自动运料小车电气控制设计.(DOC)知识分享
- 格式:doc
- 大小:846.00 KB
- 文档页数:18
送料小车的自动化控制发表时间:2018-12-04T21:28:17.640Z 来源:《基层建设》2018年第29期作者:张琳悦[导读] 摘要:可编程序控制器PLC现已广泛地应用于自动控制领域,运料小车在现代化的工厂中普遍存在,由于PLC 的可靠性高、环境适应性强、灵活通用、使用方便、维修简单,所以PLC 的应用领域在工业自动化控制领域越来越受到重视和普及应用,它的使用提高自动送料系统的自动化水平及可靠性。
华北理工大学电气工程学院河北唐山 063000摘要:可编程序控制器PLC现已广泛地应用于自动控制领域,运料小车在现代化的工厂中普遍存在,由于PLC 的可靠性高、环境适应性强、灵活通用、使用方便、维修简单,所以PLC 的应用领域在工业自动化控制领域越来越受到重视和普及应用,它的使用提高自动送料系统的自动化水平及可靠性。
为了实现自动送料小车的手动和自动化的转化,改善以往小车单纯手动送料,减少大量人力、物力、财力和时间,提高生产效率的可靠性,实现自动化生产。
关键词:PLC;自动化;送料小车可编程序控制器(PLC)是一种用于工业自动化控制的专用计算机,实质上属于计算机控制方式。
PLC 与普通微机一样。
以CPU 作为字处理器,实现字运算和数据存储,另外还有位处理器,进行位运算与控制。
PLC 控制具有可靠性高、易操作、易维修。
编程简单、灵活性强等特点。
现代工厂运用PLC 控制运料小车来代替传统的人力推车运料,使生产自动化、智能化,大大提高了生产效率,降低了劳动成本。
一、控制系统和控制方法及要求自动送料小车可以由可编程控制器或单片机等元器件来设计实现,但由于单片机设计线路较复杂,控制电路中需要加入A/D,D/A转换器,还需要大量的中断口地址,而且单片机控制线路易受到外界环境的干扰,也具有不稳定性,所以根据上述PLC的特点及PLC的运用领域使我选择了PLC来设置自动送料小车的控制,由于PLC的应用和发展迅速、在经济效益上取得了显著的效果。
PLC运料小车自动控制设计现代物流管理中,PLC运料小车的自动控制设计是非常重要的,它可以提高物流运输效率,减少人力成本,并确保物流过程中的安全性和可靠性。
在本文中,将会详细介绍PLC运料小车自动控制设计的关键内容。
首先,PLC运料小车自动控制设计涉及到多种传感器的使用。
传感器可以感知环境中的各种信息,并将这些信息传输给PLC控制器。
例如,可以安装距离传感器,用于检测小车与障碍物之间的距离,以避免碰撞发生。
同时,温度传感器可以监测小车所在环境的温度,并在需要时调节小车的工作状态。
通过使用传感器,PLC控制器可以根据环境的变化做出相应的调整,从而实现自动化控制。
其次,PLC运料小车自动控制设计需要确定小车运行的路径和速度。
路径规划是非常重要的一步,可以根据仓库的布局和货物存放位置来确定小车的运行路径。
同时,PLC控制器需要根据货物的重量和大小,以及小车的承载能力来确定小车的运行速度。
在运行过程中,PLC控制器可以根据环境的变化和指令的变化,实时调整小车的路径和速度,以实现最佳的运载效果。
此外,PLC运料小车自动控制设计还需要考虑到交通管理的问题。
在物流仓库中,可能存在多个小车同时运行的情况,为了确保安全和高效,需要PLC控制器对小车的运行进行调度和管理。
通过使用交通管理系统,可以避免小车之间的碰撞,减少运输时间,并确保货物的安全送达。
最后,PLC运料小车自动控制设计还需要考虑到通信系统的建立。
小车与PLC控制器之间需要进行无线通信,以便实现实时的数据传输和指令下达。
可以使用无线传感器网络或者蓝牙技术来建立通信系统,以确保小车和PLC控制器之间的信息传输的稳定性和可靠性。
综上所述,PLC运料小车自动控制设计是非常复杂的工作。
需要考虑到传感器的使用、路径规划、速度调节、交通管理以及通信系统的建立。
只有设计合理、系统稳定,才能实现物流运输过程的高效、安全和可靠。
绪论 (1)1.PLC的结构、工作原理及系统设计 (2)1.1PLC的结构 (2)1.2PLC的工作原理 (3)1.2.1循环扫描技术 (3)1.3PLC的编程语言 (4)1.3.1梯形图语言 (4)1.3.2助记符语言 (5)1.3.3功能块图语言 (5)1.4PLC控制系统的构成,设计原则及步骤 (5)2运料小车控制系统的方案论证 (8)2.1运料小车控制系统的控制内容与要求 (8)2.1.1运料小车的运动流程 (8)2.1.2设备控制要求 (8)2.2方案论证 (9)3运料小车控制系统的总体设计 (11)3.1硬件设计 (11)3.1.1PLC外部接线图 (11)3.2软件设计 (11)3.2.1PLC状态流程 (12)3.2.2系统梯形图 (13)3.3程序的运行调试与仿真 (16)4设计小结 (17)4.1小车的优缺点分析 (17)4.2设计的改进及推广 (17)总结 (18)参考文献 (19)致谢............................ 错误!未定义书签。
可编程控制器是在计算机技术、通信技术和继电器控制技术的发展基础上开发起来的,最初叫做可编程逻辑控制器(Programmable Logic Controller),即PLC,现已广泛应用于工业控制的各个领域。
它以微处理器为核心,用编写的程序不仅可以进行逻辑控制,还可以定时、计数和算术运算等,并通过数字量和模拟量的输入/输出来控制机械设备或生产过程。
20世纪60年代以前,汽车流水线的自动控制系统基本上都采用传统的继电器控制。
在60年代初,美国汽车制造业竞争越发激烈,而汽车的每一次更新的周期越来越短,这样对汽车流水线的自动控制系统更新就越来越频繁,原来的继电器控制就需要经常地重新设计和安装,从而延缓了汽车的更新间。
所以人们就想能有一种通用性和灵活性较强的控制系统来替代原有的继电器控制系统。
1968年,美国通用汽车公司首先提出可编程控制器的概念。
1引言课程设计目的在于使学生在实习过程中能够理论联系实际,在实际中充分利用所学理论知识分析和研究实际生产过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位打下一定的基础。
在实习过程中,通过动手实践,是学生掌握控制程序、电力电子系统和计算机控制系统等方面的实际知识,并能对所学的专业基础知识进行仿真和调试,了解现场主要设备的用途和电气线路的作用、原理和电气性能。
随着工业的发展,自动化已经成为了现代工业的代名词。
自动运料小车的电气控制设计就是为了适应日益发展的工业生产需求。
自动控制系统的出现大大加快了生产的速度,加快了工业的发展进程。
各种紧密仪器的出现也得益于自动控制系统的作用。
早期运料小车电气控制系统多为“继电器—接触器”组成的复杂系统,但这种系统存在设计周期长、体积大、成本高、可靠性差、功耗高、噪声大、缺乏通用性和灵活性等缺陷。
在实际生产中。
由于存在大量用开关量控制的简单的程序控制过程,而实际生产工艺和流程又是经常变化的,因而传统的继电器接触器控制系统不能满足这种要求。
随着可编程控制器的出现,提高了电气空盒子的灵活性和通用性,其控制功能和控制精度都得到了很大的提高。
PLC完全能够适应恶劣的工业环境。
PLC具备了计算机控制和继电器控制系统量方面的优点,目前在世界各国已作为一种标准化通用设备普遍应用于工业控制。
可编程控制器的广泛应用对于工业的发展具有转折性的影响。
基于PLC的运料小车控制系统,结构简单,体积小,功耗低,大大的提高了效率,降低成本。
2常规电气控制2.1 工艺流程图2-1 小车运料示意图某反应炉由一台小功率三相异步电动机拖动的自动运料小车,其动作顺序与控制要求如下:(1)小车由原位起动前进到1位(A料场)自动停留T1(2min),装A料。
(2)1位装A料完毕,自动返回原位,并停留T2(150s)进行卸料。
(3)卸料完毕,自动前进经1位不停留直到2位(B料场)自动停留T3(100s),装B料。
自动运料小车电气控制设计简介自动运料小车是一种用于运输物料的电动小车,广泛应用于物流仓储、制造业和交通运输等领域。
本文主要介绍自动运料小车的电气控制设计,包括电动机驱动、电源供应、控制器选型和控制程序实现。
电动机驱动自动运料小车通常采用直流电动机作为驱动器,其驱动方式可以采用PWM调速或变频调速。
根据小车的负载和速度要求,选择合适的电动机型号和驱动器型号。
常见的电动机型号有DC彩色电机、无刷直流电机和有刷直流电机,其中无刷直流电机具有体积小、寿命长、噪音低和效率高的优点,因此在自动运料小车中应用较为广泛。
电动机驱动电路通常由电源、功率半导体开关和驱动电路组成,其中功率半导体开关采用MOS管或IGBT管,驱动电路采用门极驱动器或驱动IC。
在PWM调速方式下,控制器输出的PWM信号经过门极驱动器或驱动IC后,控制电路将驱动信号传递给功率半导体,由其控制电动机的转矩和速度。
电源供应自动运料小车的电源供应通常采用蓄电池,其电压根据电动机型号和负载情况而定,通常为12V、24V或48V。
蓄电池需要采用高质量的铅酸蓄电池或深循环蓄电池,以保证充放电性能和寿命。
为保证电源系统的稳定性和可靠性,可以在电源系统中加入稳压器、过充保护器和过放保护器等保护措施。
除了蓄电池外,自动运料小车的电源系统还可以采用交流电源或太阳能等新型电源。
例如,将太阳能电池板安装到车顶,通过光伏效应将太阳能转化为电能,再通过电源控制器为电动机供电。
控制器选型自动运料小车的控制器是实现电动机控制的关键组件,其功能包括PWM信号生成、电流测量、速度反馈、保护控制和通信接口等。
常见的控制器型号有通用型和专用型控制器,均可进行编程控制,实现电动机的速度和转向控制。
在选型时需要根据小车的需求和系统功能进行评估,包括可靠性、接口类型、通讯协议、编程方式和性能指标等方面。
例如,选择带有RS485通讯接口的通用型控制器,实现小车的远程监控和控制。
控制程序实现自动运料小车的控制程序实现需要使用编程语言和相应的开发工具。
自动运料小车PLC控制系统设计随着生产自动化程度越来越高,PLC在生产过程控制系统中的应用也越来越广泛。
可编程逻辑控制器,简称PLC,是一种工业控制微型计算机。
它的编程方便、操作简单尤其是高通用性等优点,使它在工业生产过程中得到了广泛的应用。
其中的一个应用便是运料小车的控制,主要用到的便是它的逻辑控制功能。
控制要求1.运料小车在自动化生产线上运动的控制要求如下:(1)按下启动按钮,系统开始工作,按下停止按钮,系统停止工作;(2)当小车当前所处停靠站的编码小于呼叫按扭HJ的编码时,小车向右运行运行到按钮HJ所对应的停靠站时停止;(3)当小车当前所处停靠站的编码大于呼叫按扭HJ的编码时,小车向左运行,运行到按钮HJ所对应的停靠站时停止;(4)当小车当前所处停靠站的编码等于呼叫按扭HJ的编码时,小车保持不动;(5)呼叫按钮开关HJ1--HJ5应具有互锁功能,先按下者优先。
2.运料小车的运动分析:某自动生产线上运料小车的运动如图所示,运料小车由一台三相异步电动机拖动,电机正转,小车向右行,电机反转,小车向左行。
在生产线上有5个编码为1—5的站点供小车停靠,在每个停靠站安装一个行程开关以监测小车是否到达该站点。
对小车的控制除了启动按钮和停止按钮之外,还设有5个呼叫按钮开关(HJ1-- HJ5)分别与5个停靠站点相对应。
运料小车自动化生产线1号站2号站3号站4号站5号站自动运料小车示意图程序设计1.行程开关在该程序中,5个站的行程开关分别用数字0-4来表示,当小车在1号站时,行程开关X007得电,将数字0传送到数据寄存器D0;当小车在2号站时,行程开关X010得电,将数字1传送到数据寄存器D0。
依次类推,当小车在5号站时,行程开关X013得电,将数字4传送到数据寄存器D0。
它的助记符程序为:LD X007MOV K0 D0 ;小车在1号站LD X010MOV K1 D0 ;小车在2号站LD X011MOV K2 D0 ;小车在3号站LD X012MOV K3 D0 ;小车在4号站LD X013MOV K4 D0 ;小车在5号站所对应的梯形图如下所示:行程开关梯形图2.小车启停辅助继电器当按下启动按钮时,小车开始运动,该辅助继电器M0得电;当按下停止按钮时,小车停止运动,该辅助继电器M0失电。
1引言
课程设计目的在于使学生在实习过程中能够理论联系实际,在实际中充分利用所学理论知识分析和研究实际生产过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位打下一定的基础。
在实习过程中,通过动手实践,是学生掌握控制程序、电力电子系统和计算机控制系统等方面的实际知识,并能对所学的专业基础知识进行仿真和调试,了解现场主要设备的用途和电气线路的作用、原理和电气性能。
随着工业的发展,自动化已经成为了现代工业的代名词。
自动运料小车的电气控制设计就是为了适应日益发展的工业生产需求。
自动控制系统的出现大大加快了生产的速度,加快了工业的发展进程。
各种紧密仪器的出现也得益于自动控制系统的作用。
早期运料小车电气控制系统多为“继电器—接触器”组成的复杂系统,但这种系统存在设计周期长、体积大、成本高、可靠性差、功耗高、噪声大、缺乏通用性和灵活性等缺陷。
在实际生产中。
由于存在大量用开关量控制的简单的程序控制过程,而实际生产工艺和流程又是经常变化的,因而传统的继电器接触器控制系统不能满足这种要求。
随着可编程控制器的出现,提高了电气空盒子的灵活性和通用性,其控制功能和控制精度都得到了很大的提高。
PLC完全能够适应恶劣的工业环境。
PLC具备了计算机控制和继电器控制系统量方面的优点,目前在世界各国已作为一种标准化通用设备普遍应用于工业控制。
可编程控制器的广泛应用对于工业的发展具有转折性的影响。
基于PLC的运料小车控制系统,结构简单,体积小,功耗低,大大的提高了效率,降低成本。
2常规电气控制
2.1 工艺流程
图2-1 小车运料示意图
某反应炉由一台小功率三相异步电动机拖动的自动运料小车,其动作顺序与控制要求如下:
(1)小车由原位起动前进到1位(A料场)自动停留T1(2min),装A料。
(2)1位装A料完毕,自动返回原位,并停留T2(150s)进行卸料。
(3)卸料完毕,自动前进经1位不停留直到2位(B料场)自动停留T3(100s),
装B料。
(4)2位装B料完毕,自动返回原位,并停留T2(120s)进行卸料。
(5)小车在中间任何位置都可以停车,并能再次起动(前进或后退)且再次
起动后运料计划不变。
2.2 拖动要求
(1)运料小车由三相绕线式异步电动机拖动,采用转子回路串电阻(二级
电阻)起动(间隔5s切除R)。
(2)进料及卸料电磁阀为220V直通式电磁阀。
(3)在原位、2位两处设置超程保护。
(4)由主令开关SA选择“单周”、“循环”工作方式。
2.2 设计任务
1.绘制主电路,选择合适的元器件(名称、数量)。
2.绘制常规电气控制回路。
3.根据控制要求选择PLC,并安排PLC的I/O端口。
4.绘制状态流程图。
5.绘制梯形图并编写语句表。
6.上机调试程序。
7.绘制PLCA接线图。
8.编写设计、使用说明书及设计小结,列出参考资料目录。
2.4 主电路
图2-2 主电路图
2.5 控制回路
图2-3 控制回路图
2.6 设备选型表2-1 元器件
3 PLC控制
3.1 PLC的I/O分配
表3-1 I/O分配表
输入说明输出说明
I0.0 热继电器FR Q0.0 电机正转KM1
I0.1 停止按钮SB1 Q0.1 电机反转KM2
I0.2 暂停按钮SB2 Q0.2 电机转子串一级电阻运行KM3 I0.3 主令开关SA Q0.3 电机转子不串电阻运行KM4 I0.4 正向启动SB3 Q0.4 原位卸料信号 yv-1
I0.5 反向启动SB4 Q0.5 A料场装料信号 yv-2
I0.6 原位行程开关SQ1 Q0.6 B料场装料信号 yv-3
I0.7 1位行程开关SQ2 Q0.7 超程报警信号LED、扬声器
I1.0 2位行程开关 SQ3
I1.1 原位超程保护开关SQ4
I1.2 2位超程保护开关SQ5
3.2 PLC接线图及控制面板
图3-1 PLC接线图
图3-2 控制面板图3.3 PLC梯形图
图3-3 梯形图
3.4 程序调试及仿真
3.4.1仿真图
图3-4 运料小车前行仿真图
Q0.0灯亮表示电机正转;Q0.3灯亮表示电机转子所串二级电阻被短接,小车前向行使。
图3-5 运料小车反向行驶仿真图
图中Q0.1灯亮表示电机反转,小车反向行驶。
图3-6 运料小车在1位装A料仿真图
图中I0.7灯亮表示运料小车前行到达1位, Q0.5灯亮表示小车正在A料场装料。
图3-7 运料小车在原位卸料仿真图
图中I0.6灯亮表示运料小车从1位返回到达原位,Q0.4灯亮表示小车正在卸料。
图3-8 小车经1位不停车仿真图
图中Q0.1、Q0.3、Q0.7均亮表示运料小车经过1位时不停车继续行驶。
图3-9 运料小车B料场装料仿真图
图中I1.0灯亮表示运料小车从原位到达2位,Q0.6灯亮表示小车正在2位装B料。
图3-10 运料小车超程报警仿真图
图中I1.1灯亮表示小车在原位超程,Q0.7灯亮表示系统发出报警信号。
图3-11 运料小车超程报警仿真图
图中I1.2灯亮表示小车在2位超程,系统发出报警信号。
3.4.2 状态监控图
图14 正转
图3-12 小车前行监控图
按启动按钮后,Q0.0接通,电机正转,每间隔5秒短接一级电阻,10秒后Q0.3接通,电阻被短接。
小车前向行驶。
图3-13 小车在1位装A料状态监控图
小车到达1位,小车停止,正在装A料。
图3-14 小车返向行驶状态监控图
小车装完A料后返回原位。
图3-15 小车在原位卸A料状态监控图
小车回到原位后停车,此时正在卸A料。
图3-16 小车去往2位时经1位不停状态监控图小车卸料完毕后去往2位,经过1位时不停车。
图3-17 小车装B料状态监控图
小车到达2位停车,此时正在装B料。
图3-18 小车返回经过1位状态监控图小车从2位返回原位时进过1位不停车。
图返回经1位不停
图3-19 卸B料小车回到原位,此时正在卸B料
4操作说明
1、旋转主令开关SA,选择小车运行方式为单周或者是循环。
2、按启动按钮SB3,小车正向启动,并按程序预设运料计划运行。
3、按暂停按钮SB2,小车可在运行途中随时停车。
根据小车运行方向选择启动按钮SB3或SB4,小车可在途中重新启动,并按原运料计划继续运行。
4、按停止按钮SB1,小车可在任何位置急停。
5设计心得
此次课程设计做的是自动运料小车控制系统,料比为1车A料/1车B料。
虽然老师曾在课堂上讲解过这种相同运料行程的例题,但到了自已动手才发现有诸多问题。
刚开始总是有点力不从心,不知道如何下手。
后经过老师耐心的讲解,自己查书,上网查询,最后把控制回路图和程序的草搞做了出来,但也担心忽略了一些重点,而达不到控制要求。
经过仿真软件的仿真,也发现程序有些问题,经过多次的修改、仿真,修改再仿真。
程序总算趋于完美。
此次课程设计我们学到的不仅仅是PLC的知识,更多的是学会了怎么去团结怎么去一起面对困难,一起解决,而不是逃避!总结设计电路的特点和优缺点,指出课题的核心及使用价值,提出改进意见。
6参考文献
[1] 方承远,张振国. 工厂电气与PLC控制技术[M]. 北京:机械工业出版社,2011.
[2] 刘凤春,王林,周晓丹. 可编程控制器原理与应用基础[M]. 北京:机械工业出版社,2009.
[3] 刘介才. 工厂供电[M]. 北京:机械工业出版社,2009.
[4] 廖常初.PLC编程及应[M].北京:机械工业出版社,2005.
[5] 张伯龙.可编程逻辑控制器使用教程[M].北京:国防工业出版社,2008.。