预应力混凝土受弯构件的应力计算
- 格式:ppt
- 大小:689.50 KB
- 文档页数:15
第十二章预应力混凝土受弯构件的应力损失第一节预应力混凝土梁各工作阶段的受力分析一、 施工阶段 二、 使用阶段预应力混凝土结构 (prestressed concrete structure 从张拉预应力筋 (prestressed reinforcement 开始, 到承受外荷载,直至最后破坏,大致可分为四个受力阶段,即预加应力阶段、使用荷载作用阶段、 裂缝出现阶段和破坏阶段。
以后张法(post-tensioning method)预应力混凝土梁,如图为例,说明各个阶段所承受的荷载、预加 力大小和跨中截面的受力情况。
一、施工阶段(一) 预加应力阶段1、 时间:从预应力筋的张拉开始,至预应力筋的锚固和预应力传递。
2、 荷载:主要是偏心预压力(即预加应力的合力)N 及梁的自重P3、 工作状态:弹性阶段,可按材力公式计算。
4、受力特点:预应力损失最小,预加力大,荷载小5、本阶段的设计计算要求是:7 rtf■ V二、钢筋预应力损失值的估算《公桥规》规定,在计算构件截面应力和确定钢筋的控制应力时,应考虑由下列因素引起的六种预应力损失:a、预应力钢筋与管壁之间的摩擦损失cm ;b、锚具变形、钢筋回缩、分块拼装构件的接缝压缩损失C2 ;c、混凝土加热养护时,预应力钢筋与台座之间的温度损失d、混凝土的弹性压缩损失C 14 ;e、预应力钢筋的应力松弛损失c 15 ;f、混凝土的收缩和徐变损失(T 16 o(一)钢筋与管道壁之间的摩擦引起的应力损失1、原因:这种预应力损失出现在后张法构件中。
引起预应力损失的摩擦阻力由两部分组成:一是曲线布置的预应力钢筋,张拉时钢筋对管道内壁的垂直挤压力,导致产生摩阻力,其值随钢筋弯曲角度的总和而增加,这部分阻力较大;二是由于管道位置的偏差和不光滑所造成的,这部分阻力相对小些,取决于钢筋的长度、钢筋与孔道之间的摩擦系数、以及孔道成型的施工质量等。
如图。
2、计算:3、为了减小摩擦阻力损失,一般可采用如下措施:a、采用两端同时张拉;b、进行超张拉。
混凝土的初始应力计算公式混凝土是一种常用的建筑材料,其性能受到多种因素的影响。
其中,混凝土的初始应力是一个重要的参数,它可以反映混凝土在受力前的状态,对于设计和施工都具有重要的意义。
本文将介绍混凝土的初始应力计算公式及其相关知识。
混凝土的初始应力是指在混凝土受到外部加载之前,由于自重和预应力等因素所引起的应力状态。
在混凝土结构设计和施工中,需要准确地计算混凝土的初始应力,以保证结构的安全性和稳定性。
混凝土的初始应力计算公式可以通过材料力学的原理和实验数据来推导和确定。
混凝土的初始应力计算公式可以分为两种情况:自重引起的应力和预应力引起的应力。
首先,我们来看自重引起的应力。
混凝土的自重是由于其密度和体积所引起的,可以通过材料力学的基本原理来计算。
混凝土的自重引起的应力可以用以下公式来表示:σ_self = ρgh。
其中,σ_self表示混凝土的自重引起的应力,ρ表示混凝土的密度,g表示重力加速度,h表示混凝土的高度。
这个公式可以用来计算混凝土受力前的应力状态,对于结构设计和施工都具有重要的意义。
接下来,我们来看预应力引起的应力。
预应力是指在混凝土施工过程中,通过施加预应力钢筋或预应力锚具来引起混凝土内部的应力状态。
预应力引起的应力可以用以下公式来表示:σ_pre = P/A。
其中,σ_pre表示预应力引起的应力,P表示预应力的大小,A表示混凝土截面的面积。
预应力引起的应力是通过施加预应力来调整混凝土的内部应力状态,以提高混凝土的承载能力和变形性能。
在实际工程中,混凝土的初始应力计算需要考虑多种因素,如混凝土的材料性能、结构形式、外部加载等。
可以通过有限元分析、试验和经验公式等方法来进行计算。
此外,混凝土的初始应力还受到温度、湿度等环境因素的影响,需要进行综合考虑。
总之,混凝土的初始应力是混凝土受力前的应力状态,对于结构设计和施工都具有重要的意义。
混凝土的初始应力计算公式可以通过材料力学的原理和实验数据来确定,需要考虑多种因素,以保证结构的安全性和稳定性。
第10章 预应力混凝土构件10.1选择题1.《混凝土结构设计规范》规定,预应力混凝土构件的混凝土强度等级不应低于( B )。
A. C20 ;B. C30 ;C. C35 ;D. C40 ; 2.预应力混凝土先张法构件中,混凝土预压前第一批预应力损失I l σ应为( C )。
A. 21l l σσ+; B. 321l l l σσσ++ ; C. 4321l l l l σσσσ+++ ; D. 54321l l l l l σσσσσ++++;3.下列哪种方法可以减少预应力直线钢筋由于锚具变形和钢筋内缩引起的预应力损失1l σ( C )。
A. 两次升温法;B. 采用超张拉;C. 增加台座长度;D. 采用两端张拉;4.对于钢筋应力松弛引起的预应力的损失,下面说法错误的是:( C )。
A. 应力松弛与时间有关系;B. 应力松弛与钢筋品种有关系;C. 应力松弛与张拉控制应力的大小有关,张拉控制应力越大,松弛越小;D. 进行超张拉可以减少,应力松弛引起的预应力损失; 5.其他条件相同时,预应力混凝土构件的延性比普通混凝土构件的延性( C )。
A. 相同;B. 大些;C. 小些;D. 大很多;6.全预应力混凝土构件在使用条件下,构件截面混凝土( A )。
A. 不出现拉应力;B. 允许出现拉应力;C. 不出现压应力;D. 允许出现压应力; 7.《混凝土结构设计规范》规定,当采用钢绞线、钢丝、热处理钢筋做预应力钢筋时,混凝土强度等级不应低于( D )。
A. C20 ;B. C30 ;C. C35 ;D. C40 ; 8.《规范》规定,预应力钢筋的张拉控制应力不宜超过规定的张拉控制应力限值,且不应小于( B )。
A .ptk f 3.0; B .ptk f 4.0; C .ptk f 5.0; D .ptk f 6.0;9.预应力混凝土后张法构件中,混凝土预压前第一批预应力损失I l σ应为( A )。
A. 21l l σσ+; B. 321l l l σσσ++ ; C. 4321l l l l σσσσ+++ ; D. 54321l l l l l σσσσσ++++;10.先张法预应力混凝土构件,预应力总损失值不应小于( 2/100mm N )。
第10章 预应力混凝土构件10.1选择题1.《混凝土结构设计规范》规定,预应力混凝土构件的混凝土强度等级不应低于( B )。
A. C20 ;B. C30 ;C. C35 ;D. C40 ; 2.预应力混凝土先张法构件中,混凝土预压前第一批预应力损失I l σ应为( C )。
A. 21l l σσ+; B. 321l l l σσσ++ ; C. 4321l l l l σσσσ+++ ; D. 54321l l l l l σσσσσ++++;3.下列哪种方法可以减少预应力直线钢筋由于锚具变形和钢筋内缩引起的预应力损失1l σ( C )。
A. 两次升温法;B. 采用超张拉;C. 增加台座长度;D. 采用两端张拉;4.对于钢筋应力松弛引起的预应力的损失,下面说法错误的是:( C )。
A. 应力松弛与时间有关系;B. 应力松弛与钢筋品种有关系;C. 应力松弛与张拉控制应力的大小有关,张拉控制应力越大,松弛越小;D. 进行超张拉可以减少,应力松弛引起的预应力损失; 5.其他条件相同时,预应力混凝土构件的延性比普通混凝土构件的延性( C )。
A. 相同;B. 大些;C. 小些;D. 大很多;6.全预应力混凝土构件在使用条件下,构件截面混凝土( A )。
A. 不出现拉应力;B. 允许出现拉应力;C. 不出现压应力;D. 允许出现压应力; 7.《混凝土结构设计规范》规定,当采用钢绞线、钢丝、热处理钢筋做预应力钢筋时,混凝土强度等级不应低于( D )。
A. C20 ;B. C30 ;C. C35 ;D. C40 ; 8.《规范》规定,预应力钢筋的张拉控制应力不宜超过规定的张拉控制应力限值,且不应小于( B )。
A .ptk f 3.0; B .ptk f 4.0; C .ptk f 5.0; D .ptk f 6.0;9.预应力混凝土后张法构件中,混凝土预压前第一批预应力损失I l σ应为( A )。
A. 21l l σσ+; B. 321l l l σσσ++ ; C. 4321l l l l σσσσ+++ ; D. 54321l l l l l σσσσσ++++;10.先张法预应力混凝土构件,预应力总损失值不应小于( 2/100mm N )。
预应力混凝土结构构件计算一、预应力损失值计算 (一)基本公式1.张拉端锚具变形和钢筋内缩引起的预应力损失σl 1 (1)对预应力直线钢筋S1E l al =σ(9-1) 式中 a ——张拉端锚具变形和钢筋内缩值(mm ),按表9-2取用❖;l ——张拉端至锚固端之间的距离(mm );E S ——预应力筋弹性模量(N/mm 2)。
表9-2 锚具变形和钢筋内缩值a注 ①表中的锚具变形和钢筋内缩值也可根据实测数据或有关规范规定;②其他类型(如大型预应力钢索)的锚具变形和钢筋内缩值应根据专门研究或试 验确定。
(2)对于后张法构件的预应力曲线钢筋(预应力筋为圆弧曲线,对应的圆心角θ不大于30o)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛+f c f con 112l x k r l x l μσσ= (9-2)⎪⎪⎭⎫⎝⎛+=k r aE l f c con s1000μσ(9-3)式中l f _____预应力曲线钢筋与孔道壁之间反向摩擦影响长度,m ;r c _____圆弧曲线预应力筋的曲率半径,m ;μ_____预应力筋与孔道壁的摩擦系数,按表9-3取用;κ_____考虑孔道每米长度局部偏差的摩擦系数,按表9-3取用; x _____张拉端至计算截面的距离,m ,且应符合x ≤l f 的规定;其余符号的意义同前。
表9-3 摩 擦 系 数κ、μ注:当采用钢丝束的钢制锥形锚具时,尚应考虑锚环口处的附加摩擦损失,此值可根据实测数据确定。
2.预应力筋与孔道壁之间的摩擦引起的预应力损失σl 2⎪⎭⎫ ⎝⎛-=+μθσσkx l e11con 2 (9-4)式中 x ——张拉端至计算截面的孔道长度,m ,当曲线曲率不大 时也可近似取该段孔道在纵 轴上的投影长度;θ——从张拉端至计算截面曲线 孔道部分切线的夹角,rad 。
当kx +μθ≤0.2时,σl 2可按下列近 似公式计算σl 2 =(kx +μθ)σcon (9-5)3.混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差引起的预应力损失σl 325s 3N/mm 2100.200001.0t tt E l ∆=∆⨯⨯⨯=∆=ασ(9-6)式中 α——钢筋的温度线膨胀系数,近似取为1×10—5/℃;∆t ——混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差; E s ——预应力钢筋的弹性模量。
第6章预应力混凝土结构构件计算要求6.1 一般规定第6.1.1条预应力混凝土结构构件,除应根据使用条件进行承载力计算及变形、抗裂、裂缝宽度和应力验算外,尚应按具体情况对制作、运输及安装等施工阶段进行验算。
当预应力作为荷载效应考虑时,其设计值在本规范有关章节计算公式中给出。
对承载能力极限状态,当预应力效应对结构有利时,预应力分项系数应取1.0;不利时应取1.2。
对正常使用极限状态,预应力分项系数应取1.0。
第6.1.2条当通过对一部分纵向钢筋施加预应力已能使构件符合裂缝控制要求时,承载力计算所需的其余纵向钢筋可采用非预应力钢筋。
非预应力钢筋宜采用HRB400级、HRB335级钢筋,也可采用RRB400级钢筋。
第6.1.3条预应力钢筋的张拉控制应力值σcon不宜超过表6.1.3规定的张拉控制应力限值,且不应小于0.4fptk.当符合下列情况之一时,表6.1.3中的张拉控制应力限值可提高0.05fptk: 1要求提高构件在施工阶段的抗裂性能而在使用阶段受压区内设置的预应力钢筋;2要求部分抵消由于应力松驰、摩擦、钢筋分批张拉以及预应力钢筋与张拉台座之间的温差等因素产生的预应力损失。
张拉控制应力限值表6.1.3第6.1.4条施加预应力时,所需的混凝土立方体抗压强度应经计算确定,但不宜低于设计混凝土强度等级值的75%。
第6.1.5条由预加力产生的混凝土法向应力及相应阶段应力钢筋的应力,可分别按下列公式计算:1先张法构件由预加力产生的混凝土法向应力σpc =Np0/A±Np0ep0/Iy(6.1.5-1)相应阶段预应力钢筋的有效预应力σpe =σcon-σl-αEσpc(6.1.5-2)预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力σp0=σcon-σl(6.1.5-3)2后张法构件由预应力产生的混凝土法向应力σpc =Np/An±Npepn/Inyn±M2/Inyn(6.1.5-4)相应阶段预应力钢筋的有效预应力σpe =σcon-σl(6.1.5-5)预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力σp0=σcon-σl+αEσpc(6.1.5-6)式中An--净截面面积,即扣除孔道、凹槽等削弱部分以外的混凝土全部截面面积及纵向非预应力钢筋截面面积换算成混凝土的截面面积之和;对由不同混凝土强度等级组成的截面,应根据混凝土弹性模量比值换算成同一混凝土强度等级的截面面积;A--换算截面面积:包括净截面面积以及全部纵向预应力钢筋截面面积换算成混凝土的截面面积;In--换算截面惯性矩、净截面惯性矩;epn--换算截面重心、净截面重心至预应力钢筋及非预应力钢筋合力点的距离,按本规范第6.1.6条的规定计算;y 0、yn--换算截面重心、净截面重心至所计算纤维处的距离;σl--相应阶段的预应力损失值,按本规范第6.2.1条至6.2.7条的规定计算;αE --钢筋弹性模量与混凝土弹性模量的比值:αE=Es/Ec,此处,Es按本规范表4.2.4采用,Ec按本规范表4.1.5采用;N p0、Np--先张法构件、后张法构件的预应力钢筋及非预应力钢筋的合力,按本规范第6.1.6条计算;M 2--由预加力Np在后张法预应力混凝土超静定结构中产生的次弯矩,按本规范第6.1.7条的规定计算。