平面直角坐标系中点的平移
- 格式:ppt
- 大小:1.71 MB
- 文档页数:13
第一章 实数1.4 平面直角坐标系第二课时 坐标平移规律及点关于坐标轴的轴反射一.预习题纲 (1)学习目标展示1.掌握平面直角坐标系中坐标平移公式和轴反射公式 2.会通过建立平面直角坐标系来描述物体的位置(2)预习思考二.经典例题例1.如图1,方格纸中的每个小格点都是边长为1个单位长度的正方形,我们把顶点在格点上的三角形叫做“格点三角形”,图中的△ABC 就是格点三角形,在建立平面直角坐标系以后,点B 的坐标为(—1,—1),把△ABC 向左平移3个单位后得到△A 1B 1C 1,画出△A 1B 1C 1,并分别写出A 1、B 1、C 1的坐标.【分析】由图可知A 点的坐标为(3,3),C则原图形中各点的纵坐标都不变,横坐标都减去3,即可求得平移后各对应点的坐标. 【简解】A 1(0,3);B 1(—4,—1);C 1(2,—1),顺次连结这三个点即可得到△A 1B 1C 1 如图2所示.【规律总结】在平面直角坐标系中,点的坐标平移规律为:左、右平移,纵坐标不变,横坐标减增(正向增,负向减);上、下平移,横坐标不变,纵坐标增减(正向增,负向减).记忆口诀为:左减右加,上加下减三.易错例题例2.在平面直角坐标系中,点P (3,4)关于x 轴轴反射后像点的坐标为 ;关于y 轴轴反射后像点的坐标为【错解】点P 关于x 轴轴反射后像点的坐标为(-3,4);点P 关于y 轴轴反射后像点的坐标为(3,-4)【错因分析】错解的原因是对平面直角坐标系中轴反射规律没有掌握好,从而弄错了符号。
【正解】点P关于x轴轴反射后点的坐标为(3,-4);点P关于y轴轴反射后像点的坐标为(-3,4)【点拨】平面直角坐标系中,点关于坐标轴轴反射后,对应点的坐标之间的关系是:关于哪个坐标轴对称,哪个坐标不变,另一个坐标变成相反数。
一.课前预习1.平移不改变图形的,只改变图形的2.在平面直角坐标系中,A点坐标为(1,3),将A点向右平移2个单位后到B点,则B 点与A点横坐标的关系是,纵坐标的关系是3.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(1,3),B(3,2),C(0,0),分别作A、B、C三点关于y轴的轴反射,对应点分别为A/,B/,C/,则A/,B/,C/三点的坐标分别为;;二.当堂训练知识点一:平面直角坐标系中点的坐标平移规律1.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(2009天津)在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A/B/,若点A/的坐标为(-2,2),则点B的坐标为()A.(4,3)B.(3,4)C.(-1,-2)D.(-2,-1)3.(2009荆门)将点P向左平移2个单位,再向上平移1个单位得到P/(-1,3),则点P 的坐标是____4.如图1,将平行四边形ABCD向左平移2个单位长度,可以得到平行四边形A/B/C/D/,画出平移后的图形,并指出各个顶点的坐标Array知识点二:平面直角坐标系中的轴反射规律5.(2009郴州)点P(3,-5)关于x轴轴反射后的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(36.(2009钦州)点P(-2,1)关于 y轴轴反射后点的坐标为(A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,7.(2009吉林)如图2,点A关于y轴的轴反射后的点的坐标是.知识点三:用坐标表示地理位置8.确定一个地点的位置,下列说法中正确的是()A.偏西30°,相距500米B.东北方向C.距此200米D.距此北500米y O(01)B , (20)A , 1(3)A b , 1(2)B a , 图1 x 9.芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200 米到家,则丽丽家在芳芳家的 ( )A.东南方向B.西南方向C.东北方向D.西北方向课时测评(时间:40分钟,满分100分)一.选择题(每小题5分,共25分)1.(2009南充)在平面直角坐标系中,点A (2,5)与点B 关于y 轴轴反射,则点B 的坐标是( ) A .(-5,-2) B .(-2,-5) C .(-2,5) D .(2,-5) 2.(2009威海)如图1,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至A 1B 1,则a+b 的值为( ) A .2 B .3 C .4 D .53.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位 4.已知三角形的三个顶点坐标分别是(-4,-1)、(1,1)、(-1,4),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标依次是( ) A .(-2,2),(3,4),(1,7) B .(-2,2),(4,3),(1,7) C .(2,2),(3,4),(1,7) D .(2,-2),(3,3),(1,7) 5.(2009襄樊)如图2,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴轴反射的点的坐标是( ) A .()01-, B .()11, C .()21-,D .()11-, 二.填空题(每小题5分,共25分) 6.(2008乌鲁木齐)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 7.(2009梧州)将点A (1,-3)向右平移2个单位,再向下平移2个单位后得到点B (a ,b ),则ab = . 8.(2009包头)线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标是9.(2009常德)如图3,△ABC 向右平移4个单位后图3北南西东B A DCOM图4图2得到△A′B′C′,则A′点的坐标是.10.如图4,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的点是三.解答题(本题共50分)12.(本题12分)如图6,将三角形ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1,画出三角形A1B1C1,并写出点A1、B1、C1的坐标。
坐标系下平移的三种形式黄山杨叶道我们已经知道图形的平移与平移的方向和平移的距离有关,但平移后的图形与原图形的形状和大小是一致的,只是位置不同而已,且图形上每一点平移的方向和距离都是相同的.因此,研究图形的平移的关键是点的平移.在坐标平面内,研究点的平移十分简单,主要表现为以下三种平移.一、沿x轴的方向平移我们知道,当点A(4,-3)沿与x轴平行的方向向左平移5个单位时,平移后得到的点B的纵坐标不变,仍是-3,而横坐标为4-5=-1,因此,平移后点的坐标是(-1,-3);类似地,如果点A(4,-3)沿x轴方向向右平移5个单位,则点A的纵坐标仍然不变,横坐标变为4+5=9,于是A点平移后的坐标为(9,-3).一般地,设点P(x,y)沿x轴方向平移n(n>0)个单位后的点是Q,则向左平移时,点Q的坐标是(x-n,y);向右平移时,点Q的坐标是(x+n,y).这就是说:“点沿横轴方向平移时,纵坐标不变,横坐标左减右加.”例1已知点A的坐标是(-2,3),线段AB∥x轴,且AB=2,求点B的坐标.解析:任何两点中的一点都可以看作是由另一点平移得到的,这里的AB=2表明点A、B之间的距离是2,因此,把点A平移2个单位可得点B.注意到AB//x轴,说明点A沿x 轴方向平移2个单位可得点B,可究竟是向左还是向右平移呢?题目并无说明,因此需要一一讨论.如果是向左平移,那么点B的坐标是(-4,3);如果是向右平移,那么点B的坐标是(0,3).因此,点B的坐标是(-4,3)或(0,3).跟踪训练1在平面直角坐标系中,点P(-1,1)沿与x轴平行的方向向右平移2个单位后得到点P1,则点P1在【】A.第一象限B.第二象限C..第三象限D.第四象限二、沿y轴的方向平移与上述探索方法一样,易得如下结论:设点P(x,y)沿y轴方向平移n(n>0)个单位后的点是Q,则向上平移时,点Q的坐标是(x,y+n);向下平移时,点Q的坐标是(x,y-n);这就是说:“点沿纵轴方向平移时,横坐标不变,纵坐标上加下减.”例2在数学兴趣小组的一次活动中,小明通过建立平面直角坐标系发现旗杆底端位置在点A(3,1),顶端在点B(3,10),升旗前旗帜的三个顶点的位置分别在点P(3,2),Q(3,3),R(5,2),写出当旗帜的顶端Q升到杆顶B处时,点P和R对应的点的坐标.解析:显然,旗杆平行于y轴,所以升旗时旗帜是沿y轴方向向上平移,由于点Q从(3,3)平移到点(3,10),平移的距离是10-3=7,所以点P(3,2)沿y轴方向向上平移7个单位后是点P′(3,9),点R(5,2)向上平移7个单位后是点R′(5,9).跟踪训练2在平面直角坐标系中,将点A(5,6)向下平移6个单位后的点的坐标是【】A.(11,6)B.(5,0)C.(5,12)D.(-1,6)三、不沿坐标轴的方向平移如果点的平移方向既不是沿横轴方向,也不是沿纵轴方向,那么它可以看作既沿横轴方向平移,又沿纵轴方向平移.此时,我们可以通过上述的两种平移来解决.例3如何平移点A(-5,3),使它到达点B(2,-1)?解析:先从横坐标来考虑,由于点A到点B,横坐标由-5增加到2,可知点A向右平移2-(-5)=7个单位长度;纵坐标由3减小到-1,可知只需要再把点(2,3)向下平移3-(-1)=4个单位长度.因此,把点A向右平移7个单位,再向下平移4个单位可得点B.跟踪训练3将点A(2,1)先向左平移()个单位,再向下平移()个单位可得到点(-2,-2),则括号内的数依次应填【】A.2,1B.0,-1C..4,3D.3,4答案1.A2.B3. C。
学会一口诀轻松点平移平移作为一种重要的几何变换,在数学中有着广泛的应用,因此学好平移,对于广大中学生而言意义重大而深远。
但在现实的学习中,学生的学习效果却不太理想,针对这一现状,笔者认真阅读了人教版初中数学教材中点平移的相关知识,并在此基础上对数轴上的点平移和平面直角坐标系内的点平移的规律做了细致而深入的研究,发明了一个简单的点平移口诀,现与大家一起分享。
点平移口诀:左右横,上下纵,正加负减。
使用说明:①该口诀适用于数轴上、平面直角坐标系内点的平移;②“左右横”指左右移动时变横坐标,“上下纵”指上下移动时变纵坐标,“正加负减”指点移动方向为坐标轴的正方向就加,负方向就减。
一、现举一例详述方法把点A(-2,3)依次做如下四次平移:①向左平移2个单位;②向右平移-1个单位;③向上平移4个单位;④向下平移-5个单位;平移后得到点B,求点B的坐标。
分析简解将点A(-2,3)“向左平移2个单位”,由点平移口诀可知:“向左”表示变横坐标,又“左”代表横轴的“负”方向,所以平移之后的新点的坐标为:(-2-2,3);同理:“向右平移-1个单位”表示“横坐标+(-1)”,“向上平移4个单位” 表示“纵坐标+4”,“向下平移-5个单位” 表示“纵坐标-(-5)”,所以点B的坐标为:B(-2-2+(-1),3+4-(-5)),化简后可得点B坐标为:(-5,12)。
二、趣题重现难题巧解蜗牛能成功吗?一只蜗牛不小心掉进一口枯井里。
它趴在井底哭了起来,一只癞蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。
我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有3米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每次爬一段,总能爬出去!”。
平面直角坐标系中的点➢ 知识网一、对称类点点()P a b ,关于x 轴的对称点是()P a b '-,,即横坐标不变,纵坐标互为相反数. 点()P a b ,关于y 轴的对称点是()P a b '-,,即纵坐标不变,横坐标互为相反数. 点()P a b ,关于坐标原点的对称点是()P a b '--,,即横坐标互为相反数,纵坐标也互为 相反数. 二、平移⑴ 点平移:①将点()x y ,向右(或向左)平移a 个单位可得对应点()x a y +,或()x a y -,. ②将点()x y ,向上(或向下)平移b 个单位可得对应点()x y b +,或()x y b -,. ⑵ 图形平移:①把一个图形各个点的横坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化. 三、平面直角坐标系中的特殊计算 1.中点坐标公式:已知11(,)A x y ,22(),B x y ,则中点坐标为:121222,x x y y ++⎛⎫⎪⎝⎭.2.两点之间的距离公式:已知11(),A x y ,22(),B x y ,则AB 12|AB x x -.【例1】在平面直角坐标系中,()45P -,关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点是 .【练1】 ⑴ 点()35P -,关于x 轴对称的点的坐标为( ) A .()35--,B .()53,C .()35-,D .()35,⑵ 点()21P -,关于y 轴对称的点的坐标为( ) A .()21--,B . ()21,C .()21-,D .()21-,⑶ 在平面直角坐标系中,点()23P -,关于原点对称点P '的坐标是 .⑷ 点()23,P 关于直线3x =的对称点为 ,关于直线5y =的对称点为 .⑸ 已知点()121P a a +-,关于x 轴的对称点在第一象限,求a 的取值范围.【例2】点()35M --,向上平移7个单位得到点1M 的坐标为 ;再向左平移3个单位得到点2M 的坐标为 .【练2】⑴ 平面直角坐标系中,将(2,1)P -向右平移4个单位,向下平移3个单位,得到'P ,⑵ 平面直角坐标系中,线段11A B ′′是由线段AB 经过平移得到的,点()14A --,的对应点为()111A -,′,那么此过程是先向 平移 个单位再向 平 移个单位得到的,则点B ()11,的对应点1B 坐标为 . ⑶将点()21,P m n -+沿x 轴负方向平移3个单位,得到()112,P m -,则点P 坐标是 .⑷ 平面直角坐标系中,线段A B ′′是由线段AB 经过平移得到的,点()21,A -的对应点为()34,A ′,点B 的对应点为()40,B ′,则点B 的坐标为( ) A .()93, B .()13,--C .()33,-D .()31,--【例3】如图,直角坐标系中,ABC △的顶点都在网格点上,其中点A 坐标为()21-,,则ABC △的面积为 平方单位.【练1】 ⑵ 直角坐标系中,已知()10A -,、()30B ,两点,点C 在y 轴上,ABC △的面积是4,则点C 的坐标是 .⑵ 如右图,已知直角坐标系中()14A -,、()02B ,,平移线段AB ,使点B 移到点()30C ,,此时点A 记作点D ,则四边形ABCD 的面积是 .【例4】已知,在平面直角坐标系中,A 、B 两点分别在x 轴、y 轴的正半轴上,且3OB OA ==. ⑴直接写出点A 、B 的坐标; ⑵若点()22C -,,求BOC △的面积;⑶点P 是与y 轴平行的直线上一点,且点P 的横坐标为1,若ABP △的面积是6,求点P 的坐标.【练4】已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【练5】如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A (2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.(3)在坐标轴上是否存在一点M,使得S△AOM=2S△ABC,若存在,求出M点的坐标,若不存在请说明理由。
初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
平面直角坐标系与坐标变换平面直角坐标系是描述平面上点的位置的一种常用坐标系。
它由两条相互垂直的坐标轴组成,分别被称为x轴和y轴,并且原点位于这两条轴的交点处。
在平面直角坐标系中,每个点都可以由一个有序数对 (x, y) 来表示,其中 x 表示点在x轴上的坐标,y 表示点在y轴上的坐标。
坐标变换是在不同坐标系之间进行转换的过程。
当我们需要在不同的坐标系中描述同一个点时,就需要进行坐标变换。
常见的坐标变换包括平移、旋转、缩放等操作。
1. 平移平移是将一个点沿着给定的方向和距离移动的操作。
在平面直角坐标系中,平移操作可以通过在原有坐标的基础上加上一个常量来实现。
对于点 P(x, y) 的平移操作,可以表示为 P'(x+a, y+b),其中 (a, b) 是平移向量。
2. 旋转旋转是将一个点绕着某个中心点按照一定的角度进行旋转的操作。
在平面直角坐标系中,原点 O(0, 0) 是通常被选作旋转的中心点。
对于点 P(x, y) 的旋转操作,可以表示为 P'(x', y'),其中 x' 和 y' 的计算公式如下:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,θ 表示旋转的角度。
3. 缩放缩放是将一个点按照给定的比例进行放大或缩小的操作。
在平面直角坐标系中,缩放操作可以通过乘上一个比例因子来实现。
对于点P(x, y) 的缩放操作,可以表示为 P'(kx, ky),其中 k 表示缩放的比例。
4. 坐标轴变换坐标轴变换是将坐标系的x轴和y轴进行调整的操作。
在平面直角坐标系中,坐标轴变换操作可以通过旋转和缩放来实现。
例如,如果我们需要将坐标系中的x轴和y轴交换,可以先进行一个旋转操作将x 轴旋转到y轴的位置,然后再进行一个缩放操作将x轴和y轴的刻度进行调整。
综上所述,平面直角坐标系与坐标变换是描述平面上点的位置和在不同坐标系之间进行转换的重要概念和操作。