNEWPNT.WTNEWPNT.WP,依次选中这三个文件,单击确定按钮,如图7所示:这时新生成的三个文件就是西安80坐标系下的文件;补充:通常情况下,转换过来的数据会有一定的误差存在,所以有时为了保证数据的精度,在转换的过程中通过设置横坐标和纵坐标的偏移量来修正转换后的坐标值;跨带投影:我们知道高斯-克吕格投影采用了分带投影的思想,每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,使用时只需变一个带号即可,这样就存在着如果不考虑带号的情况下,会有重叠的情况出现,如果要想将重叠的图框回到其实际所在的位置上,这时就会用到跨带投影跨带投影是MAPGIS投影变换中一个很重要的方面下面来讲解跨带投影的操作方法和步骤,共分为两部分:一演示数据的生成和说明:在投影变换模块下分别生成3幅1:50万的标准框,并在输入编辑模块中将其改成不同的颜色(FRAM_50_左.W~表示FRAM_50_左.WL和FRAM_50_左.WT):名称起始经度(DDMMSS)起始纬度(DDMMSS)中央经线(DDMMSS)FRAM_50_左.W~ 1140000 280000 1170000FRAM_50_中.W~ 1170000 280000 1170000FRAM_50_右.W~ 1200000 280000 1230000因为在投影过程中采用的是高斯克吕格投影,且1:50万的标准图框的经线跨度为3°,所以当同时打开这三幅标准图框时,会发现FRAM_50_左.W~和FRAM_50_右.W~二者重叠在了一起,如图1所示:如果想实现三个标准框连续排列,则需要经过跨带投影二跨带投影的操作步骤启动投影变换模块,单击文件菜单下打开文件命令,将FRAM_50_左.W~FRAM_50_中.W~FRAM_50_右.W~三个标准框添加进来1 单击投影转换菜单下MAPGIS文件投影/选转换线文件文件命令,系统弹出选择文件对话框,选择FRAM_50_右.WL,单击确定按钮2 设置文件的Tic点,因为在生成标准图框时MAPGIS为自动为其添加4个Tic点,所以这里不再作详细的说明;3 单击投影转换菜单下编辑当前投影参数命令,系统弹出输入投影参数对话框坐标系类型:投影平面直角坐标系椭球参数:西安80投影类型:高斯-克吕格投影比例尺分母:500000坐标单位:毫米投影中心点经度(DMS):1230000通常情况下,因为是标准框,所以系统会自动的读取其各项参数,所以只需检查各项参数设置是否有错即可;4 单击投影转换菜单下设置转换后参数命令,系统弹出输入投影参数对话框坐标系类型:投影平面直角坐标系椭球参数:西安80投影类型:高斯-克吕格投影比例尺分母:500000坐标单位:毫米投影中心点经度(DMS):1170000(注意前后中央经线发生了变化)5 单击投影转换菜单下进行投影变换命令,系统弹出输入转换后位移值对话框,单击开始转换按钮,系统开始按照设定的参数转换线文件以同样的操作步骤和参数设置,将FRAM_50_右.WT文件进行投影转换;6 单击鼠标右键,选择复位命令,系统弹出选择文件名对话框,可以看到系统生成了两个新的文件:NEWLIN.WLNEWPNT.WT,依次选中FRAM_50_左.W~FRAM_50_中.W~及两个新生成的文件,然后单击确定按钮补充:中央经线的设置方法跨带投影的过程中设计到一个很重要的参数就是中央经线,因为高斯-克吕格投影采用的是分带的思想,所以在每个投影带都会有一个中央经线,中央经线设置错误,则投影变换的结果就会有问题,尤其是跨带投影的情况下那如何查阅一个标准框的中央经线呢?我们国家规定:高斯-克吕格投影,1:2.5万~1:50万地形图均采用6度分带;1:1万及更大比例尺采用3度分带,所以上述3幅标准图框都采用的6度分带由标准框的起始经纬度,如FRAM_50_左.W~的起始经纬度1140000,我们可以查阅出其对应的中央经线单击投影变换模块帮助菜单下帮助目录命令,在系统弹出的对话框中,选择索引页,找到6度分带表,单击显示按钮,则6度分带表根据标准框的起始经纬度,可以分别查阅到FRAM_50_左.W~的中央经线为:1170000FRAM_50_中.W~的中央经线为:1170000FRAM_50_右.W~的中央经线为:1230000地图坐标常识1椭球面地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系西安80坐标系实际上指的是我国的两个大地基准面我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的采用的3个椭球体参数如下(源自全球定位系统测量规范GB/T18314-2001):理解:椭球面是用来逼近地球的,应该是一个立的椭圆旋转而成的2大地基准面椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的在目前的GIS商用软件中,大地基准面都通过当地基准面向WGS84的转换7参数来定义,即三个平移参数XYZ表示两坐标原点的平移值;三个旋转参数xyz表示当地坐标系旋转至与地心坐标系平行时,分别绕XtYtZt的旋转角;最后是比例校正因子,用于调整椭球大小北京54西安80相对WGS84的转换参数至今没有公开,实际工作中可利用工作区内已知的北京54或西安80坐标控制点进行与WGS84坐标值的转换,在只有一个已知控制点的情况下(往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时,如青岛市,精度也足够了以(32°,121°)的高斯-克吕格投影结果为例,北京54及WGS84基准面,两者投影结果在南北方向差距约63米(见下表),对于几十或几百万的地图来说,这一误差无足轻重,但在工程地图中还是应该加以考虑的输入坐标(度)北京54 高斯投影(米)WGS84 高斯投影(米)纬度值(X)32 3543664 3543601经度值(Y)121 21310994 21310997理解:椭球面和地球肯定不是完全贴合的,因而,即使用同一个椭球面,不同的地区由于关心的位置不同,需要最大限度的贴合自己的那一部分,因而大地基准面就会不同3高斯投影(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称高斯投影,又名"等角横切椭圆柱投影,地球椭球面和平面间正形投影的一种德国数学家物理学家天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式投影。
3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。
海域使用的地图多采用保角投影,因其能保持方位角度的正确。
我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。
一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。
地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。
因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):椭球体长半轴短半轴Krassovsky 6378245 6356863.0188IAG 75 6378140 6356755.2882WGS 84 6378137 6356752.3142椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky 椭球体,但它们的大地基准面显然是不同的。
坐标系的转换方法和步骤一、数据说明坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。
若得七参数就需要在一个地区提供3个以上的公共点坐标对(即坐标下x、y、z和下x、y、z),可以向地方测绘局获取。
二、“”转“”的操作步骤启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_.WT”、“演示数据_.WL”、“演示数据_.WP”打开,如图1所示:图11、单击“投影转换”“菜单下“S坐标系转换”“命令,系统弹出“转换坐标值”“话框,如图2所示:图2⑴、在“输入”一栏中,坐标系设置为“”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入下对应的公共点的(x、y、z),如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;然后单击“确定”按钮;图32、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;图4在“坐标系选项”一栏中,设置各项参数如下:源坐标系:;目的坐标系:;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。
关于跨带拼图的说明
为保证图面拼接完整,必须将代号为18的A区进行投影变换(将其原中央投影经线=105度变换为111度),即用代号为19的中央经线进行投影。
原
【特别说明】
在实际应用时,是将代号=18的A区投影变化到代号=19的B区,还是将代号=19的B 区投影变化到代号=18的A区,应视整个行政区域的范围决定,其原则为:比较A、B两区的经度跨度,将跨度相对较小的区投影转换到另一区。
跨带进行投影转换后,应在相关文档中予以说明并填写跨带说明表。
输出纸图图件的外图框左下角予以文字注明。
【跨带说明表】
有跨带处理的成果图件必需特殊说明,具体内容要按照下表内容填写,可单独附表说明,也可在建库报告的补充说明章节中说明。
跨带投影_20061008
首先将MAPGIS平台的工作路径设置为“…..\跨带投影演示数据”文件夹下。
下面来讲解跨带投影的操作方法和步骤,共分为两部分:
一、演示数据的生成和说明:
在“投影变换”模块下分别生成3幅1:50万的标准框,并在“输入编辑”模块中将其改成不同的颜色(“FRAM_50_左.W~“表示“FRAM_50_左.WL”和“FRAM_50_左.WT”):
名称起始经度(DDMMSS)起始纬度(DDMMSS)中央经线(DDMMSS)FRAM_50_左.W~ 1140000 280000 1170000
FRAM_50_中.W~ 1170000 280000 1170000
FRAM_50_右.W~ 1200000 280000 1230000
因为在投影过程中采用的是“高斯—克吕格投影”,且1:50万的标准图框的经线跨度为3°,所以当同时打开这三幅标准图框时,会发现“FRAM_50_左.W~”和“FRAM_50_右.W~”二者重叠在了一起,如图1所示:
图1
如果想实现三个标准框连续排列,则需要经过跨带投影。
二、跨带投影的操作步骤
启动“投影变换”模块,单击“文件”菜单下“打开文件”命令,将“FRAM_50_左.W~”、“FRAM_50_中.W~”、“FRAM_50_右.W~”三个标准框添加进来,如图2所示:
图2
1、单击“投影转换”菜单下“MAPGIS文件投影/选转换线文件”文件命令,系统弹出“选
择文件”对话框,选择“FRAM_50_右.WL”,单击“确定”按钮,如图3所示:
图3
2、设置文件的Ti c点,因为在生成标准图框时MAPGIS自动为其添加4个Ti c点,所以这
里不再作详细的说明;
3、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出“输入投影参数”对话
框,如图4所示:
坐标系类型:投影平面直角坐标系
椭球参数:西安80
投影类型:高斯-克吕格投影
比例尺分母:500000
坐标单位:毫米
投影中心点经度(DMS):1230000
通常情况下,因为是标准框,所以系统会自动的读取其各项参数,所以只需检查各项参数
设置是否有错即可;
图4
4、单击“投影转换”菜单下“设置转换后参数”命令,系统弹出“输入投影参数”对话框,
如图5所示:
坐标系类型:投影平面直角坐标系
椭球参数:西安80
投影类型:高斯-克吕格投影
比例尺分母:500000
坐标单位:毫米
投影中心点经度(DMS):1170000(注意前后中央经线发生了变化)
图5
5、单击“投影转换”菜单下“进行投影变换”命令,系统弹出“输入转换后位移值”对话
框,单击“开始转换”按钮,系统开始按照设定的参数转换线文件,如图6所示:
图6
以同样的操作步骤和参数设置,将FRAM_50_右.WT文件进行投影转换;
6、单击鼠标右键,选择“复位”命令,系统弹出“选择文件名”对话框,可以看到系统生
成了两个新的文件:“NEWLIN.WL”、“NEWPNT.WT”,依次选中“FRAM_50_左.W~”、“FRAM_50_中.W~”及两个新生成的文件,然后单击“确定”按钮,如图7所示:
图7
最终结果如图8所示:
图8
补充:中央经线的设置方法
跨带投影的过程中涉及到一个很重要的参数就是中央经线,因为“高斯-克吕格投影”采用的是分带的思想,所以在每个投影带都会有一个中央经线,中央经线设置错误,则投影变换的结果就会有问题,尤其是跨带投影的情况下。
那如何查阅一个标准框的中央经线呢?
我们国家规定:高斯-克吕格投影,1:2.5万~1:50万地形图均采用6度分带;1:1万及更大比例尺采用3度分带,所以上述3幅标准图框都采用6度分带。
由标准框的起始经纬度,如“FRAM_50_左.W~”的起始经纬度“1140000”,我们可以查阅出其对应的中央经线。
单击“投影变换”模块“帮助”菜单下“帮助目录”命令,在系统弹出的对话框中,选
择“索引”页,找到“6度分带表”,单击“显示”按钮,如图9所示:
图9
则6度分带表如图10所示:
6度分带表
根据标准框的起始经纬度,可以分别查阅到“FRAM_50_左.W~”的中央经线为:1170000、“FRAM_50_中.W~”的中央经线为:1170000、“FRAM_50_右.W~”的中央经线为:1230000。