第16讲 三角形的基本概念和性质
- 格式:ppt
- 大小:136.00 KB
- 文档页数:19
第16讲三角形的基本知识全等三角形【试试火力】1.(2017•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.132. (2017贵州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90°C.100° D.30°3. (2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .4.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【把握火苗】火点1三角形的概念及其分类⎧⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎧⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎨⎪⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎪⎩⎩概念:由不在同一直线上的三条线段连接所得到的图形叫做三角形.角三角形按角分类角三角形角三角形分类不等边三角形底与腰不相等的等腰三角形按边分类等腰三角形三角形①②③④⑤火点2 与三角形有关的线段【掌握火候】1.判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段即可.2.“截长法”和“补短法”是证明和差关系的重要方法,无论用哪一种方法都是要将线段的和差关系转化为证明线段相等的问题,因此添加辅助线构造全等三角形是通向结论的桥梁.【突破火点】燃点1 三角形中的线段例1 (2017广西河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线 C.高 D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【思路点拨】不管是哪种类型的三角形,三角形的角平分线、中线和中位线都在三角形内部,但是锐角三角形的三条高在三角形内部,直角三角形的一条高在三角形内部,其余两条高与直角边重合,钝角三角形的一条高在三角形内部,其余两条高在三角形外部.方法归纳:解答本题的关键是熟练掌握三角形高、角平分线和中线的画法.燃点2 三角形中的角例2 (2017湖南株洲)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145° B.150° C.155° D.160°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x°,∠B=2x°,∠C=3x°,∴6x=180,∴x=30,∵∠BAD=∠B+∠C=5x=150°,故选B.方法归纳:当问题中含有平行线时,可利用平行线的性质将其转化为其他角;当该角是一个三角形的外角或内角时,根据三角形外角的性质和三角形内角和定理进行计算.燃点3 三角形的中位线例3 . (2017湖北宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.方法归纳:解答本题的关键是要依据题目条件,活用中位线定理的结论.燃点4 全等三角形的性质与判定例4如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【考点】全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)延长DE交AB于点G,连接AD.构建全等三角形△AED ≌△DFB(SAS),则由该全等三角形的对应边相等证得结论;(2)设AC与FD交于点O.利用(1)中全等三角形的对应角相等,等角的补角相等以及三角形内角和定理得到∠EOD=90°,即DF⊥AC.【解答】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定.方法归纳:证明两条边或两个角相等时,若两条边或两个角分别在两个三角形当中,通常证明这两条边或两个角所在的三角形全等.【冰火不容】1. (2017甘肃张掖)已知a,b,c是△ABC的三条边长,化简|a+b ﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.02. (2017江苏盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.3. (2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.124. (2017四川眉山)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114° B.122° C.123° D.132°5. 如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC ≌△DEF.6. 如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .7.(2017浙江湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是 5 .8. 如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.9. 如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.10. (1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A 与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.【展示火情】【试试火力】1.(2017•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.13【考点】K6:三角形三边关系.【专题】11 :计算题.【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.【解答】解:∵AB=5,AC=8,∴3<BC<13.故选D.【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.2. (2017贵州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90°C.100° D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3. (2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .【考点】KX:三角形中位线定理.【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得BC.【解答】解:∵D,E分别是△ABC的边AC和AC的中点,∴DE是△ABC的中位线,∵DE=7,∴BC=2DE=14.故答案是:14.4.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠CAB=∠DAE ,再由SAS 证明△BAC ≌△DAE ,得出对应边相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE ,在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS ),∴BC=DE .【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.【把握火苗】①首尾顺次 ②锐 ③直 ④钝 ⑤等边 ⑥锐角 ⑦直角顶点 ⑧一点 ⑨相等⑩一点 ⑪内心 ⑫相等 ⑬大于 ⑭小于 ⑮中点 ⑯平行 ○17一半 ○18180°○19互余 ○20和 ○21相等 ○22相等 【冰火不容】1. (2017甘肃张掖)已知a ,b ,c 是△ABC 的三条边长,化简|a+b ﹣c|﹣|c ﹣a ﹣b|的结果为( )A .2a+2b ﹣2cB .2a+2bC .2cD .0【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.2. (2017江苏盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.3. (2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.12【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.4. (2017四川眉山)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114° B.122° C.123° D.132°【考点】MI:三角形的内切圆与内心.【分析】根据三角形内角和定理求出∠ABC+∠ACB,根据内心的概念得到∠IBC=∠ABC,∠ICB=∠ACB,根据三角形内角和定理计算即可.【解答】解:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°﹣57°=123°,故选:C.5. 如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC ≌△DEF.【考点】全等三角形的判定.【专题】开放型.【分析】补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6. 如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .【考点】全等三角形的判定.【专题】开放型.【分析】添加条件AE=AB,根据等式的性质可得∠BAC=∠EAD,然后再用SAS证明△BAC≌△EAD.【解答】解:添加条件AE=AB,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠BAC=∠EAD,在△BCA和△EDA中,,∴△BAC≌△EAD(SAS).故答案为:AE=AB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2017浙江湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是 5 .【考点】L3:多边形内角与外角.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:5.8. 如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9. 如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.10. (1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A 与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】(1)根据翻折变换的性质以及三角形内角和定理以及平角的定义求出即可;(2)根据三角形角平分线的性质得出∠IBC+∠ICB=90°﹣∠A,得出∠BIC的度数即可;(3)根据翻折变换的性质以及垂线的性质得出,∠AFH+∠AGH=90°+90°=180°,进而求出∠A=(∠1+∠2),即可得出答案.【解答】解:(1)∠1+∠2=2∠A;(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°∵IB平分∠ABC,IC平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BIC=180°﹣(∠IBC+∠ICB),=180°﹣(90°﹣∠A)=90°+×65°=122.5°;(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,∴∠BHC=∠FHG=180°﹣∠A,由(1)知∠1+∠2=2∠A,∴∠A=(∠1+∠2),∴∠BHC=180°﹣(∠1+∠2).【点评】此题主要考查了图形的翻着变换的性质以及角平分线的性质和三角形内角和定理,正确的利用翻折变换的性质得出对应关系是解决问题的关键.。
三角形的基本概念和性质三角形是几何学中最基本的图形之一,它由三条线段相连而成。
本文将介绍三角形的基本概念和性质,帮助读者更好地理解和应用三角形。
一、基本概念1. 三角形定义:三角形是由三条线段组成的图形,三条线段分别称为三角形的边。
三个顶点将边相连,形成三个内角和三个外角。
2. 顶点:三角形的顶点是三个不共线的点,它们确定了三角形的形状和大小。
3. 边:三角形的边是连接顶点的线段,它们是三角形的基本构成元素。
4. 内角:三角形的内角是由两条边相交所形成的角,共有三个内角。
5. 外角:三角形的外角是由一条边和延长线所形成的角,共有三个外角。
二、性质1. 内角和:三角形的内角和等于180度,即∠A + ∠B + ∠C = 180°。
2. 外角和:三角形的外角和等于360度,即∠D + ∠E + ∠F = 360°。
3. 两边之和大于第三边:三角形的任意两边之和大于第三边,即AB + BC > AC,AC + BC > AB,AB + AC > BC。
4. 等边三角形:如果一个三角形的三条边长度相等,则该三角形是等边三角形。
等边三角形的三个内角也相等,都是60度。
5. 等腰三角形:如果一个三角形的两条边长度相等,则该三角形是等腰三角形。
等腰三角形的两个底角也相等。
6. 直角三角形:如果一个三角形拥有一个直角(90度),则该三角形是直角三角形。
直角三角形的两条边平方和等于斜边平方,即a² + b² = c²。
7. 锐角三角形:如果一个三角形的三个内角都小于90度,则该三角形是锐角三角形。
8. 钝角三角形:如果一个三角形中有一个内角大于90度,则该三角形是钝角三角形。
三、应用三角形的基本概念和性质在几何学和实际生活中有广泛的应用。
1. 测量:三角形的性质使得它成为测量地理距离、高度以及倾斜角度的重要工具。
2. 工程设计:在建筑和工程设计中,三角形的性质用于计算角度、边长和面积,保证结构的稳定和准确。
三角形的概念和性质三角形是几何学中重要的基本图形之一,由三条线段组成的封闭图形。
本文将介绍三角形的概念和常见性质。
一、三角形的概念三角形是由三条线段组成的封闭图形,其中每两条线段之间都有一个顶点。
三角形的三个边可以是不同长度的线段,而且不存在两条边之和小于第三条边的情况。
根据三条线段的长度关系,三角形可以分为等边三角形、等腰三角形和一般三角形。
1.等边三角形如果一个三角形的三条边长度相等,那么这个三角形就是等边三角形。
等边三角形的三个内角相等,每个内角都是60度。
2.等腰三角形如果一个三角形的两条边长度相等,那么这个三角形就是等腰三角形。
等腰三角形的两个底角相等。
3.一般三角形如果一个三角形的三条边长度各不相等,那么这个三角形就是一般三角形。
一般三角形的三个内角不相等。
二、三角形的性质除了按边长和角度分类外,三角形还有一些重要的性质。
1.内角和三角形的三个内角的和是180度。
这个性质被称为三角形内角和定理。
无论三角形是等边、等腰还是一般三角形,其内角和始终等于180度。
2.外角和对于任意一个三角形,其三个外角的和也是180度。
这个性质被称为三角形外角和定理。
三角形的一个内角和其相对的外角之和等于180度。
3.三边关系三角形的三条边之间也有一些特殊的关系。
(1)三角不等式三角不等式是指三条线段的长度满足以下关系:任意两条线段之和大于第三条线段的长度。
如果三条线段的长度满足不等式中的等号,那么这三条线段可以组成一个退化三角形。
(2)直角三角形如果一个三角形的一个内角是90度,我们称它为直角三角形。
直角三角形中较长的边被称为斜边,其他两条边分别称为直角边。
(3)勾股定理勾股定理是直角三角形最重要的性质之一,它表明直角三角形的斜边的平方等于其他两条边平方的和。
勾股定理可以表示为a² + b² = c²,其中a和b是直角三角形的直角边,c是直角三角形的斜边。
总结:三角形是由三条线段组成的封闭图形,根据边长和角度的关系可以分为等边三角形、等腰三角形和一般三角形。
1 三角形的基本概念和性质一、每个三角形都有三条边和三个角,它们是互相联系、互相制约的,这体现在以下方面: (l )边与边之间的关系:两边之和大于第三边,两边之差小于第三边. (2)角与角之间的关系:三个内角的和等于180.,即在△ABC 中有,∠A 十∠B +∠C =180°,由此即知三角形的一个外角等于与它不相邻的两个内角之和.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段叫做:三角形的中线.三角形的高:从三角形一个顶点向它的对边所在直线画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高.三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线.中位线平行于第三边且等于第三边的一半.三角形的外角平分线:三角形一个内角的邻补角的平分线与这个角的,对边的延长线相交,这个角的顶点和交点之间的线段叫做三角形的外角平分线.三角形的内角平分线上的点到这个角的两边的距离相等.同一个三角形中,大角的角平分线短于小角的角平分线.三角形中任何一边上的中线都把三角形分成面积相等的两部分.同一个三角形中,大边上的中线短于小边上的中线.三角形的任何一边上的高都垂直于该边,三角形的三条高未必都在三角形的内部.三角形的内角平分线、中线和高又有相同之处:在同一个三角形中,无论是三条中线,还是三条高,或者三条内角平分线,它们分别相交于一点.三角形顶角的平分线与底边上的高所夹的角等于两底角差的一半. 事实上,如图1-1,AT 为∠BAC 的平分线,AH 为BC 边上的高,令∠TAH 为θ,则2()BAH BAT θ=∠-∠ ()(90)(90)CAT CAH BAH CAH B C C B +∠-∠=∠-∠=︒-∠-︒-∠=∠=∠.图1-1在不混淆的情况下,有时,三角形的角平分线、中线和高也指它们所在的直线.例1:点1C 、1A 、1B 分别在△ABC 的边AB 、BC 和CA 上,且满足111111:::1:3AC CB BA AC CB B A ===.求证:△ABC 的周长p 与111A B C 的周长'p 之间有不等式:13'24p p p <<. (第15届全俄奥林匹克题)证明:如图1-2,图1-221注意到三角形两边之差小于第三边,故有1111AC CB A B -<,1111B A AC B C -<,1111C B BA C A -<, 设BC =a ,CA =b ,AB =c ,111B C a =,111C A b =,111A B c =,则13144a b c -<,13144b c a -<,13144c a b -<, 三式相加,得1111()2a b c a b c ++<++,即1'2p p <再在△ABC 各边上截取1212A A a =,1212B B b =,1212C C c =,易证明2114A B c =,2114B C a =,2114C A b =.又注意到三角形两边之和大于第三边,有12144a b c +>,121+44b a a >,12144c b b +>,三式相加,得1113()4a b c a b c ++>++,即3'4p p <,故13'24p p p <<. 例2:如图1-3,∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为( )A .450°B .540°C .630°D .720° 524671图1-3(1997年安徽部分地市联赛题)解:选B .理由:记∠1、∠2、∠3、∠4、∠5、∠6、∠7的顶点分别为A 、B 、C 、D 、E 、F 、G ,设AE 交BG 于M ,AD 交BG 于N .记∠EMN =∠8,∠DNM =a ,图1-3则1801808+1a MNA =︒-∠=︒-∠∠,即81180a +∠-∠=︒. 连结BD 、EG ,则234360α∠+∠+∠+=︒.1234567123456713603608720(81)720180540a α∠+∠+∠+∠+∠+∠+∠=∠+∠+∠+∠+∠+∠+∠=∠+︒-+︒-∠=︒-+∠-∠=︒-︒=︒从而()()()() 例3:在△ABC 中,∠B 的平分线与∠C 的外角平分线相交于点D .如果∠A =27°,那么∠BDC = .(2002年“我爱数学”夏令营竞赛题)解:填13.5°.理由:如图1-4,图1-4因为∠A=27°,∠BCE=1()2A ABC∠+∠,则111()13.5222BDC BCE CBD A ABC ABC A∠=∠-∠=∠+∠-∠=∠=︒例4:如图1-5,AA'、BB'分别是∠EAB、∠DBC的平分线.若AA'=BB'=AB,则∠BAC的度数为.(2003年全国联赛题)B'B'解:填12°,理由:设∠BAC的度数为x.因AB=BB',故∠B'BD=2x,∠CBD4x.又AB=AA',则∠AA'B=∠ABA'=∠CBD=4x.因为∠A'AB=1(180)2x︒-,故1(180)441802x x x︒-++=︒.解得12x=︒.例5:△ABC的边AB和BC上的高线(分别)不短于边长,试求该三角形的各个角度数.(第27届莫斯科奥林匹克题)解:如图1-6,设AD、CE分别是BC和AB上的高线,则AD≤AB,CE≤BC.但由题设,知AD≥BC,CE≥AB,所以AD=AB=CE=CB.从而D、B、E重合.如图1-7.图1-6图1-7B(D E)所以△ABC是以∠B为直角的等腰直角三角形,因此∠B=90°,∠A=∠C=45°.例6:如图1-8,AD是△ABC的中线,E是AD上的一点,且AE=13AD,CE交AB于点F.若AF =1.2cm,则AB=cm.(2000年山东省竞赛题)图1-8解:填6.理由:过点D 作DG ∥CF 交AB 于G ,图1-8则1BG BDGF DC==,即BG =GF .① 又由GD ∥FE ,有12AF AE GF ED ==②. 由此,即可求得FG =2.4cm ,故AB =6cm . 注:此例可以推广,设D 为BC 边上一点,且BD :DC =λ,E 是AD 上一点,且1AE AD n=,按此例求解方法,式①②分别变为BG GF λ=,(1)FG n AF =-,所以[(1)(1)1]AB n AF λ=-++.例7:在△ABC 中,P 、Q 分别是边AB 和AC 上的点,中线AM 与PQ 交于N .若AB :AP =5:2,AC :AQ =4:3,则AM :AN .(1995年四川省竞赛题)解:填2312.理由:如图1-9,过C 作CD ∥PQ 交AB 于D ,过M 作MK ∥PQ 交AB 于K ,则MK ∥CD .因BM =MC ,则BK =KD .从而1()2AK AD AB =+,于是1()2AK AD ABAP AP AP=+.而AK AM AD AC AB AN AP AQ==,,故115423=)()222312AM AB AC AN AP AQ +=+=(. 习题11.有长度为下列数值的几组线段:(i )3,4,5;(ii )32,42,52;(iii )111345,,;(iv )222111345,,. 其中能组成三角形的有( ).A .1组B .2组C .3组D .4组2.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的值等于( )A .360°B .450°C .540°D .720°(2003年“TRULY 信利杯”联赛题)第2题BF3.如图,∠CGE =a ,则∠A +∠B +∠C +∠D +∠E +∠F =( ) A .360°-a B .270°-a C .180°+a D .2a(1999年山东省竞赛题)第3题4.如图,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =a ,∠DBE =β,则∠DCE = (用a 、β表示). (1998年山东省竞赛题)第4题5.△ABC 中,∠CAB -∠B =90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交D 于N .已知CL =3,则CN = .(第1届“希望杯”邀请赛题)6.在△ABC 中,∠B =100°,∠C 的平分线交边AB 于E ,在边AC 上取点D ,使得∠CBD =20°,连结DE .则∠CED 的度数是 .(1993年北京市竞赛题)7.如图,CD 是Rt △ABC 斜边AB 上的高,∠A 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .(1995年天津市竞赛题)第7题D参考答案1.选B .理由:因只要看每组线段中较短的两条之和是否大于最长的线段即可.(i )3+4>5;(ii )32+42=52;(iii )111545+>;(iv )222111453+<,故其中只有(i )、(iii )两组符合“两边之和大于第三边”.2.选C .理由:连BE 、CF .设BD 与CE 交于M ,CE 与DF 交于N .由∠B +∠BMN +∠E +∠G =360°,∠FNM +∠F +∠A +∠C =360°,而∠BMN +∠FNM =∠D +180°,所以∠A +∠B +∠C +∠D +∠E +∠F +∠G =(∠A +∠C +∠F )+( ∠B +∠E +∠G )+ ∠D =360°-∠FNM +360°-∠BMN +∠D =720°-180°=540°.3.选D .理由:连AG 、DG ,则∠A +∠B +∠F +∠BGE +a +∠CGF =∠A +∠B +∠F +2(180°-a )+a =360°,∠C +∠D +∠E +∠CGF +a +∠BGE =∠C +∠D +∠E +2(180°-a )+a =360°,从而∠A +∠B +∠C +∠D +∠E +∠F =(∠A +∠B +∠F )+( ∠C +∠D +∠E )=a +a =2a .4.填1()2αβ+.理由:连AC 、BC ,由三角形的一个外角等于不相邻的两内角之和,则∠DCE =∠CDA +a +∠CEA =12(∠ADB +∠AEB )+a ,β=∠BDC +∠DCE +∠BEC =12(∠ADB +∠AEB )+∠DCE ,故∠DCE =12(∠ADB +∠AEB )+a =()DCE βα-∠+,即∠DCE =1()2αβ+. 5.填3.理由:如图,有∠NLC =∠B +∠LCB =(∠CAB -90°)+ ∠LCB =∠CAB -∠LCN +12∠ACB =∠CAB -(∠LCN 一∠ACL )一∠CAB -∠CAN =∠N .从而NC =LC =3.第5题6.填10°.理由:设BC 的反向延长线为BF ,则∠ABF =80°,∠ABD =80°,从而BA 为∠DBF 的平分线.而E 在BA 上,则E 到BF 与BD 的距离相等.又E 在∠ACB 的平分线上,则E 到CF 与CA 的距离相等,从而可知,E 到∠ADB 的两边距离相等,所以E 在∠ADB 的平分线上,则∠ADE =12∠ADB .故∠CED =∠ADE -∠ACE =10°.7.由∠DCB =90°-∠B =∠BAC ,知∠HCG =12∠DCB =12∠BAC =∠HAD .而∠CHG =∠AHD ,从而∠CGH =180°-(∠HCG +∠CHG )=180°-(∠HAD +∠AHD )=90°,知AG ⊥CG ,即AG ⊥CF .此时,∠FCA =90°-∠GAC =90°-∠GAF =∠CF A ,故AC =AF ,即点A 在CF 的垂直平分线AG 上.又H在AG上,则HC=HF,即知∠HFC=∠FCH=∠FCB,故HF∥BC.。
三角形的定义及性质三角形是几何学中最基本的图形之一,它由三条线段组成,每两条线段之间的交点称为顶点,两条线段之间的边称为边。
本文将探讨三角形的定义以及其常见的性质。
一、三角形的定义在几何学中,三角形可以定义为一个有三条边的图形。
每一条边都连接两个顶点,而每两条边之间的交点也是一个顶点。
三角形的三个顶点分别用A、B、C表示,三条边分别用a、b、c表示。
根据边长的关系,三角形可以分为以下三种类型:1. 等边三角形:如果三条边的长度都相等,即a=b=c,那么这个三角形就是等边三角形。
2. 等腰三角形:如果两条边的长度相等,即a=b或b=c或a=c,那么这个三角形就是等腰三角形。
3. 不等边三角形:如果三条边的长度都不相等,即a≠b≠c,那么这个三角形就是不等边三角形。
二、三角形的性质三角形有许多有趣的性质,下面将介绍其中一些常见的性质:1. 三角形的内角和为180度:对于任意三角形ABC,其内角A、B、C的度数之和等于180度。
这是因为在平面几何中,三角形的内角和总是固定的。
2. 外角等于两个不相邻内角之和:三角形的每个内角都有一个对应的外角,它是与内角不相邻的另外一条边所在的角。
对于三角形ABC来说,外角A等于内角B和C的度数之和,外角B等于内角A和C的度数之和,外角C等于内角A和B的度数之和。
3. 三边关系:在三角形ABC中,两边之和大于第三边,任意两边之差小于第三边。
换句话说,对于三角形ABC来说,a+b>c,a+c>b,b+c>a。
这个性质被成为三边关系定理,它是判断三条线段能否组成三角形的重要条件。
4. 直角三角形:如果三角形中有一个内角等于90度,那么这个三角形就是直角三角形。
根据勾股定理,直角三角形的两条直角边的平方之和等于斜边的平方,即a²+b²=c²。
5. 等腰三角形的性质:对于等腰三角形ABC来说,它有以下一些独特的性质:- 两个底角(即底边对应的内角)是相等的;- 等腰三角形的高(即从顶点到底边的垂直距离)是中线、中位线、角平分线和高线;- 等腰三角形可以划分为两个全等的直角三角形。
三角形的基本概念与性质三角形是平面几何中最基本的图形之一,它由三条边和三个角组成。
本文将介绍三角形的基本概念和性质,包括三角形的定义、分类、元素、角度关系以及三角形的定理等。
一、三角形的定义三角形是由三条线段连接起来的图形,其中每个线段都被称为一个边,而连接两个边的点则被称为顶点。
三角形的三个顶点围成一个封闭的区域。
二、三角形的分类根据三角形的边长以及角度大小,可以将三角形分为以下几类:1. 根据边长分类(1) 等边三角形:三条边的长度均相等。
(2) 等腰三角形:两条边的长度相等。
(3) 普通三角形:三条边的长度都不相等。
2. 根据角度大小分类(1) 钝角三角形:一个角大于90°。
(2) 直角三角形:唯一一个角等于90°。
(3) 锐角三角形:三个角均小于90°。
3. 根据边长和角度大小综合分类(1) 正三角形:既是等边三角形,又是等腰三角形。
(2) 等腰直角三角形:既是等腰三角形,又是直角三角形。
三、三角形的元素三角形除了边和角之外,还有一些重要的元素:1. 顶点角:三角形的三个顶点所对应的角。
2. 底边:连接两个顶点的边。
3. 高:从底边到顶点所做的垂直线段。
四、三角形的角度关系1. 内角和定理:三角形内角的和等于180°。
2. 外角和定理:三角形的外角的和等于360°。
五、三角形的性质与定理1. 等腰三角形的性质:(1) 等腰三角形的两底角相等。
(2) 等腰三角形的高、中线、角平分线和垂心都是重合的。
2. 直角三角形的性质(勾股定理):(1) 直角三角形的两条直角边的平方和等于斜边的平方。
(2) 根据勾股定理可以判断一个三角形是否为直角三角形。
3. 三角形的面积公式(海伦公式):三角形的面积可以用海伦公式进行计算,公式如下:面积= √[s(s-a)(s-b)(s-c)]其中,s为三角形的半周长,a、b、c为三角形的三条边的长度。
通过了解三角形的基本概念与性质,我们可以更好地理解和分析三角形相关的问题。
三角形的基本概念与性质三角形是几何学中最基本的图形之一,具有广泛的应用和重要的性质。
在本文中,我们将探讨三角形的基本概念和一些常见的性质,以加深我们对三角形的理解。
一、基本概念三角形是由三条边和三个角组成的图形。
根据边的长度,我们可以将三角形分为三类:等边三角形、等腰三角形和一般三角形。
1.等边三角形:假设三条边的长度都相等,那么这个三角形就是等边三角形。
等边三角形的三个角都是60度。
2.等腰三角形:假设三角形的两条边的长度相等,那么这个三角形就是等腰三角形。
等腰三角形的两个角也是相等的。
3.一般三角形:如果三角形的三条边的长度都不相等,那么这个三角形就是一般三角形。
除了边的长度外,三角形还可以根据角的大小来进行分类。
根据角的大小,我们可以将三角形分为三类:锐角三角形、直角三角形和钝角三角形。
1.锐角三角形:三个角都是锐角的三角形称为锐角三角形。
2.直角三角形:拥有一个90度角的三角形称为直角三角形。
直角三角形的两边相互垂直。
3.钝角三角形:拥有一个大于90度角的三角形称为钝角三角形。
二、性质除了基本的分类外,三角形还具有一些重要的性质。
1.三角形的内角和性质:三角形的三个内角的和总是等于180度。
这个性质被称为三角形的内角和定理。
2.直角三角形的性质:直角三角形是三角形中最特殊的一种。
如果一个三角形有一个90度角,那么它的另外两个角的和总是等于90度。
此外,直角三角形的两条直角边的平方和等于斜边的平方。
这个性质被称为毕达哥拉斯定理。
3.等腰三角形的性质:等腰三角形的两边相等,并且其底边的中线也是高和中线。
此外,等腰三角形的顶角的平分线也是高和中线。
4.等边三角形的性质:等边三角形的三边都相等,三个角也都是60度。
此外,等边三角形的高、中线、中位线、角平分线和垂直平分线都是同一条线。
5.海伦公式:对于一般的三角形,我们可以使用海伦公式来计算其面积。
海伦公式如下:设三角形的三边长度分别为a、b、c,半周长为s,则三角形的面积S可以计算如下:S = √(s(s-a)(s-b)(s-c))。