第6章热传导问题的有限元法
- 格式:ppt
- 大小:374.05 KB
- 文档页数:57
热传导问题的数值模拟热传导是自然界中一种普遍存在的物理现象,其在许多领域都有着广泛的应用。
在工程领域,对于许多工程问题的求解过程中,需要对热传导问题进行数值模拟。
本文将从热传导问题的基本理论出发,介绍一些热传导问题的数值模拟方法及其应用。
一、热传导基本理论热传导是指热量从高温区传递到低温区的现象。
在热传导过程中,热流量的方向和大小受到热传导物质的性质及其温度差等因素的影响。
热传导物质分为导热性能好的导体和导热性能差的绝缘体两种类型。
根据傅里叶定律和傅立叶热传导方程,热传导问题可以用以下的偏微分方程来描述:∂u/∂t = α(∂²u/∂x²+∂²u/∂y²+∂²u/∂z²)+f(x,y,z,t)其中,u(x,y,z,t)表示温度分布,f(x,y,z,t)表示源项(可能是热源或热损失),α为导热系数,t为时间,x、y、z为空间坐标。
二、数值模拟方法热传导问题的数值模拟主要采用有限元法、有限体积法、有限差分法等方法进行计算。
下面将分别介绍这三种方法。
1. 有限元法有限元法(Finite Element Method, FEM)是一种广泛应用于数值分析领域的方法。
在热传导问题的数值模拟中,有限元法的基本思想是将要求解的物理问题离散化,将其分解成有限个简单的元件来进行求解。
具体而言,可以将热传导区域分解成一系列的小单元,然后根据有限元法的原理,通过计算每个单元内的热传导能量,并利用边界条件,在整个区域内拼凑成一个整体的方程组,在求解这个方程组后得到热传导问题的解。
2. 有限体积法有限体积法(Finite Volume Method, FVM)是一种以连续性方程为基础,采用体积平均原理离散化控制体积的方法。
有限体积法在处理不规则域的问题时具有重要的优势。
在热传导问题的求解中,可以采用有限体积法离散分析过程。
对于一个立方体体积元,可以用守恒方程将体积元内部的能量和热流量进行刻画。
6. 稳态热传导问题的有限元法本章的内容如下:6.1热传导方程与换热边界6.2稳态温度场分析的一般有限元列式 6.3三角形单元的有限元列式 6.4温度场分析举例6.1热传导方程与换热边界在分析工程问题时,经常要了解工件内部的温度分布情况,例如发动机的工作温度、金属工件在热处理过程中的温度变化、流体温度分布等。
物体内部的温度分布取决于物体内部的热量交换,以及物体与外部介质之间的热量交换,一般认为是与时间相关的。
物体内部的热交换采用以下的热传导方程(Fourier 方程)来描述,Q z T z y T y x T x t T c+⎪⎭⎫⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂z y x λλλρ (6-1)式中ρ为密度,kg/m 3; c 为比热容,K)J/(kg ⋅;z y x λλλ,,为导热系数,)k m w ⋅;T 为温度,℃;t 为时间,s ;Q 为内热源密度,w/m 3。
对于各向同性材料,不同方向上的导热系数相同,热传导方程可写为以下形式,Q zTy T x T t T c 222222+∂∂+∂∂+∂∂=∂∂λλλρ(6-2)除了热传导方程,计算物体内部的温度分布,还需要指定初始条件和边界条件。
初始条件是指物体最初的温度分布情况,() z y,x,T T 00t ==(6-3)边界条件是指物体外表面与周围环境的热交换情况。
在传热学中一般把边界条件分为三类。
1)给定物体边界上的温度,称为第一类边界条件。
物体表面上的温度或温度函数为已知,s s T T =或),,,(t z y x T T s s =(6-4)2)给定物体边界上的热量输入或输出,称为第二类边界条件。
已知物体表面上热流密度,s sz z y y x xq n z T n y T n x T =∂∂+∂∂+∂∂)(λλλ或),,,()(t z y x q n zT n y T n x T s sz z y y x x=∂∂+∂∂+∂∂λλλ(6-5)3)给定对流换热条件,称为第三类边界条件。
热传导问题解题热传导是物体间的热量传递过程。
无论是工业生产、能源利用还是日常生活中,都与热传导有关。
研究和解决热传导问题是一项具有重要意义的科学工作,对于提高能源利用效率、改善人们的生活质量具有重要作用。
本文将重点探讨热传导问题的解题方法和相关应用。
热传导问题是一个复杂的多物理场耦合问题,涉及到热传导、流体流动、辐射传热等多个方面的耦合作用。
为了解决这个问题,需要运用热传导方程和相应的边界条件来进行求解。
热传导方程是描述热传导过程的基本方程之一,它可以用来表达热量在物体内部传递的速率。
通常情况下,热传导方程可以写成以下形式:∂u/∂t = α∇²u其中,u表示温度场,t表示时间,α为热传导系数,∇²为拉普拉斯算子。
通过求解这个偏微分方程,我们可以得到物体内部的温度分布,从而了解热量如何在物体内部进行传递。
解决热传导问题的方法有多种,其中最常用的是数值求解方法。
数值求解方法可以将热传导方程离散化,然后通过数值计算的方式逼近实际解。
常用的数值求解方法有有限差分法、有限元法和边界元法等。
这些方法通过将问题的区域划分为有限个小区域,然后在每个小区域内建立代表物体温度的方程,最终得到整个区域内温度的数值解。
在实际应用中,热传导问题的解题方法有很多。
例如,在工业生产中,可以利用热传导问题的解题方法优化生产线的布局,减少能源的消耗。
在建筑设计中,可以利用热传导问题的解题方法优化建筑的保温设计,提高建筑的能源利用效率。
在能源利用方面,可以利用热传导问题的解题方法,研究新型能源材料的热特性,从而提高能源材料的利用效率。
除了利用数值求解方法解决热传导问题外,还有一些其他的方法可以用来解决热传导问题。
例如,可以利用试验手段测量物体的温度分布,然后通过实验数据进行拟合,得到物体的热传导特性。
在实验室中,可以利用实验仪器来模拟热传导过程,从而研究热传导问题的相关性质。
总之,研究和解决热传导问题是一项非常重要的科学工作。
有限元二维热传导
有限元方法是一种数值计算方法,用于求解偏微分方程的近似解。
在二维热传导问题中,我们考虑一个矩形区域内的热传导问题,假设该区域的边界条件已知,我们需要求解该区域内的温度分布。
假设矩形区域的大小为L×H,我们将其划分为若干个小单元,每个小单元的大小为Δx×Δy。
我们用节点来表示每个小单元的顶点,每个节点的温度可以用一个未知数来表示。
因此,我们需要求解的未知数有L/Δx+1个,H/Δy+1个。
对于每个小单元,我们可以建立一个局部方程来描述其温度分布,例如:
k(x,y)ΔxΔy(∂T/∂x) + k(x,y)ΔxΔy(∂T/∂y) = Q(x,y)
其中,k(x,y)是该小单元内的热传导系数,Q(x,y)是该小单元内的热源或热汇。
将所有小单元的局部方程组合起来,可以得到整个区域的方程。
通过求解该方程,我们可以得到该区域内的温度分布。
有限元方法的优点是可以处理复杂的边界条件和非均匀的材料特性,但需要进行数值计算,计算量较大。